Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Herbal Medicine for Glioblastoma: Current and Future Prospects

Author(s): Imran Khan, Sadaf Mahfooz and Mustafa A. Hatiboglu*

Volume 16, Issue 8, 2020

Page: [1022 - 1043] Pages: 22

DOI: 10.2174/1573406416666200130100833

Price: $65

Abstract

Background: Glioblastoma is one of the most aggressive and devastating tumours of the central nervous system with short survival time. Glioblastoma usually shows fast cell proliferation and invasion of normal brain tissue causing poor prognosis. The present standard of care in patients with glioblastoma includes surgery followed by radiotherapy and temozolomide (TMZ) based chemotherapy. Unfortunately, these approaches are not sufficient to lead a favorable prognosis and survival rates. As the current approaches do not provide a long-term benefit in those patients, new alternative treatments including natural compounds, have drawn attention. Due to their natural origin, they are associated with minimum cellular toxicity towards normal cells and it has become one of the most attractive approaches to treat tumours by natural compounds or phytochemicals.

Objective: In the present review, the role of natural compounds or phytochemicals in the treatment of glioblastoma describing their efficacy on various aspects of glioblastoma pathophysiology such as cell proliferation, apoptosis, cell cycle regulation, cellular signaling pathways, chemoresistance and their role in combinatorial therapeutic approaches was described.

Methods: Peer-reviewed literature was extracted using Pubmed, EMBASE Ovid and Google Scholar to be reviewed in the present article.

Conclusion: Preclinical data available in the literature suggest that phytochemicals hold immense potential to be translated into treatment modalities. However, further clinical studies with conclusive results are required to implement phytochemicals in treatment modalities.

Keywords: Glioblastoma, chemoresistance, anticancer, phytochemicals, combination therapies.

Graphical Abstract

[1]
Shi, F.; Guo, H.; Zhang, R.; Liu, H.; Wu, L.; Wu, Q.; Liu, J.; Liu, T.; Zhang, Q. The PI3K inhibitor GDC-0941 enhances radiosensitization and reduces chemoresistance to temozolomide in GBM cell lines. Neuroscience, 2017, 346, 298-308.
[http://dx.doi.org/10.1016/j.neuroscience.2017.01.032] [PMID: 28147244]
[2]
Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer statistics, 2010. CA Cancer J. Clin., 2010, 60(5), 277-300.
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[3]
Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[4]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[5]
Bleehen, N.M.; Stenning, S.P. The Medical Research Council Brain Tumour Working Party. A Medical Research Council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma. Br. J. Cancer, 1991, 64(4), 769-774.
[http://dx.doi.org/10.1038/bjc.1991.396] [PMID: 1654987]
[6]
Batchelor, T.T.; Reardon, D.A.; de Groot, J.F.; Wick, W.; Weller, M. Antiangiogenic therapy for glioblastoma: current status and future prospects. Clin. Cancer Res., 2014, 20(22), 5612-5619.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0834] [PMID: 25398844]
[7]
Atif, F.; Patel, N.R.; Yousuf, S.; Stein, D.G. The synergistic effect of combination progesterone and temozolomide on human glioblastoma cells. PLoS One, 2015, 10(6)e0131441
[http://dx.doi.org/10.1371/journal.pone.0131441] [PMID: 26110872]
[8]
Vaios, E.J.; Nahed, B.V.; Muzikansky, A.; Fathi, A.T.; Dietrich, J. Bone marrow response as a potential biomarker of outcomes in glioblastoma patients. J. Neurosurg., 2017, 127(1), 132-138.
[http://dx.doi.org/10.3171/2016.7.JNS16609] [PMID: 27739940]
[9]
Desai, V.; Bhushan, A. Natural bioactive compounds: alternative approach to the treatment of glioblastoma multiforme. BioMed Res. Int., 2017, 2017, Article ID 9363040
[http://dx.doi.org/10.1155/2017/9363040]
[10]
Manson, M.M.; Farmer, P.B.; Gescher, A.; Steward, W.P. Innovative agents in cancer prevention. Recent Results Cancer Res., 2005, 166, 257-275.
[http://dx.doi.org/10.1007/3-540-26980-0_17]
[11]
Doll, R.; Peto, R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst., 1981, 66(6), 1191-1308.
[http://dx.doi.org/10.1093/jnci/66.6.1192] [PMID: 7017215]
[12]
Park, M.N.; Song, H.S.; Kim, M.; Lee, M.J.; Cho, W.; Lee, H.J.; Hwang, C.H.; Kim, S.; Hwang, Y.; Kang, B.; Kim, B. Review of natural product-derived compounds as potent antiglioblastoma drugs. BioMed Res. Int., 2017, 20178139848
[http://dx.doi.org/10.1155/2017/8139848] [PMID: 29181405]
[13]
Butler, M.S.; Robertson, A.A.; Cooper, M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep., 2014, 31(11), 1612-1661.
[http://dx.doi.org/10.1039/C4NP00064A] [PMID: 25204227]
[14]
Erices, J.I.; Torres, Á.; Niechi, I.; Bernales, I.; Quezada, C. Current natural therapies in the treatment against glioblastoma. Phytother. Res., 2018, 32(11), 2191-2201.
[http://dx.doi.org/10.1002/ptr.6170] [PMID: 30109743]
[15]
Chen, Y.; Huang, J.H.; Ning, Y.; Shen, Z.Y. Icariin and its pharmaceutical efficacy: research progress of molecular mechanism. J. Chin. Integr. Med., 2011, 9(11), 1179-1184.
[http://dx.doi.org/10.3736/jcim20111104] [PMID: 22088582]
[16]
Li, F.; Gong, Q.H.; Wu, Q.; Lu, Y.F.; Shi, J.S. Icariin isolated from Epimedium brevicornum Maxim attenuates learning and memory deficits induced by d-galactose in rats. Pharmacol. Biochem. Behav., 2010, 96(3), 301-305.
[http://dx.doi.org/10.1016/j.pbb.2010.05.021] [PMID: 20566405]
[17]
Zhang, D.C.; Liu, J.L.; Ding, Y.B.; Xia, J.G.; Chen, G.Y. Icariin potentiates the antitumor activity of gemcitabine in gallbladder cancer by suppressing NF-κB. Acta Pharmacol. Sin., 2013, 34(2), 301-308.
[http://dx.doi.org/10.1038/aps.2012.162] [PMID: 23274410]
[18]
Yang, L.; Wang, Y.; Guo, H.; Guo, M. Synergistic anti-cancer effects of icariin and temozolomide in glioblastoma. Cell Biochem. Biophys., 2015, 71(3), 1379-1385.
[http://dx.doi.org/10.1007/s12013-014-0360-3] [PMID: 25384619]
[19]
Pathak, S.; Multani, A.S.; Narayan, S.; Kumar, V.; Newman, R.A. Anvirzel, an extract of Nerium oleander, induces cell death in human but not murine cancer cells. Anticancer Drugs, 2000, 11(6), 455-463.
[http://dx.doi.org/10.1097/00001813-200007000-00006] [PMID: 11001386]
[20]
Tezcan, G.; Tunca, B.; Bekar, A.; Yalcin, M.; Sahin, S.; Budak, F.; Cecener, G.; Egeli, U.; Demir, C.; Guvenc, G.; Yilmaz, G.; Erkan, L.G.; Malyer, H.; Taskapilioglu, M.O.; Evrensel, T.; Bilir, A. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines. Cell. Mol. Neurobiol., 2015, 35(2), 175-187.
[http://dx.doi.org/10.1007/s10571-014-0109-y] [PMID: 25212824]
[21]
Borges, K.S.; Brassesco, M.S.; Scrideli, C.A.; Soares, A.E.; Tone, L.G. Antiproliferative effects of Tubi-bee propolis in glioblastoma cell lines. Genet. Mol. Biol., 2011, 34(2), 310-314.
[http://dx.doi.org/10.1590/S1415-47572011000200024] [PMID: 21734835]
[22]
Abdullah Thani, N.A.; Sallis, B.; Nuttall, R.; Schubert, F.R.; Ahsan, M.; Davies, D.; Purewal, S.; Cooper, A.; Rooprai, H.K. Induction of apoptosis and reduction of MMP gene expression in the U373 cell line by polyphenolics in Aronia melanocarpa and by curcumin. Oncol. Rep., 2012, 28(4), 1435-1442.
[http://dx.doi.org/10.3892/or.2012.1941] [PMID: 22842701]
[23]
Gu, H.; Feng, J.; Wang, H.; Qian, Y.; Yang, L.; Chen, J.; Jin, F.; Shi, Y.; Lu, S.; Liu, Y. Celastrus orbiculatus extract inhibits the migration and invasion of human glioblastoma cells in vitro. BMC Complement. Altern. Med., 2016, 16(1), 387.
[http://dx.doi.org/10.1186/s12906-016-1232-8] [PMID: 27716341]
[24]
Al-Majed, A.A.; Al-Omar, F.A.; Nagi, M.N. Neuroprotective effects of thymoquinone against transient forebrain ischemia in the rat hippocampus. Eur. J. Pharmacol., 2006, 543(1-3), 40-47.
[http://dx.doi.org/10.1016/j.ejphar.2006.05.046] [PMID: 16828080]
[25]
Gurung, R.L.; Lim, S.N.; Khaw, A.K.; Soon, J.F.; Shenoy, K.; Mohamed Ali, S.; Jayapal, M.; Sethu, S.; Baskar, R.; Hande, M.P. Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS One, 2010, 5(8)e12124
[http://dx.doi.org/10.1371/journal.pone.0012124] [PMID: 20711342]
[26]
Shoieb, A.M.; Elgayyar, M.; Dudrick, P.S.; Bell, J.L.; Tithof, P.K. In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int. J. Oncol., 2003, 22(1), 107-113.
[http://dx.doi.org/10.3892/ijo.22.1.107] [PMID: 12469192]
[27]
Hatiboglu, M.A.; Kocyigit, A.; Guler, E.M.; Akdur, K.; Khan, I.; Nalli, A.; Karatas, E.; Tuzgen, S. Thymoquinone enhances the effect of gamma knife in B16-F10 melanoma through inhibition of phosphorylated STAT3. World Neurosurg., 2019, 128, e570-e581.
[http://dx.doi.org/10.1016/j.wneu.2019.04.205] [PMID: 31054338]
[28]
Hatiboglu, M.A.; Kocyigit, A.; Guler, E.M.; Akdur, K.; Nalli, A.; Karatas, E.; Tuzgen, S. Thymoquinone induces apoptosis in B16-F10 melanoma cell through inhibition of p-STAT3 and inhibits tumor growth in a murine intracerebral melanoma model. World Neurosurg., 2018, 114, e182-e190.
[http://dx.doi.org/10.1016/j.wneu.2018.02.136] [PMID: 29510292]
[29]
Racoma, I.O.; Meisen, W.H.; Wang, Q.E.; Kaur, B.; Wani, A.A. Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS One, 2013, 8(9), e72882.
[http://dx.doi.org/10.1371/journal.pone.0072882] [PMID: 24039814]
[30]
Duvoix, A.; Blasius, R.; Delhalle, S.; Schnekenburger, M.; Morceau, F.; Henry, E.; Dicato, M.; Diederich, M. Chemopreventive and therapeutic effects of curcumin. Cancer Lett., 2005, 223(2), 181-190.
[http://dx.doi.org/10.1016/j.canlet.2004.09.041] [PMID: 15896452]
[31]
Esatbeyoglu, T.; Huebbe, P.; Ernst, I.M.; Chin, D.; Wagner, A.E.; Rimbach, G. Curcumin--from molecule to biological function. Angew. Chem. Int. Ed. Engl., 2012, 51(22), 5308-5332.
[http://dx.doi.org/10.1002/anie.201107724] [PMID: 22566109]
[32]
Priyadarsini, K.I. The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[33]
Ambegaokar, S.S.; Wu, L.; Alamshahi, K.; Lau, J.; Jazayeri, L.; Chan, S.; Khanna, P.; Hsieh, E.; Timiras, P.S. Curcumin inhibits dose-dependently and time-dependently neuroglial cell proliferation and growth. Neuroendocrinol. Lett., 2003, 24(6), 469-473.
[PMID: 15073579]
[34]
Perry, M.C.; Demeule, M.; Régina, A.; Moumdjian, R.; Béliveau, R. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol. Nutr. Food Res., 2010, 54(8), 1192-1201.
[http://dx.doi.org/10.1002/mnfr.200900277] [PMID: 20087857]
[35]
Langone, P.; Debata, P.R. Inigo, Jdel.R.; Dolai, S.; Mukherjee, S.; Halat, P.; Mastroianni, K.; Curcio, G.M.; Castellanos, M.R.; Raja, K.; Banerjee, P. Coupling to a glioblastoma-directed antibody potentiates antitumor activity of curcumin. Int. J. Cancer, 2014, 135(3), 710-719.
[http://dx.doi.org/10.1002/ijc.28555] [PMID: 24142484]
[36]
Sun, Y.; Xun, K.; Wang, Y.; Chen, X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs, 2009, 20(9), 757-769.
[http://dx.doi.org/10.1097/CAD.0b013e328330d95b] [PMID: 19704371]
[37]
Liu, Q.; Xu, X.; Zhao, M.; Wei, Z.; Li, X.; Zhang, X.; Liu, Z.; Gong, Y.; Shao, C. Berberine induces senescence of human glioblastoma cells by downregulating the EGFR-MEK-ERK signaling pathway. Mol. Cancer Ther., 2015, 14(2), 355-363.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0634] [PMID: 25504754]
[38]
Eom, K.S.; Kim, H.J.; So, H.S.; Park, R.; Kim, T.Y. Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biol. Pharm. Bull., 2010, 33(10), 1644-1649.
[http://dx.doi.org/10.1248/bpb.33.1644] [PMID: 20930370]
[39]
Li, J.; Tang, H.; Zhang, Y.; Tang, C.; Li, B.; Wang, Y.; Gao, Z.; Luo, P.; Yin, A.; Wang, X.; Cheng, G.; Fei, Z. Saponin 1 induces apoptosis and suppresses NF-κB-mediated survival signaling in glioblastoma multiforme (GBM). PLoS One, 2013, 8(11)e81258
[http://dx.doi.org/10.1371/journal.pone.0081258] [PMID: 24278406]
[40]
Wang, X.; Zhang, W.; Gao, K.; Lu, Y.; Tang, H.; Sun, X. Oleanane-type saponins from Anemone taipaiensis and their cytotoxic activities. Fitoterapia, 2013, 89, 224-230.
[http://dx.doi.org/10.1016/j.fitote.2013.06.008] [PMID: 23774664]
[41]
da Fonseca, C.O.; Schwartsmann, G.; Fischer, J.; Nagel, J.; Futuro, D.; Quirico-Santos, T.; Gattass, C.R. Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas. Surg. Neurol., 2008, 70(3), 259-266.
[http://dx.doi.org/10.1016/j.surneu.2007.07.040] [PMID: 18295834]
[42]
Silva, V.A.O.; Rosa, M.N.; Tansini, A.; Oliveira, R.J.S.; Martinho, O.; Lima, J.P.; Pianowski, L.F.; Reis, R.M. In vitro screening of cytotoxic activity of euphol from Euphorbia tirucalli on a large panel of human cancer-derived cell lines. Exp. Ther. Med., 2018, 16(2), 557-566.
[http://dx.doi.org/10.3892/etm.2018.6244] [PMID: 30112023]
[43]
Cook, M.T.; Liang, Y.; Besch-Williford, C.; Goyette, S.; Mafuvadze, B.; Hyder, S.M. Luteolin inhibits progestin-dependent angiogenesis, stem cell-like characteristics, and growth of human breast cancer xenografts. Springerplus, 2015, 4, 444.
[http://dx.doi.org/10.1186/s40064-015-1242-x] [PMID: 26312209]
[44]
Tran, H.T.; Gao, X.; Kretschmer, N.; Pferschy-Wenzig, E-M.; Raab, P.; Pirker, T.; Temml, V.; Schuster, D.; Kunert, O.; Huynh, L.; Bauer, R. Anti-inflammatory and antiproliferative compounds from Sphaeranthus africanus. Phytomedicine, 2019, 62152951
[http://dx.doi.org/10.1016/j.phymed.2019.152951] [PMID: 31136898]
[45]
Chi, V. Dictionary of medicinal plants in Vietnam Medical Publishing House: Hanoi,, 2012, 1, pp. 441-442.
[46]
Hosseini, S.H.; Masullo, M.; Cerulli, A.; Martucciello, S.; Ayyari, M.; Pizza, C.; Piacente, S. Antiproliferative Cardenolides from the Aerial Parts of Pergularia tomentosa. J. Nat. Prod., 2019, 82(1), 74-79.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00630] [PMID: 30629433]
[47]
Pehlivan, F. Promising medicinal plant Inula viscosa L.: Antiproliferative, antioxidant, antibacterial and phenolic profiles. Prog. Nutr., 2019, 21(3), 652-661.
[48]
Kerr, J.F.R.; Harmon, B.V. Definition and incidence of apoptosis: an historical perspective. In: Apoptosis: The Molecular Basis of cell Death; Tomei, L.D.; Cope, F.O., Eds.; Cold Spring Harbor Laboratory Press: New York, 1991; pp. 5-29.
[49]
Lowe, S.W.; Lin, A.W. Apoptosis in cancer. Carcinogenesis, 2000, 21(3), 485-495.
[http://dx.doi.org/10.1093/carcin/21.3.485] [PMID: 10688869]
[50]
Wong, R.S. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30, 87.
[51]
Ricciardiello, L.; Ahnen, D.J.; Lynch, P.M. Chemoprevention of hereditary colon cancers: time for new strategies. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(6), 352-361.
[http://dx.doi.org/10.1038/nrgastro.2016.56] [PMID: 27095653]
[52]
Nicholson, D.W. From bench to clinic with apoptosis-based therapeutic agents. Nature, 2000, 407(6805), 810-816.
[http://dx.doi.org/10.1038/35037747] [PMID: 11048733]
[53]
Lambert, D.M.; Fowler, C.J. The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications. J. Med. Chem., 2005, 48(16), 5059-5087.
[http://dx.doi.org/10.1021/jm058183t] [PMID: 16078824]
[54]
Porter, A.C.; Felder, C.C. The endocannabinoid nervous system: unique opportunities for therapeutic intervention. Pharmacol. Ther., 2001, 90(1), 45-60.
[http://dx.doi.org/10.1016/S0163-7258(01)00130-9] [PMID: 11448725]
[55]
Hermanson, D.J.; Marnett, L.J. Cannabinoids, endocannabinoids, and cancer. Cancer Metastasis Rev., 2011, 30(3-4), 599-612.
[http://dx.doi.org/10.1007/s10555-011-9318-8] [PMID: 22038019]
[56]
Massi, P.; Vaccani, A.; Bianchessi, S.; Costa, B.; Macchi, P.; Parolaro, D. The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cell. Mol. Life Sci., 2006, 63(17), 2057-2066.
[http://dx.doi.org/10.1007/s00018-006-6156-x] [PMID: 16909207]
[57]
Massi, P.; Valenti, M.; Vaccani, A.; Gasperi, V.; Perletti, G.; Marras, E.; Fezza, F.; Maccarrone, M.; Parolaro, D. 5-Lipoxygenase and anandamide hydrolase (FAAH) mediate the antitumor activity of cannabidiol, a non-psychoactive cannabinoid. J. Neurochem., 2008, 104(4), 1091-1100.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05073.x] [PMID: 18028339]
[58]
Biesalski, H.K. Polyphenols and inflammation: basic interactions. Curr. Opin. Clin. Nutr. Metab. Care, 2007, 10(6), 724-728.
[http://dx.doi.org/10.1097/MCO.0b013e3282f0cef2] [PMID: 18089954]
[59]
Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines, 2018, 6(3), 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[60]
Cichewicz, R.H.; Kouzi, S.A. Resveratrol oligomers: structure, chemistry, and biological activity. Stud. Nat. Prod. Chem; Elsevier, 2002, Vol. 26, pp. 507-579.
[61]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[62]
Tseng, S.H.; Lin, S.M.; Chen, J.C.; Su, Y.H.; Huang, H.Y.; Chen, C.K.; Lin, P.Y.; Chen, Y. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin. Cancer Res., 2004, 10(6), 2190-2202.
[63]
Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828.
[http://dx.doi.org/10.3892/or.2017.5766] [PMID: 28677813]
[64]
Bentz, A.B. A Review of Quercetin: Chemistry, Antioxident Properties, and Bioavailability. J. Young Investig., 2009. Available online: http://www.jyi.org/research/re.php?id=3416 (accessed on 1 October 2017).
[65]
Cook, N.C.; Samman, S. Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem., 1996, 7(2), 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[66]
Mariani, C.; Braca, A.; Vitalini, S.; De Tommasi, N.; Visioli, F.; Fico, G. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae). Phytochemistry, 2008, 69(5), 1220-1226.
[http://dx.doi.org/10.1016/j.phytochem.2007.12.009] [PMID: 18226822]
[67]
Cao, H.H.; Tse, A.K.; Kwan, H.Y.; Yu, H.; Cheng, C.Y.; Su, T.; Fong, W.F.; Yu, Z.L. Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem. Pharmacol., 2014, 87(3), 424-434.
[http://dx.doi.org/10.1016/j.bcp.2013.11.008] [PMID: 24275163]
[68]
Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res., 2004, 24(10), 851-874.
[http://dx.doi.org/10.1016/j.nutres.2004.07.005]
[69]
Gao, X.; Wang, B.; Wei, X.; Men, K.; Zheng, F.; Zhou, Y.; Zheng, Y.; Gou, M.; Huang, M.; Guo, G.; Huang, N.; Qian, Z.; Wei, Y. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 2012, 4(22), 7021-7030.
[http://dx.doi.org/10.1039/c2nr32181e] [PMID: 23044718]
[70]
Yang, J.H.; Hsia, T.C.; Kuo, H.M.; Chao, P.D.; Chou, C.C.; Wei, Y.H.; Chung, J.G. Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab. Dispos., 2006, 34(2), 296-304.
[http://dx.doi.org/10.1124/dmd.105.005280] [PMID: 16280456]
[71]
Kim, H.; Moon, J.Y.; Ahn, K.S.; Cho, S.K. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid. Med. Cell. Longev., 2013, 2013596496
[http://dx.doi.org/10.1155/2013/596496] [PMID: 24379902]
[72]
Padhye, S.; Dandawate, P.; Yusufi, M.; Ahmad, A.; Sarkar, F.H. Perspectives on medicinal properties of plumbagin and its analogs. Med. Res. Rev., 2012, 32(6), 1131-1158.
[http://dx.doi.org/10.1002/med.20235] [PMID: 23059762]
[73]
Abedinpour, P.; Baron, V.T.; Chrastina, A.; Welsh, J.; Borgström, P. The combination of plumbagin with androgen withdrawal causes profound regression of prostate tumors in vivo. Prostate, 2013, 73(5), 489-499.
[http://dx.doi.org/10.1002/pros.22585] [PMID: 22996809]
[74]
Chen, M.B.; Zhang, Y.; Wei, M.X.; Shen, W.; Wu, X.Y.; Yao, C.; Lu, P.H. Activation of AMP-activated protein kinase (AMPK) mediates plumbagin-induced apoptosis and growth inhibition in cultured human colon cancer cells. Cell. Signal., 2013, 25(10), 1993-2002.
[http://dx.doi.org/10.1016/j.cellsig.2013.05.026] [PMID: 23712032]
[75]
Hafeez, B.B.; Jamal, M.S.; Fischer, J.W.; Mustafa, A.; Verma, A.K. Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NF-κB signaling pathways. Int. J. Cancer, 2012, 131(9), 2175-2186.
[http://dx.doi.org/10.1002/ijc.27478] [PMID: 22322442]
[76]
Kawiak, A.; Zawacka-Pankau, J.; Lojkowska, E. Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway. J. Nat. Prod., 2012, 75(4), 747-751.
[http://dx.doi.org/10.1021/np3000409] [PMID: 22512718]
[77]
Lee, J.H.; Yeon, J.H.; Kim, H.; Roh, W.; Chae, J.; Park, H.O.; Kim, D.M. The natural anticancer agent plumbagin induces potent cytotoxicity in MCF-7 human breast cancer cells by inhibiting a PI-5 kinase for ROS generation. PLoS One, 2012, 7(9)e45023
[http://dx.doi.org/10.1371/journal.pone.0045023] [PMID: 23028742]
[78]
Sinha, S.; Pal, K.; Elkhanany, A.; Dutta, S.; Cao, Y.; Mondal, G.; Iyer, S.; Somasundaram, V.; Couch, F.J.; Shridhar, V.; Bhattacharya, R.; Mukhopadhyay, D.; Srinivas, P. Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells in vivo. Int. J. Cancer, 2013, 132(5), 1201-1212.
[http://dx.doi.org/10.1002/ijc.27724] [PMID: 22806981]
[79]
Khaw, A.K.; Sameni, S.; Venkatesan, S.; Kalthur, G.; Hande, M.P. Plumbagin alters telomere dynamics, induces DNA damage and cell death in human brain tumour cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2015, 793, 86-95.
[http://dx.doi.org/10.1016/j.mrgentox.2015.06.004] [PMID: 26520377]
[80]
Elkady, A.I.; Hussein, R.A.; Abu-Zinadah, O.A. Effects of crude extracts from medicinal herbs Rhazya stricta and Zingiber officinale on growth and proliferation of human brain cancer cell line in vitro. BioMed Res. Int., 2014, 2014260210
[http://dx.doi.org/10.1155/2014/260210] [PMID: 25136570]
[81]
Lin, T.Y.; Lee, C.C.; Chen, K.C.; Lin, C.J.; Shih, C.M. Inhibition of RNA transportation induces glioma cell apoptosis via downregulation of RanGAP1 expression. Chem. Biol. Interact., 2015, 232, 49-57.
[http://dx.doi.org/10.1016/j.cbi.2015.02.019] [PMID: 25746355]
[82]
Williamson, D.; Lu, Y.J.; Fang, C.; Pritchard-Jones, K.; Shipley, J. Nascent pre-rRNA overexpression correlates with an adverse prognosis in alveolar rhabdomyosarcoma. Genes Chromosomes Cancer, 2006, 45(9), 839-845.
[http://dx.doi.org/10.1002/gcc.20347] [PMID: 16770781]
[83]
Terry, L.J.; Shows, E.B.; Wente, S.R. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science, 2007, 318(5855), 1412-1416.
[http://dx.doi.org/10.1126/science.1142204] [PMID: 18048681]
[84]
Jeong, M.A.; Lee, K.W.; Yoon, D.Y.; Lee, H.J. Jaceosidin, a pharmacologically active flavone derived from Artemisia argyi, inhibits phorbol-ester-induced upregulation of COX-2 and MMP-9 by blocking phosphorylation of ERK-1 and -2 in cultured human mammary epithelial cells. Ann. N. Y. Acad. Sci., 2007, 1095(1), 458-466.
[http://dx.doi.org/10.1196/annals.1397.049] [PMID: 17404058]
[85]
Kim, J.H.; Kim, H-K.; Jeon, S.B.; Son, K-H.; Kim, E.H.; Kang, S.K.; Sung, N-D.; Kwon, B-M. New sesquiterpene–monoterpene lactone, artemisolide, isolated from Artemisia argyi. Tetrahedron Lett., 2002, 43(35), 6205-6208.
[http://dx.doi.org/10.1016/S0040-4039(02)01315-1]
[86]
Khan, M.; Yu, B.; Rasul, A.; Al Shawi, A.; Yi, F.; Yang, H.; Ma, T. Jaceosidin Induces Apoptosis in U87 Glioblastoma Cells through G2/M Phase Arrest. Evid. Based Complement. Alternat. Med., 2012, 2012703034
[87]
Akao, Y.; Nakagawa, Y.; Iinuma, M.; Nozawa, Y. Anti-cancer effects of xanthones from pericarps of mangosteen. Int. J. Mol. Sci., 2008, 9(3), 355-370.
[http://dx.doi.org/10.3390/ijms9030355] [PMID: 19325754]
[88]
Jung, H.A.; Su, B.N.; Keller, W.J.; Mehta, R.G.; Kinghorn, A.D. Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J. Agric. Food Chem., 2006, 54(6), 2077-2082.
[http://dx.doi.org/10.1021/jf052649z] [PMID: 16536578]
[89]
Liu, Q.; Li, D.; Wang, A.; Dong, Z.; Yin, S.; Zhang, Q.; Ye, Y.; Li, L.; Lin, L. Nitric oxide inhibitory xanthones from the pericarps of Garcinia mangostana. Phytochemistry, 2016, 131, 115-123.
[http://dx.doi.org/10.1016/j.phytochem.2016.08.007] [PMID: 27561254]
[90]
Chang, H.F.; Huang, W.T.; Chen, H.J.; Yang, L.L. Apoptotic effects of γ-mangostin from the fruit hull of Garcinia mangostana on human malignant glioma cells. Molecules, 2010, 15(12), 8953-8966.
[http://dx.doi.org/10.3390/molecules15128953] [PMID: 21139533]
[91]
Rezadoost, M.H.; Kumleh, H.H.; Ghasempour, A. Cytotoxicity and apoptosis induction in breast cancer, skin cancer and glioblastoma cells by plant extracts. Mol. Biol. Rep., 2019, 46(5), 5131-5142.
[http://dx.doi.org/10.1007/s11033-019-04970-w] [PMID: 31317456]
[92]
Wang, Y.; Tang, H.; Zhang, Y.; Li, J.; Li, B.; Gao, Z.; Wang, X.; Cheng, G.; Fei, Z. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line. Int. J. Mol. Med., 2013, 32(5), 1077-1084.
[http://dx.doi.org/10.3892/ijmm.2013.1500] [PMID: 24048272]
[93]
Ji, C.C.; Tang, H.F.; Hu, Y.Y.; Zhang, Y.; Zheng, M.H.; Qin, H.Y.; Li, S.Z.; Wang, X.Y.; Fei, Z.; Cheng, G. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl 2 family proteins. Mol. Med. Rep., 2016, 14(1), 380-386.
[http://dx.doi.org/10.3892/mmr.2016.5287] [PMID: 27175997]
[94]
Ramachandran, C.; Portalatin, G.; Quirin, K.W.; Escalon, E.; Khatib, Z.; Melnick, S.J. Inhibition of AKT signaling by supercritical CO2 extract of mango ginger (Curcuma amada Roxb.) in human glioblastoma cells. J. Complement. Integr. Med., 2015, 12(4), 307-315.
[http://dx.doi.org/10.1515/jcim-2015-0005] [PMID: 26439597]
[95]
Berg, C.C. Olmedieae Brosimeae (Moraceae). Flora Neotropica, 1972, 7, 1-228.
[96]
Maues, L.A.L.; Alves, G.M.; Couto, N.M.G.; da Silva, B.J.M.; Arruda, M.S.P.; Macchi, B.M.; Sena, C.B.C.; Prado, A.F.; Crespo-Lopez, M.E.; Silva, E.O.; do Nascimento, J.L.M. Flavonoids from the Amazon plant Brosimum acutifolium induce C6 glioma cell line apoptosis by disrupting mitochondrial membrane potential and reducing AKT phosphorylation. Biomed. Pharmacother., 2019, 113108728
[97]
Alexandru, O.; Georgescu, A.M.; Dragoi, A.; Ciurea, M.E.; Taisescu, C.I.; Tataranu, L.G.; Brindusa, C.; Boldeanu, M.V.; Purcaru, S.O.; Silosi, C.A. In vitro antineoplastic activity of dye compounds on human glioblastoma cells. Revista de Chimie, 2019, 70(1), 112-117.
[98]
Kowalczyk, T.; Sitarek, P.; Skała, E.; Toma, M.; Wielanek, M.; Pytel, D.; Wieczfińska, J.; Szemraj, J.; Śliwiński, T. Induction of apoptosis by in vitro and in vivo plant extracts derived from Menyanthes trifoliata L. in human cancer cells. Cytotechnology, 2019, 71(1), 165-180.
[http://dx.doi.org/10.1007/s10616-018-0274-9] [PMID: 30610508]
[99]
Dirsch, V.M.; Kiemer, A.K.; Wagner, H.; Vollmar, A.M. The triterpenoid quinonemethide pristimerin inhibits induction of inducible nitric oxide synthase in murine macrophages. Eur. J. Pharmacol., 1997, 336(2-3), 211-217.
[http://dx.doi.org/10.1016/S0014-2999(97)01245-4] [PMID: 9384235]
[100]
Chen, M.; Yin, X.; Lu, C.; Chen, X.; Ba, H.; Cai, J.; Sun, J. Mahanine induces apoptosis, cell cycle arrest, inhibition of cell migration, invasion and PI3K/AKT/mTOR signalling pathway in glioma cells and inhibits tumor growth in vivo. Chem. Biol. Interact., 2019, 299, 1-7.
[http://dx.doi.org/10.1016/j.cbi.2018.11.009] [PMID: 30468732]
[101]
Nguyen, K.H.; Ta, T.N.; Pham, T.H.; Nguyen, Q.T.; Pham, H.D.; Mishra, S.; Nyomba, B.L. Nuciferine stimulates insulin secretion from beta cells-an in vitro comparison with glibenclamide. J. Ethnopharmacol., 2012, 142(2), 488-495.
[http://dx.doi.org/10.1016/j.jep.2012.05.024] [PMID: 22633982]
[102]
Li, Z.; Chen, Y.; An, T.; Liu, P.; Zhu, J.; Yang, H.; Zhang, W.; Dong, T.; Jiang, J.; Zhang, Y.; Jiang, M.; Yang, X. Nuciferine inhibits the progression of glioblastoma by suppressing the SOX2-AKT/STAT3-Slug signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 139.
[http://dx.doi.org/10.1186/s13046-019-1134-y] [PMID: 30922391]
[103]
Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif., 2003, 36(3), 131-149.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[104]
Tyanova, S.; Cox, J.; Olsen, J.; Mann, M.; Frishman, D. Phosphorylation variation during the cell cycle scales with structural propensities of proteins. PLOS Comput. Biol., 2013, 9(1)e1002842
[http://dx.doi.org/10.1371/journal.pcbi.1002842] [PMID: 23326221]
[105]
Verdugo, A.; Vinod, P.K.; Tyson, J.J.; Novak, B. Molecular mechanisms creating bistable switches at cell cycle transitions. Open Biol., 2013, 3(3)120179
[http://dx.doi.org/10.1098/rsob.120179] [PMID: 23486222]
[106]
Morgan, D.O. Principles of CDK regulation. Nature, 1995, 374(6518), 131-134.
[http://dx.doi.org/10.1038/374131a0] [PMID: 7877684]
[107]
Sancar, A.; Lindsey-Boltz, L.A.; Unsal-Kaçmaz, K.; Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem., 2004, 73, 39-85.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073723] [PMID: 15189136]
[108]
Foster, D.A.; Yellen, P.; Xu, L.; Saqcena, M. Regulation of G1 Cell Cycle Progression: Distinguishing the Restriction Point from a Nutrient-Sensing Cell Growth Checkpoint(s). Genes Cancer, 2010, 1(11), 1124-1131.
[http://dx.doi.org/10.1177/1947601910392989] [PMID: 21779436]
[109]
Harbour, J.W.; Dean, D.C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev., 2000, 14(19), 2393-2409.
[http://dx.doi.org/10.1101/gad.813200] [PMID: 11018009]
[110]
Weinert, T.A.; Kiser, G.L.; Hartwell, L.H. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev., 1994, 8(6), 652-665.
[http://dx.doi.org/10.1101/gad.8.6.652] [PMID: 7926756]
[111]
DiPaola, R.S. To arrest or not to G(2)-M Cell-cycle arrest: commentary re: Tyagi A.K. et al., Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G(2)-M arrest, and apoptosis. Clin. Cancer Res., 8: 3512-3519, 2002. Clin. Cancer Res., 2002, 8(11), 3311-3314.
[112]
Chipuk, J.E.; Kuwana, T.; Bouchier-Hayes, L.; Droin, N.M.; Newmeyer, D.D.; Schuler, M.; Green, D.R. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science, 2004, 303(5660), 1010-1014.
[http://dx.doi.org/10.1126/science.1092734] [PMID: 14963330]
[113]
Stark, G.R.; Taylor, W.R. Analyzing the G2/M checkpoint. Methods Mol. Biol., 2004, 280, 51-82.
[PMID: 15187249]
[114]
Abbas, T.; Dutta, A. p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer, 2009, 9(6), 400-414.
[http://dx.doi.org/10.1038/nrc2657] [PMID: 19440234]
[115]
Li, Y.; Zhang, P.; Qiu, F.; Chen, L.; Miao, C.; Li, J.; Xiao, W.; Ma, E. Inactivation of PI3K/Akt signaling mediates proliferation inhibition and G2/M phase arrest induced by andrographolide in human glioblastoma cells. Life Sci., 2012, 90(25-26), 962-967.
[http://dx.doi.org/10.1016/j.lfs.2012.04.044] [PMID: 22634579]
[116]
Mishra, R.; Kaur, G. Aqueous ethanolic extract of Tinospora cordifolia as a potential candidate for differentiation based therapy of glioblastomas. PLoS One, 2013, 8(10)e78764
[http://dx.doi.org/10.1371/journal.pone.0078764] [PMID: 24205314]
[117]
Parthipan, M.; Aravindhan, V.; Rajendran, A. Medico-botanical study of Yercaud hills in the eastern Ghats of Tamil Nadu, India. Anc. Sci. Life, 2011, 30(4), 104-109.
[PMID: 22557438]
[118]
Saha, S.; Ghosh, S. Tinospora cordifolia: One plant, many roles. Anc. Sci. Life, 2012, 31(4), 151-159.
[http://dx.doi.org/10.4103/0257-7941.107344] [PMID: 23661861]
[119]
Hewlings, S.J.; Kalman, D.S. A Review of Its’ Effects on Human Health. Foods, 2017, 6(10), 92.
[120]
Jayaprakasha, G.K.; Jagan Mohan Rao, L.; Sakariah, K.K. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J. Agric. Food Chem., 2002, 50(13), 3668-3672.
[http://dx.doi.org/10.1021/jf025506a] [PMID: 12059141]
[121]
Luthra, P.M.; Kumar, R.; Prakash, A. Demethoxycurcumin induces Bcl-2 mediated G2/M arrest and apoptosis in human glioma U87 cells. Biochem. Biophys. Res. Commun., 2009, 384(4), 420-425.
[http://dx.doi.org/10.1016/j.bbrc.2009.04.149] [PMID: 19422808]
[122]
Dalla Via, L.; Gia, O.; Marciani Magno, S.; Santana, L.; Teijeira, M.; Uriarte, E. New tetracyclic analogues of photochemotherapeutic drugs 5-MOP and 8-MOP: synthesis, DNA interaction, and antiproliferative activity. J. Med. Chem., 1999, 42(21), 4405-4413.
[http://dx.doi.org/10.1021/jm9910829] [PMID: 10543884]
[123]
Parrish, J.A.; Fitzpatrick, T.B.; Tanenbaum, L.; Pathak, M.A. Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light. N. Engl. J. Med., 1974, 291(23), 1207-1211.
[http://dx.doi.org/10.1056/NEJM197412052912301] [PMID: 4422691]
[124]
Guo, H.; He, Y.; Bu, C.; Peng, Z. Antitumor and apoptotic effects of 5-methoxypsoralen in U87MG human glioma cells and its effect on cell cycle, autophagy and PI3K/Akt signaling pathway. Arch. Med. Sci., 2019, 15(6), 1530-1538.
[http://dx.doi.org/10.5114/aoms.2019.81729] [PMID: 31749882]
[125]
Nakada, M.; Kita, D.; Watanabe, T.; Hayashi, Y.; Teng, L.; Pyko, I.V.; Hamada, J. Aberrant signaling pathways in glioma. Cancers (Basel), 2011, 3(3), 3242-3278.
[http://dx.doi.org/10.3390/cancers3033242] [PMID: 24212955]
[126]
Van Meir, E.G.; Hadjipanayis, C.G.; Norden, A.D.; Shu, H.K.; Wen, P.Y.; Olson, J.J. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J. Clin., 2010, 60(3), 166-193.
[http://dx.doi.org/10.3322/caac.20069] [PMID: 20445000]
[127]
Whang, Y.E.; Yuan, X.J.; Liu, Y.; Majumder, S.; Lewis, T.D. Regulation of sensitivity to TRAIL by the PTEN tumor suppressor. Vitam. Horm., 2004, 67, 409-426.
[http://dx.doi.org/10.1016/S0083-6729(04)67021-X] [PMID: 15110188]
[128]
Arlt, A.; Gehrz, A.; Müerköster, S.; Vorndamm, J.; Kruse, M.L.; Fölsch, U.R.; Schäfer, H. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene, 2003, 22(21), 3243-3251.
[http://dx.doi.org/10.1038/sj.onc.1206390] [PMID: 12761494]
[129]
Bellacosa, A.; Kumar, C.C.; Di Cristofano, A.; Testa, J.R. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv. Cancer Res., 2005, 94, 29-86.
[http://dx.doi.org/10.1016/S0065-230X(05)94002-5] [PMID: 16095999]
[130]
Cheng, J.Q.; Jiang, X.; Fraser, M.; Li, M.; Dan, H.C.; Sun, M.; Tsang, B.K. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist. Updat., 2002, 5(3-4), 131-146.
[131]
Falasca, M. PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr. Pharm. Des., 2010, 16(12), 1410-1416.
[http://dx.doi.org/10.2174/138161210791033950] [PMID: 20166984]
[132]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[133]
Kirtikar, K.; Basu, B. Indian Medicinal Plants; Bishen Singh Mahendra Pal Singh And Periodical Experts, 1918, Vol. 3, .
[http://dx.doi.org/10.5962/bhl.title.137025]
[134]
Warrier, P.K. Indian medicinal plants: a compendium of 500 species; Orient Blackswan, 1993, Vol. 5, .
[135]
Dhandapani, K.M.; Mahesh, V.B.; Brann, D.W. Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors. J. Neurochem., 2007, 102(2), 522-538.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04633.x] [PMID: 17596214]
[136]
Markiewicz-Żukowska, R.; Borawska, M.H.; Fiedorowicz, A.; Naliwajko, S.K.; Sawicka, D.; Car, H. Propolis changes the anticancer activity of temozolomide in U87MG human glioblastoma cell line. BMC Complement. Altern. Med., 2013, 13, 50.
[http://dx.doi.org/10.1186/1472-6882-13-50] [PMID: 23445763]
[137]
Romashkova, J.A.; Makarov, S.S. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 1999, 401(6748), 86-90.
[http://dx.doi.org/10.1038/43474] [PMID: 10485711]
[138]
Grogan, P.T.; Sarkaria, J.N.; Timmermann, B.N.; Cohen, M.S. Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest. New Drugs, 2014, 32(4), 604-617.
[http://dx.doi.org/10.1007/s10637-014-0084-7] [PMID: 24718901]
[139]
Chautard, E.; Loubeau, G.; Tchirkov, A.; Chassagne, J.; Vermot-Desroches, C.; Morel, L.; Verrelle, P. Akt signaling pathway: a target for radiosensitizing human malignant glioma. Neuro-oncol., 2010, 12(5), 434-443.
[PMID: 20406894]
[140]
Cheng, C.K.; Fan, Q.W.; Weiss, W.A. PI3K signaling in glioma--animal models and therapeutic challenges. Brain Pathol., 2009, 19(1), 112-120.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00233.x] [PMID: 19076776]
[141]
Jiao, Y.; Li, H.; Liu, Y.; Guo, A.; Xu, X.; Qu, X.; Wang, S.; Zhao, J.; Li, Y.; Cao, Y. Resveratrol Inhibits the Invasion of Glioblastoma-Initiating Cells via Down-Regulation of the PI3K/Akt/NF-κB Signaling Pathway. Nutrients, 2015, 7(6), 4383-4402.
[http://dx.doi.org/10.3390/nu7064383] [PMID: 26043036]
[142]
Yuan, Y.; Xue, X.; Guo, R.B.; Sun, X.L.; Hu, G. Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway. CNS Neurosci. Ther., 2012, 18(7), 536-546.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00319.x] [PMID: 22530672]
[143]
Huang, H.; Lin, H.; Zhang, X.; Li, J. Resveratrol reverses temozolomide resistance by downregulation of MGMT in T98G glioblastoma cells by the NF-κB-dependent pathway. Oncol. Rep., 2012, 27(6), 2050-2056.
[PMID: 22426504]
[144]
Chen, J.; Zhao, Y.B.; Wang, Y.J.; Li, X.G. Identification of species and materia medica within Saussurea subg. Amphilaena based on DNA barcodes. PeerJ, 2019, 7e6357
[http://dx.doi.org/10.7717/peerj.6357] [PMID: 30723628]
[145]
Lin, Y-C.; Hung, C-M.; Tsai, J-C.; Lee, J-C.; Chen, Y-L.S.; Wei, C-W.; Kao, J-Y.; Way, T-D. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J. Agric. Food Chem., 2010, 58(17), 9511-9517.
[http://dx.doi.org/10.1021/jf1019533] [PMID: 20698539]
[146]
Fan, Q.W.; Weiss, W.A. Targeting the RTK-PI3K-mTOR axis in malignant glioma: overcoming resistance. Curr. Top. Microbiol. Immunol., 2010, 347, 279-296.
[http://dx.doi.org/10.1007/82_2010_67] [PMID: 20535652]
[147]
Cheng, W.Y.; Chiao, M.T.; Liang, Y.J.; Yang, Y.C.; Shen, C.C.; Yang, C.Y. Luteolin inhibits migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity. Mol. Biol. Rep., 2013, 40(9), 5315-5326.
[http://dx.doi.org/10.1007/s11033-013-2632-1] [PMID: 23677714]
[148]
Bagli, E.; Stefaniotou, M.; Morbidelli, L.; Ziche, M.; Psillas, K.; Murphy, C.; Fotsis, T. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3′-kinase activity. Cancer Res., 2004, 64(21), 7936-7946.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3104] [PMID: 15520200]
[149]
Chakrabarti, M.; Ray, S.K. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo. Apoptosis, 2016, 21(3), 312-328.
[150]
Sun, G.Y.; Li, R.; Cui, J.; Hannink, M.; Gu, Z.; Fritsche, K.L.; Lubahn, D.B.; Simonyi, A. Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells. Neuromolecular Med., 2016, 18(3), 241-252.
[http://dx.doi.org/10.1007/s12017-016-8411-0] [PMID: 27209361]
[151]
da Fonseca, C.O.; Simão, M.; Lins, I.R.; Caetano, R.O.; Futuro, D.; Quirico-Santos, T. Efficacy of monoterpene perillyl alcohol upon survival rate of patients with recurrent glioblastoma. J. Cancer Res. Clin. Oncol., 2011, 137(2), 287-293.
[http://dx.doi.org/10.1007/s00432-010-0873-0] [PMID: 20401670]
[152]
Chen, W.L.; Barszczyk, A.; Turlova, E.; Deurloo, M.; Liu, B.; Yang, B.B.; Rutka, J.T.; Feng, Z.P.; Sun, H.S. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget, 2015, 6(18), 16321-16340.
[http://dx.doi.org/10.18632/oncotarget.3872] [PMID: 25965832]
[153]
Musumeci, G.; Magro, G.; Cardile, V.; Coco, M.; Marzagalli, R.; Castrogiovanni, P.; Imbesi, R.; Graziano, A.C.; Barone, F.; Di Rosa, M.; Castorina, S.; Castorina, A. Characterization of matrix metalloproteinase-2 and -9, ADAM-10 and N-cadherin expression in human glioblastoma multiforme. Cell Tissue Res., 2015, 362(1), 45-60.
[http://dx.doi.org/10.1007/s00441-015-2197-5] [PMID: 25948484]
[154]
Solinas, M.; Massi, P.; Cinquina, V.; Valenti, M.; Bolognini, D.; Gariboldi, M.; Monti, E.; Rubino, T.; Parolaro, D. Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS One, 2013, 8(10)e76918
[http://dx.doi.org/10.1371/journal.pone.0076918] [PMID: 24204703]
[155]
Vallée, A.; Guillevin, R.; Vallée, J.N. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev. Neurosci., 2018, 29(1), 71-91.
[http://dx.doi.org/10.1515/revneuro-2017-0032] [PMID: 28822229]
[156]
Cilibrasi, C.; Riva, G.; Romano, G.; Cadamuro, M.; Bazzoni, R.; Butta, V.; Paoletta, L.; Dalprà, L.; Strazzabosco, M.; Lavitrano, M.; Giovannoni, R.; Bentivegna, A. Resveratrol Impairs Glioma Stem Cells Proliferation and Motility by Modulating the Wnt Signaling Pathway. PLoS One, 2017, 12(1)e0169854
[http://dx.doi.org/10.1371/journal.pone.0169854] [PMID: 28081224]
[157]
Bischoff, S.C. Quercetin: potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(6), 733-740.
[http://dx.doi.org/10.1097/MCO.0b013e32831394b8] [PMID: 18827577]
[158]
Chen, S.F.; Nieh, S.; Jao, S.W.; Liu, C.L.; Wu, C.H.; Chang, Y.C.; Yang, C.Y.; Lin, Y.S. Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells. PLoS One, 2012, 7(11)e49275
[http://dx.doi.org/10.1371/journal.pone.0049275] [PMID: 23152886]
[159]
Perez-Vizcaino, F.; Duarte, J.; Andriantsitohaina, R. Endothelial function and cardiovascular disease: effects of quercetin and wine polyphenols. Free Radic. Res., 2006, 40(10), 1054-1065.
[http://dx.doi.org/10.1080/10715760600823128] [PMID: 17015250]
[160]
Chang, C.Y.; Li, M.C.; Liao, S.L.; Huang, Y.L.; Shen, C.C.; Pan, H.C. Prognostic and clinical implication of IL-6 expression in glioblastoma multiforme. J. Clin. Neurosci., 2005, 12(8), 930-933.
[161]
Hong, D.S.; Angelo, L.S.; Kurzrock, R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer, 2007, 110(9), 1911-1928.
[http://dx.doi.org/10.1002/cncr.22999] [PMID: 17849470]
[162]
Michaud-Levesque, J.; Bousquet-Gagnon, N.; Béliveau, R. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Exp. Cell Res., 2012, 318(8), 925-935.
[http://dx.doi.org/10.1016/j.yexcr.2012.02.017] [PMID: 22394507]
[163]
Hernán Pérez de la Ossa, D.; Lorente, M.; Gil-Alegre, M.E.; Torres, S.; García-Taboada, E. Aberturas, Mdel.R.; Molpeceres, J.; Velasco, G.; Torres-Suárez, A.I. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme. PLoS One, 2013, 8(1)e54795
[http://dx.doi.org/10.1371/journal.pone.0054795] [PMID: 23349970]
[164]
Blaskovich, M.A.; Sun, J.; Cantor, A.; Turkson, J.; Jove, R.; Sebti, S.M. Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res., 2003, 63(6), 1270-1279.
[PMID: 12649187]
[165]
Chen, J.C.; Chiu, M.H.; Nie, R.L.; Cordell, G.A.; Qiu, S.X. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat. Prod. Rep., 2005, 22(3), 386-399.
[http://dx.doi.org/10.1039/b418841c] [PMID: 16010347]
[166]
Sun, J.; Blaskovich, M.A.; Jove, R.; Livingston, S.K.; Coppola, D.; Sebti, S.M. Cucurbitacin Q: a selective STAT3 activation inhibitor with potent antitumor activity. Oncogene, 2005, 24(20), 3236-3245.
[http://dx.doi.org/10.1038/sj.onc.1208470] [PMID: 15735720]
[167]
Yin, D.; Wakimoto, N.; Xing, H.; Lu, D.; Huynh, T.; Wang, X.; Black, K.L.; Koeffler, H.P. Cucurbitacin B markedly inhibits growth and rapidly affects the cytoskeleton in glioblastoma multiforme. Int. J. Cancer, 2008, 123(6), 1364-1375.
[http://dx.doi.org/10.1002/ijc.23648] [PMID: 18561312]
[168]
Yao, J.; Qian, C.J.; Ye, B.; Zhao, Z.Q.; Wei, J.; Liang, Y.; Zhang, X. Signal transducer and activator of transcription 3 signaling upregulates fascin via nuclear factor-κB in gastric cancer: Implications in cell invasion and migration. Oncol. Lett., 2014, 7(3), 902-908.
[http://dx.doi.org/10.3892/ol.2014.1804] [PMID: 24527098]
[169]
Senft, C.; Priester, M.; Polacin, M.; Schröder, K.; Seifert, V.; Kögel, D.; Weissenberger, J. Inhibition of the JAK-2/STAT3 signaling pathway impedes the migratory and invasive potential of human glioblastoma cells. J. Neurooncol., 2011, 101(3), 393-403.
[http://dx.doi.org/10.1007/s11060-010-0273-y] [PMID: 20589525]
[170]
Park, K-S.; Yoon, S-Y.; Park, S-H.; Hwang, J-H. Anti-Migration and Anti-Invasion Effects of Curcumin via Suppression of Fascin Expression in Glioblastoma Cells. Brain Tumor Res. Treat., 2019, 7(1), 16-24.
[http://dx.doi.org/10.14791/btrt.2019.7.e28] [PMID: 31062527]
[171]
Silva, V.A.O.; Rosa, M.N.; Miranda-Gonçalves, V.; Costa, A.M.; Tansini, A.; Evangelista, A.F.; Martinho, O.; Carloni, A.C.; Jones, C.; Lima, J.P.; Pianowski, L.F.; Reis, R.M. Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells. Invest. New Drugs, 2019, 37(2), 223-237.
[http://dx.doi.org/10.1007/s10637-018-0620-y] [PMID: 29931585]
[172]
Lee, J.K.; Joo, K.M.; Lee, J.; Yoon, Y.; Nam, D.H. Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling. OncoTargets Ther., 2014, 7, 1933-1944.
[PMID: 25364264]
[173]
Hei, B.; Wang, J.; Wu, G.; Ouyang, J.; Liu, R.E. Verbascoside suppresses the migration and invasion of human glioblastoma cells via targeting c-Met-mediated epithelial-mesenchymal transition. Biochem. Biophys. Res. Commun., 2019, 514(4), 1270-1277.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.096] [PMID: 31113618]
[174]
Weller, M.; Müller, B.; Koch, R.; Bamberg, M.; Krauseneck, P. Neuro-Oncology Working Group of the German Cancer Society. Neuro-Oncology Working Group 01 trial of nimustine plus teniposide versus nimustine plus cytarabine chemotherapy in addition to involved-field radiotherapy in the first-line treatment of malignant glioma. J. Clin. Oncol., 2003, 21(17), 3276-3284.
[http://dx.doi.org/10.1200/JCO.2003.03.509] [PMID: 12947063]
[175]
Walker, M.D.; Alexander, E., Jr; Hunt, W.E.; MacCarty, C.S.; Mahaley, M.S., Jr; Mealey, J., Jr; Norrell, H.A.; Owens, G.; Ransohoff, J.; Wilson, C.B.; Gehan, E.A.; Strike, T.A. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J. Neurosurg., 1978, 49(3), 333-343.
[http://dx.doi.org/10.3171/jns.1978.49.3.0333] [PMID: 355604]
[176]
Da Ros, M.; De Gregorio, V.; Iorio, A.L.; Giunti, L.; Guidi, M.; de Martino, M.; Genitori, L.; Sardi, I. Glioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier. Int. J. Mol. Sci., 2018, 19(10)E2879
[http://dx.doi.org/10.3390/ijms19102879] [PMID: 30248992]
[177]
Zhang, D.; Wong, L.L.; Koay, E.S. Phosphorylation of Ser78 of Hsp27 correlated with HER-2/neu status and lymph node positivity in breast cancer. Mol. Cancer, 2007, 6, 52.
[http://dx.doi.org/10.1186/1476-4598-6-52] [PMID: 17697330]
[178]
Sang, D.P.; Li, R.J.; Lan, Q. Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27. Acta Pharmacol. Sin., 2014, 35(6), 832-838.
[http://dx.doi.org/10.1038/aps.2014.22] [PMID: 24902789]
[179]
Cho, H.Y.; Wang, W.; Jhaveri, N.; Torres, S.; Tseng, J.; Leong, M.N.; Lee, D.J.; Goldkorn, A.; Xu, T.; Petasis, N.A.; Louie, S.G.; Schönthal, A.H.; Hofman, F.M.; Chen, T.C. Perillyl alcohol for the treatment of temozolomide-resistant gliomas. Mol. Cancer Ther., 2012, 11(11), 2462-2472.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0321] [PMID: 22933703]
[180]
Torres, S.; Lorente, M.; Rodríguez-Fornés, F.; Hernández-Tiedra, S.; Salazar, M.; García-Taboada, E.; Barcia, J.; Guzmán, M.; Velasco, G. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther., 2011, 10(1), 90-103.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0688] [PMID: 21220494]
[181]
Durg, S.; Dhadde, S.B.; Vandal, R.; Shivakumar, B.S.; Charan, C.S. Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: a systematic review and meta-analysis. J. Pharm. Pharmacol., 2015, 67(7), 879-899.
[http://dx.doi.org/10.1111/jphp.12398] [PMID: 25828061]
[182]
Shah, N.; Kataria, H.; Kaul, S.C.; Ishii, T.; Kaur, G.; Wadhwa, R. Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: combinational approach for enhanced differentiation. Cancer Sci., 2009, 100(9), 1740-1747.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01236.x] [PMID: 19575749]
[183]
Fuzer, M. Effects of limonoid cedrelone on MDA-MB-231 breast tumor cells in vitro. Anticancer. Agents Med. Chem., 2013, 13(10), 1645-1653.
[184]
Fuzer, M. Effects of limonoid cedrelone on MDA-MB-231 breast tumor cells in vitro. Anticancer. Agents Med. Chem., 2013, 13(10), 1645-1653.
[185]
Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[186]
Miles, D.; von Minckwitz, G.; Seidman, A.D. Combination versus sequential single-agent therapy in metastatic breast cancer. Oncologist, 2002, 7(Suppl. 6), 13-19.
[PMID: 12454315]
[187]
Khan, I.; Yusuf, M.A.; Ansari, I.A.; Akhtar, M.S. Anticancer Potential of Andrographolide, a Diterpenoid Lactone from Andrographis paniculata: A Nature’s Treasure for Chemoprevention and Therapeutics.Anticancer Plants: Mechanisms and Molecular Interactions; Springer, 2018, pp. 143-163.
[http://dx.doi.org/10.1007/978-981-10-8417-1_6]
[188]
Ramachandran, C.; Nair, S.M.; Escalon, E.; Melnick, S.J. Potentiation of etoposide and temozolomide cytotoxicity by curcumin and turmeric force™ in brain tumor cell lines. J. Complement. Integr. Med., 2012, 9, 20.
[http://dx.doi.org/10.1515/1553-3840.1614] [PMID: 22944718]
[189]
Gupta, I.; Parihar, A.; Malhotra, P.; Singh, G.B.; Lüdtke, R.; Safayhi, H.; Ammon, H.P. Effects of Boswellia serrata gum resin in patients with ulcerative colitis. Eur. J. Med. Res., 1997, 2(1), 37-43.
[PMID: 9049593]
[190]
Glaser, T.; Winter, S.; Groscurth, P.; Safayhi, H.; Sailer, E.R.; Ammon, H.P.; Schabet, M.; Weller, M. Boswellic acids and malignant glioma: induction of apoptosis but no modulation of drug sensitivity. Br. J. Cancer, 1999, 80(5-6), 756-765.
[http://dx.doi.org/10.1038/sj.bjc.6690419] [PMID: 10360653]
[191]
Syrovets, T.; Gschwend, J.E.; Büchele, B.; Laumonnier, Y.; Zugmaier, W.; Genze, F.; Simmet, T. Inhibition of IkappaB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo. J. Biol. Chem., 2005, 280(7), 6170-6180.
[http://dx.doi.org/10.1074/jbc.M409477200] [PMID: 15576374]
[192]
Winking, M.; Sarikaya, S.; Rahmanian, A.; Jödicke, A.; Böker, D.K. Boswellic acids inhibit glioma growth: a new treatment option? J. Neurooncol., 2000, 46(2), 97-103.
[http://dx.doi.org/10.1023/A:1006387010528] [PMID: 10894362]
[193]
Conti, S.; Vexler, A.; Edry-Botzer, L.; Kalich-Philosoph, L.; Corn, B.W.; Shtraus, N.; Meir, Y.; Hagoel, L.; Shtabsky, A.; Marmor, S.; Earon, G.; Lev-Ari, S. Combined acetyl-11-keto-β-boswellic acid and radiation treatment inhibited glioblastoma tumor cells. PLoS One, 2018, 13(7)e0198627
[http://dx.doi.org/10.1371/journal.pone.0198627] [PMID: 29969452]
[194]
Fukushima, T.; Kawaguchi, M.; Yorita, K.; Tanaka, H.; Takeshima, H.; Umezawa, K.; Kataoka, H. Antitumor effect of dehydroxymethylepoxyquinomicin, a small molecule inhibitor of nuclear factor-κB, on glioblastoma. Neuro-oncol., 2012, 14(1), 19-28.
[http://dx.doi.org/10.1093/neuonc/nor168] [PMID: 21968049]
[195]
Adhvaryu, M.R.; Reddy, N.; Parabia, M.H. Anti-tumor activity of four Ayurvedic herbs in Dalton lymphoma ascites bearing mice and their short-term in vitro cytotoxicity on DLA-cell-line. Afr. J. Tradit. Complement. Altern. Med., 2008, 5(4), 409-418.
[http://dx.doi.org/10.4314/ajtcam.v5i4.31297] [PMID: 20161965]
[196]
Desai, V.R.; Ramkrishnan, R.; Chintalwar, G.J.; Sainis, K.B. G1-4A, an immunomodulatory polysaccharide from Tinospora cordifolia, modulates macrophage responses and protects mice against lipopolysaccharide induced endotoxic shock. Int. Immunopharmacol., 2007, 7(10), 1375-1386.
[http://dx.doi.org/10.1016/j.intimp.2007.06.004] [PMID: 17673153]
[197]
Prince, P.S.; Kamalakkannan, N.; Menon, V.P. Restoration of antioxidants by ethanolic Tinospora cordifolia in alloxan-induced diabetic Wistar rats. Acta Pol. Pharm., 2004, 61(4), 283-287.
[PMID: 15575595]
[198]
Rao, S.K.; Rao, P.S. Alteration in the radiosensitivity of HeLa cells by dichloromethane extract of guduchi (Tinospora cordifolia). Integr. Cancer Ther., 2010, 9(4), 378-384.
[http://dx.doi.org/10.1177/1534735410387598] [PMID: 21106617]
[199]
Thippeswamy, G.; Sheela, M.L.; Salimath, B.P. Octacosanol isolated from Tinospora cordifolia downregulates VEGF gene expression by inhibiting nuclear translocation of NF-<kappa>B and its DNA binding activity. Eur. J. Pharmacol., 2008, 588(2-3), 141-150.
[http://dx.doi.org/10.1016/j.ejphar.2008.04.027] [PMID: 18513715]
[200]
Rao, S.K.; Rao, P.S.; Rao, B.N. Preliminary investigation of the radiosensitizing activity of guduchi (Tinospora cordifolia) in tumor-bearing mice. Phytother. Res., 2008, 22(11), 1482-1489.
[http://dx.doi.org/10.1002/ptr.2508] [PMID: 18803246]
[201]
Giakoumettis, D.; Pourzitaki, C.; Vavilis, T.; Tsingotjidou, A.; Kyriakoudi, A.; Tsimidou, M.; Boziki, M.; Sioga, A.; Foroglou, N.; Kritis, A. Crocus sativus L. Causes a Non Apoptotic Calpain Dependent Death in C6 Rat Glioma Cells, Exhibiting a Synergistic Effect with Temozolomide. Nutr. Cancer, 2019, 71(3), 491-507.
[http://dx.doi.org/10.1080/01635581.2018.1506493] [PMID: 30273051]
[202]
Brunetti, A.; Marinelli, O.; Morelli, M.B.; Iannarelli, R.; Amantini, C.; Russotti, D.; Santoni, G.; Maggi, F.; Nabissi, M. Isofuranodiene synergizes with temozolomide in inducing glioma cells death. Phytomedicine, 2019, 52, 51-59.
[http://dx.doi.org/10.1016/j.phymed.2018.09.220] [PMID: 30599912]
[203]
Dabili, S.; Fallah, S.; Aein, M.; Vatannejad, A.; Panahi, G.; Fadaei, R.; Moradi, N.; Shojaii, A. Survey of the effect of doxorubicin and flavonoid extract of white Morus alba leaf on apoptosis induction in a-172 GBM cell line. Arch. Physiol. Biochem., 2019, 125(2), 136-141.
[http://dx.doi.org/10.1080/13813455.2018.1441871] [PMID: 29463109]
[204]
Ma, J.W.; Zhang, Y.; Ye, J.C.; Li, R.; Wen, Y.L.; Huang, J.X.; Zhong, X.Y. Tetrandrine Exerts a Radiosensitization Effect on Human Glioma through Inhibiting Proliferation by Attenuating ERK Phosphorylation. Biomol. Ther. (Seoul), 2017, 25(2), 186-193.
[http://dx.doi.org/10.4062/biomolther.2016.044] [PMID: 27829269]
[205]
Sun, X.; Xu, R.; Deng, Y.; Cheng, H.; Ma, J.; Ji, J.; Zhou, Y. Effects of tetrandrine on apoptosis and radiosensitivity of nasopharyngeal carcinoma cell line CNE. Acta Biochim. Biophys. Sin. (Shanghai), 2007, 39(11), 869-878.
[http://dx.doi.org/10.1111/j.1745-7270.2007.00349.x] [PMID: 17989878 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy