Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Chemical Composition and Bioactive Potential of Essential Oils from Banisteriopsis campestris

Author(s): Edmilson de O. Rocha, Roberto Chang*, Evandro A. do Nascimento, Mário M. Martins, Sérgio A.L. de Morais, Francisco José T. de Aquino, Luís C.S. Cunha, Larissa de O. Silva, Carlos H.G. Martins, Thaise L. Teixeira, Cláudio V. da Silva, Allisson B. Justino and Foued S. Espindola

Volume 16, Issue 8, 2020

Page: [1205 - 1214] Pages: 10

DOI: 10.2174/1573407216666200129101433

Price: $65

Abstract

Background: Banisteriopsis campestris is a Malpighiaceae, also known as “cipó-prata” or “murici”. There are some reports about the use of this plant in folk medicine.

Objectives: The aim of this study is to test the Essential Oils (EOs) from leaves, stems, and roots of B. campestris for antibacterial, antifungal, antioxidant, and antiprotozoal activities and the inhibition of glycation and cytotoxicity on Vero cells.

Methods: The plant was collected and the essential oil was obtained and tested for antibacterial, antifungal, antioxidant, and antiprotozoal activities and the inhibition of glycation and cytotoxicity on Vero cells, using the more adequate methods to achieve the objectives.

Results: The EOs inhibited the growth of aerobic and anaerobic oral bacteria. The root oil presented the highest antibacterial activity with MIC levels ranging from 12.5 to 100 μg mL-1. The three EOs showed antiprotozoal activity against Leishmania amazonensis. The stem and root EOs presented low cytotoxicity to Vero cells. The roots and stem oils showed inhibition of glycation above 50%, with stem oil with of 79.11%. The compounds identified in the leaf EOs were palmitic acid (22.98%), phytol (22.98%), and triacontane (14.88%); in the stem–palmitic (49.79%), linoleic (11.63%), oleic (4.83%), and palmitoleic (4.15%) fatty acids; in the root–palmitic acid (57.39%), linoleic (10.38%), and oleic acids (5.47%).

Conclusion: The results presented indicate that the EOs have remarkable antioxidant properties and potential antimicrobial activity and confirm the essential oils of B. campestris as an alternative source of medicinal substances.

Keywords: Banisteriopsis campestris, essential oil, antibacterial, antiprotozoal, antioxidant, glycation inhibition.

Graphical Abstract

[1]
Dutra, R.C.; Campos, M.M.; Santos, A.R.S.; Calixto, J.B. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol. Res., 2016, 112, 4-29.
[http://dx.doi.org/10.1016/j.phrs.2016.01.021] [PMID: 26812486]
[2]
Marques, G.S.; Rolim, L.A.; Alves, L.D.S.; Silva, C.C. de A.R.; Soares, L.A.L.; Rolim-Neto, P.J. Estado Da Arte de Bauhinia Forficata Link (Fabaceae) Como Alternativa Terapêutica Para o Tratamento Do Diabetes Melittus. Rev. Cienc. Farm. Basica Apl., 2013, 34(3), 313-320.
[3]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[4]
Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules, 2010, 15(12), 9252-9287.
[http://dx.doi.org/10.3390/molecules15129252] [PMID: 21160452]
[5]
Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines (Basel), 2016, 3(4), 25.
[http://dx.doi.org/10.3390/medicines3040025] [PMID: 28930135]
[6]
Furtado, F.B.; Borges, B.C.; Teixeira, T.L.; Garces, H.G.; Almeida, Junior L.D.; Alves, F.C.B.; Silva, C.V.D.; Fernandes, Junior A. Chemical composition and bioactivity of essential oil from Blepharocalyx salicifolius. Int. J. Mol. Sci., 2018, 19(1), 1-13.
[http://dx.doi.org/10.3390/ijms19010033] [PMID: 29300307]
[7]
Stanetic, D.; Buchbauer, G. Biological activity of some volatile diterpenoids. Curr. Bioact. Compd., 2015, 11(1), 38-48.
[http://dx.doi.org/10.2174/157340721101150804150419]
[8]
Lang, G.; Buchbauer, G. A Review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review. Flavour Fragrance J., 2012, 27(1), 13-39.
[http://dx.doi.org/10.1002/ffj.2082]
[9]
Lombello, R.A.; Forni-Martins, E.R. Cytological studies on banisteriopsis C.B. Robinson ex small and Heteropterys Kunth (Malpighiaceae). Cytologia (Tokyo), 2011, 66(3), 253-259.
[http://dx.doi.org/10.1508/cytologia.66.253]
[10]
Wang, Y.H.; Samoylenko, V.; Tekwani, B.L.; Khan, I.A.; Miller, L.S.; Chaurasiya, N.D.; Rahman, M.M.; Tripathi, L.M.; Khan, S.I.; Joshi, V.C.; Wigger, F.T.; Muhammad, I. Composition, standardization and chemical profiling of Banisteriopsis caapi, a plant for the treatment of neurodegenerative disorders relevant to Parkinson’s disease. J. Ethnopharmacol., 2010, 128(3), 662-671.
[http://dx.doi.org/10.1016/j.jep.2010.02.013] [PMID: 20219660]
[11]
de Souza, P.A. Alkaloids and ayahuasca tea: A correlation of hallucinogen-induced “Altered States of Consciousness.”. Rev. Bras. Plantas Med., 2011, 13(3), 349-358.
[http://dx.doi.org/10.1590/S1516-05722011000300015]
[12]
Schenberg, E.E.; Alexandre, J.F.M.; Filev, R.; Cravo, A.M.; Sato, J.R.; Muthukumaraswamy, S.D.; Yonamine, M.; Waguespack, M.; Lomnicka, I.; Barker, S.A.; da Silveira, D.X. Acute biphasic effects of Ayahuasca. PLoS One, 2015, 10(9),e0137202.
[http://dx.doi.org/10.1371/journal.pone.0137202] [PMID: 26421727]
[13]
Nunes, B.C.; Martins, M.M.; Chang, R.; Morais, S.A.L.; Nascimento, E.A.; de Oliveira, A.; Cunha, L.C.S.; da Silva, C.V.; Teixeira, T.L.; Ambrósio, M.A.L.V. Antimicrobial activity, cytotoxicity and selectivity index of Banisteriopsis laevifolia (A. Juss.) B. gates leaves. Ind. Crops Prod., 2016, 92, 277-289.
[http://dx.doi.org/10.1016/j.indcrop.2016.08.016]
[14]
Freitas, L.B.O.; Boaventura, M.A.D.; Santos, W.L.; Stehmann, J.R.; Junior, D.D.; Lopes, M.T.P.; Magalhães, T.F.F.; Da Silva, D.L.; De Resende, M.A. Allelopathic, Cytotoxic and antifungic activities of new dihydrophenanthrenes and other constituents of leaves and roots extracts of Banisteriopsis anisandra (Malpighiaceae). Phytochem. Lett., 2015, 12, 9-16.
[http://dx.doi.org/10.1016/j.phytol.2015.02.006]
[15]
Oliveira, D.M.; Silva, T.F.R.; Martins, M.M.; de Morais, S.A.L.; Chang, R.; de Aquino, F.J.T.; da Silva, C.V.; Teixeira, T.L.; Martins, C.H.G.; Moraes, T.S.; Cunha, L.C.S.; Pivatto, M.; de Oliveira, A. Antifungal and cytotoxicity activities of Banisteriopsis argyrophylla leaves. J. Pharm. Pharmacol., 2018, 70(11), 1541-1552.
[http://dx.doi.org/10.1111/jphp.12996] [PMID: 30136729]
[16]
Pádua, M.S.; Mendes-Costa, M.C.; Ferreira, J.M.S.; Magalhães, J.C.; Castro, A.H.F. Assessment of antimicrobial activity in vitro of ethanolic extracts of Banisteriopsis Anisandra (A. Juss.) B. Gates (Malpighiaceae). Rev. Bras. Plantas Med., 2013, 15(3), 431-437.
[http://dx.doi.org/10.1590/S1516-05722013000300017]
[17]
Royo, V.D.A.; Estadual, U.; Claros, D.M.; Prazeres, R.M.; Santos, K.T.; Estadual, U.; Claros, D.M.; Oliveira, D.A.; Estadual, U.; Claros, D.M. Fatty acid profile and physical chemical properties of oil extracted from Banisteriopsis Pubipetala (A. Juss.) Cuatrec. (Malpighiaceae) Seeds. Periód. Tchê Quím., 2017, 27(January), 105-111.
[18]
Maroni, B.C.; Stasi, L.C. Plantas Medicinais Do Cerrado de Botucatu Fundação Editora da UNESP: Botucatu, 2006.
[19]
Messias, M.C.T.B.; Menegatto, M.F.; Prado, A.C.C.; Santos, B.R.; Guimarães, M.F.M. Popular use of medicinal plants and the socioeconomic profile of the users: A Study in the urban area of ouro preto, Minas Gerais, Brazil. Rev. Bras. Plantas Med., 2015, 17(1), 76-104.
[http://dx.doi.org/10.1590/1983-084X/12_139]
[20]
Sueli, T.; Grandi, M. Tratado Das Plantas Medicinais – Mineiras, Nativas e Cultivadas; Primeira E.; Adaequatio, Estúdio, Eds.; Belo Horizonte, , 2014.
[21]
Rocha, E.O.; Cunha, L.C.S.; Silva, M.V.S.G.; Freitas, T.R.; Nascimento, E.A.; Silva, L.O.; Martins, C.H.G.; Aquino, F.J.T.; Chang, R.; Morais, S.A.L. Chemical composition and antimicrobial activity of essential oil of flowers from Banisteriopsis Campestris (A. Juss.) Little. Rev. Virtual Quim., 2018, 10(5), 1562-1577.
[http://dx.doi.org/10.21577/1984-6835.20180106]
[22]
Adams, R.P. Adams, Robert P. Identification of essential oil components by gas chromatography/mass spectrometry. Vol. 456. Carol Stream, IL: Allured Publishing Corporation; , 2007, Vol. 456, .
[23]
van Den, D.; Dec, H.; Kratz, P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A, 1963, 11, 463-471.
[http://dx.doi.org/10.1016/S0021-9673(01)80947-X]
[24]
NIST Chemistry WebBook https://webbook.nist.gov/chemistry/http://dx.doi.org/10.18434/T4D303 [Accessed on 6th Oct 2020].
[25]
Rolón, M.; Vega, C.; Escario, J.A.; Gómez-Barrio, A. Development of resazurin microtiter assay for drug sensibility testing of Trypanosoma cruzi epimastigotes. Parasitol. Res., 2006, 99(2), 103-107.
[http://dx.doi.org/10.1007/s00436-006-0126-y] [PMID: 16506080]
[26]
Martins, M.M.; de Aquino, F.J.T.; de Oliveira, A.; do Nascimento, E.A.; Chang, R.; Borges, M.S.; de Melo, G.B.; da Silva, C.V.; Machado, F.C.; de Morais, S.A.L. Chemical composition, antimicrobial and antiprotozoal activity of Essential oils from Vernonia brasiliana (Less) Druce (Asteraceae). J. Essent. Oil-Bearing Plants, 2015, 18(3), 561-569.
[http://dx.doi.org/10.1080/0972060X.2014.895683]
[27]
Pillay, P.; Vleggaar, R.; Maharaj, V.J.; Smith, P.J.; Lategan, C.A.; Chouteau, F.; Chibale, K. Antiplasmodial hirsutinolides from Vernonia staehelinoides and their utilization towards a simplified pharmacophore. Phytochemistry, 2007, 68(8), 1200-1205.
[http://dx.doi.org/10.1016/j.phytochem.2007.02.019] [PMID: 17408709]
[28]
CLSI Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard (CLSI), 7th ed; Clinical and Laboratory Standards Institute: Wayne, Pennsylvania, Pennsylvania, 2007.
[29]
Carvalho, T.C.; Simão, M.R.; Ambrósio, S.R.; Furtado, N.A.J.C.; Veneziani, R.C.S.; Heleno, V.C.G.; Da Costa, F.B.; Gomes, B.P.F.A.; Souza, M.G.M.; Borges dos Reis, E.; Martins, C.H. Antimicrobial activity of diterpenes from Viguiera arenaria against endodontic bacteria. Molecules, 2011, 16(1), 543-551.
[http://dx.doi.org/10.3390/molecules160100543] [PMID: 21233793]
[30]
CLSI Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; CLSI, 2008.
[31]
Justino, A.B.; Miranda, N.C.; Franco, R.R.; Martins, M.M.; Silva, N.M.D.; Espindola, F.S. Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomed. Pharmacother., 2018, 100(January), 83-92.
[http://dx.doi.org/10.1016/j.biopha.2018.01.172] [PMID: 29425747]
[32]
Sri Harsha, P.S.C.; Lavelli, V.; Scarafoni, A. Protective Ability of Phenolics from White Grape Vinification By-Products against Structural Damage of Bovine Serum Albumin Induced by Glycation; 2014
[33]
Nunes, B.C. Prospecção Química e Avaliação Biológica de Banisteriopsis Laevifolia (Malpighiaceae); Universidade Federal de Uberlândia, 2016.
[34]
Martins, M.M. https://repositorio.ufu.br/bitstream/123456789/20854/3/Estudofitoqu2018.[Accessed on 6th Oct 2020].
[35]
Castelo, A.V.M.; Del Menezzi, C.H.S.; Resck, I.S. Seasonal variation in the yield and the chemical composition of Essential oils from two Brazilian native Arbustive species. J. Appl. Sci. (Faisalabad), 2012, 12(8), 753-760.
[http://dx.doi.org/10.3923/jas.2012.753.760]
[36]
Ceole, L.F.; Cardoso, M.D.G.; Soares, M.J. Nerolidol, the main constituent of Piper aduncum essential oil, has anti-Leishmania braziliensis activity. Parasitology, 2017, 144(9), 1179-1190.
[http://dx.doi.org/10.1017/S0031182017000452] [PMID: 28482935]
[37]
Pereira, P.S.; Maia, A.J.; Tintino, S.R.; Oliveira-Tintino, C.D. de M.; Raulino, I.S. de S.; Vega, M.C.; Rolón, M.; Coronel, C.; Barros, L.M.; Duarte, A.E. Trypanocide, antileishmania and cytotoxic activities of the Essential oil from rosmarinus officinalis L in vitro. Ind. Crops Prod., 2017, 109, 724-729.
[http://dx.doi.org/10.1016/j.indcrop.2017.09.030]
[38]
Jiménez-Coello, M.; Guzman-Marín, E.; Ortega-Pacheco, A.; Perez-Gutiérrez, S.; Acosta-Viana, K.Y. Assessment of the anti-protozoal activity of crude Carica papaya seed extract against Trypanosoma cruzi. Molecules, 2013, 18(10), 12621-12632.
[http://dx.doi.org/10.3390/molecules181012621] [PMID: 24126379]
[39]
Rodrigues, I.A.; Azevedo, M.M.B.; Chaves, F.C.M.; Alviano, C.S.; Alviano, D.S.; Vermelho, A.B. Arrabidaea chica hexanic extract induces mitochondrion damage and peptidase inhibition on Leishmania spp. BioMed Res. Int., 2014, 2014,985171.
[http://dx.doi.org/10.1155/2014/985171] [PMID: 24818162]
[40]
Martins, C. de M. C Chemical constituents and evaluation of antimicrobial and cytotoxic activities of kielmeyera coriacea Mart. & Zucc. Essential oils. Evidence-based complement. Altern. Med., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/842047]
[41]
Ayres, D.C.; Pinto, L.A.; Giorgio, S. Efficacy of pentavalent antimony, amphotericin B, and miltefosine in Leishmania amazonensis-infected macrophages under normoxic and hypoxic conditions. J. Parasitol., 2008, 94(6), 1415-1417.
[http://dx.doi.org/10.1645/GE-1613.1] [PMID: 18576874]
[42]
Gonçalves, V.M.; Moreira, A.S.; Oliveira, P.D. Genus moquiniastrum (Asteraceae): Overview of chemical and bioactivity studies. Curr. Bioact. Compd., 2019, 15(4), 377-398.
[http://dx.doi.org/10.2174/1573407214666180524094146]
[43]
Subramaniyan, M.; Subramaniyan, V.; Praveenkumar, A. Phytochemical analysis and antimicrobial activities of Atalantia monophylla (L) Correa and Atalantia racemosa Wight and Arn. Curr. Bioact. Compd., 2019, 15(4), 427-436.
[http://dx.doi.org/10.2174/1573407214666180521105026]
[44]
Crevelin, E.J.; Caixeta, S.C.; Dias, H.J.; Groppo, M.; Cunha, W.R.; Martins, C.H.G.; Crotti, A.E.M. Antimicrobial activity of the Essential Oil of Plectranthus neochilus against Cariogenic bacteria. Evid. Based Complement. Alternat. Med., 2015, 2015,102317.
[http://dx.doi.org/10.1155/2015/102317] [PMID: 26161115]
[45]
Cardoso, N.N.R.; Alviano, C.S.; Blank, A.F.; Romanos, M.T.V.; Fonseca, B.B.; Rozental, S.; Rodrigues, I.A.; Alviano, D.S. Synergism effect of the essential oil from Ocimum basilicum var. maria bonita and its major components with fluconazole and its influence on ergosterol biosynthesis. Evid. Based Complement. Alternat. Med., 2016, 2016,5647182.
[http://dx.doi.org/10.1155/2016/5647182] [PMID: 27274752]
[46]
Bhagwat, D.B.H.S. http://www.orac-info-portal.de/download/ORAC_R2.pdf [Accessed on 6th Oct 2020].
[47]
Elagbar, Z.A.; Naik, R.R.; Shakya, A.K.; Bardaweel, S.K. Fatty acids analysis, antioxidant and biological activity of fixed oil of Annona Muricata L. Seeds. J. Chem., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/6948098]
[48]
Mohadjerani, M.; Tavakoli, R.; Hosseinzadeh, R. Fatty acid composition, antioxidant and antibacterial activities of Adonis wolgensis L. extract. Avicenna J. Phytomed., 2014, 4(1), 24-30.
[PMID: 25050298]
[49]
Barbosa, J.H.P.; Oliveira, S.L.; Seara, L.T.e. O papel dos produtos finais da glicação avançada (AGEs) no desencadeamento das complicações vasculares do diabetes. Arq. Bras. Endocrinol. Metabol, 2008, 52(6), 940-950.
[http://dx.doi.org/10.1590/S0004-27302008000600005] [PMID: 18820805]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy