Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Green Route for the Removal of Pb from Aquatic Environment

Author(s): Ahmed Refaat*, Hanan Elhaes, Nabila S. Ammar, Hanan S. Ibrahim and Medhat Ibrahim

Volume 23, Issue 7, 2020

Page: [587 - 598] Pages: 12

DOI: 10.2174/1386207323666200127123349

Price: $65

Abstract

Aim and Objective: Wastewater treatment/remediation is a very important process that has a great environmental and economic impact. Therefore, it is crucial to innovate different methods to remove pollutants of different sources from wastewater. This work was conducted in order to study the removal of lead (Pb+2) from wastewater using microspheres of composites of sodium alginate, cellulose and chitosan, as well as using a cost-effective green route through composites of sodium alginate and dried water hyacinth.

Materials and Methods: Molecular modeling at B3LYP/6-31g(d,p) was utilized to study sodium alginate, cellulose and chitosan. Sodium alginate was cross-linked with calcium chloride to form microspheres, then both sodium alginate/cellulose and sodium alginate/chitosan were also crosslinked as 50/50 to form microspheres. The roots of the aquatic plant water hyacinth in dry form were added to the cross-linked sodium alginate for up to 70%. SEM and FTIR were employed to study the surface of the prepared microspheres and their structures respectively. Atomic absorption spectroscopy was used to study the levels of Pb.

Results: Molecular modeling indicated that the blending of such structures enhances their ability to bind with surrounding molecules owing to their ability to form hydrogen bonds. SEM results indicated that homogeneous structures of cellulose and chitosan are deformed when blended with sodium alginate, and FTIR confirmed the proper formation of the desired blends. Microspheres from sodium alginate showed the ability to remove Pb+2 from wastewater. SEM indicated further deformation in the morphology with the roughness of sodium alginate/water hyacinth microspheres, while FTIR confirmed the uniform matrices of the microspheres. The removal of Pb+2 was enhanced because of the addition of dried water hyacinth's roots.

Conclusion: Modeling, experimental and kinetic data highlight sodium alginate/water hyacinth root as a green route to remediate Pb+2 from wastewater.

Keywords: B3LYP/6-31g(d, p), sodium alginate, cellulose, chitosan, microsphere, water hyacinth.

[1]
Zulfiqar, U.; Farooq, M.; Hussain, S.; Maqsood, M.; Hussain, M.; Ishfaq, M.; Ahmad, M.; Anjum, M.Z. Lead toxicity in plants: Impacts and remediation. J. Environ. Manage., 2019, 250,109557.
[http://dx.doi.org/10.1016/j.jenvman.2019.109557] [PMID: 31545179]
[2]
Tan, L.; Xue, X.; Du, J.; Xie, Y.; Tang, S.F.; Hou, X. Probing the molecular toxic mechanism of lead (II) ions with glutathione peroxidase 6 from Arabidopsis thaliana. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 226,117597.
[http://dx.doi.org/10.1016/j.saa.2019.117597] [PMID: 31629975]
[3]
Paul, S.; Mandal, A.; Bhattacharjee, P.; Chakraborty, S.; Paul, R.; Mukhopadhyay, B.K. Evaluation of water quality and toxicity after exposure of lead nitrate in fresh water fish, major source of water pollution. Egypt. J. Aquat. Res., 2019, 45, 345-351.
[http://dx.doi.org/10.1016/j.ejar.2019.09.001]
[4]
Moghimi Benhangi, H.; Ahmadi, S.; Hakimi, M.; Molafilabi, A.; Faraji, H.; Mashkani, B. Protective effects of isatin and its synthetic derivatives against iron, copper and lead toxicity. Toxicol. In Vitro, 2019, 54, 232-236.
[http://dx.doi.org/10.1016/j.tiv.2018.10.004] [PMID: 30296579]
[5]
Kim, J.O.; Park, J.K.; Kim, J.H.; Jin, S.G.; Yong, C.S.; Li, D.X.; Choi, J.Y.; Woo, J.S.; Yoo, B.K.; Lyoo, W.S.; Kim, J.A.; Choi, H.G. Development of polyvinyl alcohol-sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int. J. Pharm., 2008, 359(1-2), 79-86.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.021] [PMID: 18440737]
[6]
Abd El-Ghaffar, M.A.; Hashem, M.S.; El-Awady, M.K.; Rabie, A.M. pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohydr. Polym., 2012, 89(2), 667-675.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.074] [PMID: 24750772]
[7]
Cruz, M.C.; Ravagnani, S.P.; Brogna, F.M.; Campana, S.P.; Triviño, G.C.; Lisboa, A.C.; Mei, L.H. Evaluation of the diffusion coefficient for controlled release of oxytetracycline from alginate/chitosan/poly(ethylene glycol) microbeads in simulated gastrointestinal environments. Biotechnol. Appl. Biochem., 2004, 40(Pt 3), 243-253.
[http://dx.doi.org/10.1042/BA20030216] [PMID: 15281914]
[8]
Brownlee, I.A.; Allen, A.; Pearson, J.P.; Dettmar, P.W.; Havler, M.E.; Atherton, M.R.; Onsøyen, E. Alginate as a source of dietary fiber. Crit. Rev. Food Sci. Nutr., 2005, 45(6), 497-510.
[http://dx.doi.org/10.1080/10408390500285673] [PMID: 16183570]
[9]
Okamoto, M.; John, B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci., 2013, 38, 1487-1503.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.06.001]
[10]
Vishakha, S.K.; Kishor, D.B.; Rathod, S. Natural polymers- a comprehensive review. Int. J. Res. Pharm. Biomed. Sci., 2012, 3(4), 1597-1613.
[11]
Stoppel, W.L.; Ghezzi, C.E.; McNamara, S.L.; Black, L.D., III; Kaplan, D.L. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann. Biomed. Eng., 2015, 43(3), 657-680.
[http://dx.doi.org/10.1007/s10439-014-1206-2] [PMID: 25537688]
[12]
Nair, N.R.; Sekhar, V.C.; Nampoothiri, K.M.; Pandey, A. Biodegradation of Biopolymers. InCurrent Developments in Biotechnology and Bioengineering; Pandey, A.; Negi, S.; Soccol, C.R.; Elsevier, B.V., Eds.; Amsterdam, 2017, pp. 739-755.
[http://dx.doi.org/10.1016/B978-0-444-63662-1.00032-4]
[13]
Deze, E.G.; Papageorgiou, S.K.; Favvas, E.P.; Katsaros, F.K. Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: Effect of porosity in Cu2+ and Cd2+ ion sorption. Chem. Eng. J., 2012, 209, 537-546.
[http://dx.doi.org/10.1016/j.cej.2012.07.133]
[14]
Lakouraj, M.M.; Mojerlou, F.; Zare, E.N. Nanogel and superparamagnetic nanocomposite based on sodium alginate for sorption of heavy metal ions. Carbohydr. Polym., 2014, 106, 34-41.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.092] [PMID: 24721048]
[15]
Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl., 2005, 44(22), 3358-3393.
[http://dx.doi.org/10.1002/anie.200460587] [PMID: 15861454]
[16]
Arca, H.C.; Mosquera-Giraldo, L.I.; Bi, V.; Xu, D.; Taylor, L.S.; Edgar, K.J. Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules, 2018, 19(7), 2351-2376.
[http://dx.doi.org/10.1021/acs.biomac.8b00517] [PMID: 29869877]
[17]
Ansari, F.; Berglund, L.A. Toward semistructural cellulose nanocomposites: the need for scalable processing and interface tailoring. Biomacromolecules, 2018, 19(7), 2341-2350.
[http://dx.doi.org/10.1021/acs.biomac.8b00142] [PMID: 29577729]
[18]
Morimune-Moriya, S.; Salajkova, M.; Zhou, Q.; Nishino, T.; Berglund, L.A. Reinforcement effects from nanodiamond in cellulose nanofibril films. Biomacromolecules, 2018, 19(7), 2423-2431.
[http://dx.doi.org/10.1021/acs.biomac.8b00010] [PMID: 29620880]
[19]
Hynninen, V.; Hietala, S.; McKee, J.R.; Murtomäki, L.; Rojas, O.J.; Ikkala, O. Nonappa. Inverse thermoreversible mechanical stiffening and birefringence in a methylcellulose/cellulose nanocrystal hydrogel. Biomacromolecules, 2018, 19(7), 2795-2804.
[http://dx.doi.org/10.1021/acs.biomac.8b00392] [PMID: 29733648]
[20]
Hussain, M.R.; Iman, M.; Maji, T.K. Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan-gelatin complex microcapsules. Int. J. Adv. Eng. App., 2013, 6(4), 4-12.
[21]
Płaza, A.; Kołodyńska, D.; Hałas, P.; Gęca, M.; Franus, M.; Hubicki, Z. The zeolite modified by chitosan as an adsorbent for environmental applications. Adsorpt. Sci. Technol., 2017, 35(9-10), 834-844.
[http://dx.doi.org/10.1177/0263617417716367]
[22]
Abu-Elala, N.M.; AbuBakr, H.O.; Khattab, M.S.; Mohamed, S.H.; El-Hady, M.A.; Ghandour, R.A.; Morsi, R.E. Aquatic environmental risk assessment of chitosan/silver, copper and carbon nanotube nanocomposites as antimicrobial agents. Int. J. Biol. Macromol., 2018, 113, 1105-1115.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.047] [PMID: 29545064]
[23]
Ahmed, M.A.; Abdelbar, N.M.; Mohamed, A.A. Molecular imprinted chitosan-TiO2 nanocomposite for the selective removal of Rose Bengal from wastewater. Int. J. Biol. Macromol, 2018, 107(Pt A), 1046-1053.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.082] [PMID: 28943440]
[24]
Omar, A.; El-Sayed, E.M.; Talaat, M.S.; Ibrahim, M. DNA hybridization on chitosan-functionalized silicon substrate. Med. Chem., 2016, 12(5), 464-471.
[http://dx.doi.org/10.2174/1573406412666151112124836]
[25]
Ammar, N.S.; Elhaes, H.; Ibrahim, H.S. El hotaby, W.; Ibrahim, M.A. A novel structure for removal of pollutants from wastewater. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 121, 216-223.
[http://dx.doi.org/10.1016/j.saa.2013.10.063] [PMID: 24239765]
[26]
Bayoumy, A.M.; El-Sayed, E.M.; Omar, A.; Ibrahim, M. Emerging applications of chitosan: from biology to environment. Biointerface Res. Appl. Chem., 2018, 8(4), 3368-3380.
[27]
Ibrahim, M.; Mahmoud, A-A.; Osman, O.; Refaat, A.; El-Sayed, S.M. Molecular spectroscopic analysis of nano-chitosan blend as biosensor. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 77(4), 802-806.
[http://dx.doi.org/10.1016/j.saa.2010.08.007] [PMID: 20801710]
[28]
Ibrahim, M.; Osman, O.; Mahmoud, A-A. Spectroscopic analyses of cellulose and chitosan: FTIR and modeling approach. J. Comput. Theor. Nanosci., 2011, 8, 117-123.
[http://dx.doi.org/10.1166/jctn.2011.1668]
[29]
Ibrahim, M.; Mahmoud, A-A.; Osman, O.; Abd el-Aal, M.; Eid, M. Molecular spectroscopic analyses of gelatin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81(1), 724-729.
[http://dx.doi.org/10.1016/j.saa.2011.07.012] [PMID: 21802351]
[30]
Abdel-Gawad, A.A.; Ibrahim, M. Spectroscopic analyses of chitosan interactions with amino acids. J. Comput. Theor. Nanosci., 2012, 9(8), 1120-1124.
[http://dx.doi.org/10.1166/jctn.2012.2154]
[31]
Ibrahim, M.; Saleh, N.A.; Elshemey, W.M.; Elsayed, A.A. Hexapeptide functionality of cellulose as NS3 protease inhibitors. Med. Chem., 2012, 8(5), 826-830.
[http://dx.doi.org/10.2174/157340612802084144] [PMID: 22741792]
[32]
Abdel-Gawad, F.Kh.; Osman, O.; Bassem, S.M.; Nassar, H.F.; Temraz, T.A.; Elhaes, H.; Ibrahim, M. Spectroscopic analyses and genotoxicity of dioxins in the aquatic environment of Alexandria. Mar. Pollut. Bull., 2018, 127, 618-625.
[http://dx.doi.org/10.1016/j.marpolbul.2017.12.056] [PMID: 29475705]
[33]
Galal, A.M.F.; Shalaby, E.M.; Abouelsayed, A.; Ibrahim, M.A.; Al-Ashkar, E.; Hanna, A.G. Structure and absolute configuration of some 5-chloro-2-methoxy-N-phenylbenzamide derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 188, 213-221.
[http://dx.doi.org/10.1016/j.saa.2017.06.068] [PMID: 28715689]
[34]
Rouhani, M.; Khodabakhsh, F.; Norouzian, D.; Cohan, R.A.; Valizadeh, V. Molecular dynamics simulation for rational protein engineering: Present and future prospectus. J. Mol. Graph. Model., 2018, 84, 43-53.
[http://dx.doi.org/10.1016/j.jmgm.2018.06.009] [PMID: 29909273]
[35]
Galal, A.M.F.; Atta, D.; Abouelsayed, A.; Ibrahim, M.A.; Hanna, A.G. Configuration and molecular structure of 5-chloro-N-(4-sulfamoylbenzyl) salicylamide derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 214, 476-486.
[http://dx.doi.org/10.1016/j.saa.2019.02.070] [PMID: 30807945]
[36]
Abdelsalam, H.; Saroka, V.A.; Ali, M.; Teleb, N.H.; Elhaes, H.; Ibrahim, M.A. Stability and electronic properties of edge functionalized silicene quantum dots: A first principles study. Physica E, 2019, 108, 339-346.
[http://dx.doi.org/10.1016/j.physe.2018.07.022]
[37]
Abdelsalam, H.; Teleb, N.H.; Yahia, I.S.; Zahran, H.Y.; Elhaes, H.; Ibrahim, M.A. First principles study of the adsorption of hydrated heavy metals on graphene quantum dots. J. Phys. Chem. Solids, 2019, 130, 32-40.
[http://dx.doi.org/10.1016/j.jpcs.2019.02.014]
[38]
Ganesan, A.; Moon, T.C.; Barakat, K.H. Revealing the atomistic details behind the binding of B7-1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(12), 2764-2778.
[http://dx.doi.org/10.1016/j.bbagen.2018.08.010] [PMID: 30251665]
[39]
Prates, L.L.; Lei, Y.; Refat, B.; Zhang, W.; Yu, P. Effects of heat processing methods on protein subfractions and protein degradation kinetics in dairy cattle in relation to protein molecular structure of barley grain using advanced molecular spectroscopy. J. Cereal Sci., 2018, 80, 212-220.
[http://dx.doi.org/10.1016/j.jcs.2018.01.008]
[40]
Sun, B.; Khan, N.A.; Yu, P. Molecular spectroscopic features of protein in newly developed chickpea: Relationship with protein chemical profile and metabolism in the rumen and intestine of dairy cows. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 196, 168-177.
[http://dx.doi.org/10.1016/j.saa.2018.02.008] [PMID: 29448169]
[41]
Calero-Rubio, C.; Ghosh, R.; Saluja, A.; Roberts, C.J. Predicting protein-protein interactions of concentrated antibody solutions using dilute solution data and coarse-grained molecular models. J. Pharm. Sci., 2018, 107(5), 1269-1281.
[http://dx.doi.org/10.1016/j.xphs.2017.12.015] [PMID: 29274822]
[42]
Meng, L.; Feng, K.; Ren, Y. Molecular modelling studies of tricyclic triazinone analogues as potential PKC-θ inhibitors through combined QSAR, molecular docking and molecular dynamics simulations techniques. J. Taiwan Inst. Chem. E., 2018, 91, 155-175.
[http://dx.doi.org/10.1016/j.jtice.2018.06.017]
[43]
Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.; Izmaylov, A.; Bloino, J.; Zheng, G.; Sonnenberg, J.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajim, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., Jr; Peralta, J.; Ogliaro, F.; Bearpark, M.; Heyd, J.; Brothers, E.; Kudin, K.; Staroverov, V.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.; Iyengar, S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.; Klene, M.; Knox, J.; Cross, J.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.; Yazyev, O.; Austin, A.; Cammi, R.; Pomelli, C.; Ochterski, J.; Martin, R.; Morokuma, K.; Zakrzewski, V.; Voth, G.; Salvador, P.; Dannenberg, J.; Dapprich, S.; Daniels, A.; Farkas, O.; Foresman, J.; Ortiz, J.; Cioslowski, J.; Fox, D. Gaussian 09 Revision C.01, In: Gaussian Inc; Wallingford CT , 2010.
[44]
Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. Chem. Phys., 1993, 98, 5648-5652.
[45]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[46]
Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989, 157(3), 200-206.
[http://dx.doi.org/10.1016/0009-2614(89)87234-3]
[47]
Politzer, P.; Murray, J.S.; Peralata-Inga, Z. Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. Int. J. Quantum Chem., 2001, 85(4), 676-68.
[http://dx.doi.org/10.1002/qua.1706]
[48]
Politzer, P.; Murray, J.S. Molecular electrostatic potentials: concepts and applications. J. Theor. Comput. Chem., 1996, 3, 649-660.
[49]
Pandey, S.; Ramontja, J. Sodium alginate stabilized silver nanoparticles-silica nanohybrid and their antibacterial characteristics. Int. J. Biol. Macromol., 2016, 93(Pt A), 712-723.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.033] [PMID: 27632952]
[50]
Atta, D.; Refaat, A.; Fahmy, A.; Ibrahim, M.; Elhaes, H.; Ibrahim, M. Spectroscopic analyses of cross linked sodium alginate composites. Materials Focus, 2017, 6, 618-624.
[http://dx.doi.org/10.1166/mat.2017.1453]
[51]
Bouchard, J.; Douek, M. Structural and concentration effects on the diffuse reflectance FTIR spectra of cellulose, lignin and pulp. J. Wood Chem. Technol., 1993, 13, 481-499.
[http://dx.doi.org/10.1080/02773819308020530]
[52]
El-Sayed, E.M.; Omar, A.; Ibrahim, M.; Abdel-Fattah, W.I. On the structural analysis and electronic properties of chitosan/hydroxyapatite interaction. J. Comput. Theor. Nanosci., 2009, 6, 1663-1669.
[http://dx.doi.org/10.1166/jctn.2009.1228]
[53]
Ibrahim, M.; Scheytt, T. Increasing the ability of Water hyacinth for removing Cadmium. In Proceedings of the Second International Congress on Environmental Planning and Management, TU-Berlin, August 5-10 2007.
[54]
Oladoja, N.A.; Aboluwoye, C.O.; Oladimeji, Y.B. Kinetics and isotherm studies on methylene blue adsorption onto ground palm kernel coat. Turkish J. Eng. Env. Sci., 2008, 32, 303-312.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy