Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Self-Assembly in Peptides Containing β-and γ-amino Acids

Author(s): Sudha Shankar, Junaid Ur Rahim and Rajkishor Rai*

Volume 21, Issue 6, 2020

Page: [584 - 597] Pages: 14

DOI: 10.2174/1389203721666200127112244

Price: $65

Abstract

The peptides containing β-and γ-amino acids as building blocks display well-defined secondary structures with unique morphologies. The ability of such peptides to self-assemble into complex structures of controlled geometries has been exploited in biomedical applications. Herein, we have provided an updated overview about the peptides containing β-and γ-amino acids considering the significance and advancement in the area of development of peptide-based biomaterials having diverse applications.

Keywords: Hybrid peptide, self-assembly, amino acid, β-peptide, γ-peptide, supramolecular.

Graphical Abstract

[1]
Qi, G.B; Gao, Y.J; Wang, L; Wang, H. Self-Assembled Peptide Based Nanomaterials for Biomedical Imaging and Therapy. Adv. Mater., 2018, 30(22)e1703444
[http://dx.doi.org/10.1002/adma.201703444 ] [PMID: 29460400]
[2]
Rad-Malekshahi, M.; Lempsink, L.; Amidi, M.; Hennink, W.E.; Mastrobattista, E. Biomedical applications of self-assembling peptides. Bioconjug. Chem., 2016, 27(1), 3-18.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00487 ] [PMID: 26473310]
[3]
Habibi, N.; Kamaly, N.; Memic, A.; Shafiee, H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today, 2016, 11(1), 41-60.
[http://dx.doi.org/10.1016/j.nantod.2016.02.004 ] [PMID: 27103939]
[4]
Adler-Abramovich, L.; Gazit, E. The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem. Soc. Rev., 2014, 43(20), 6881-6893.
[http://dx.doi.org/10.1039/C4CS00164H ] [PMID: 25099656]
[5]
Mondal, S.; Gazit, E. The self‐assembly of helical peptide building blocks. ChemNanoMat, 2016, 2(5), 323-332.
[http://dx.doi.org/10.1002/cnma.201600048]
[6]
Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales. Science, 2002, 295(5564), 2418-2421.
[http://dx.doi.org/10.1126/science.1070821 ] [PMID: 11923529]
[7]
Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol., 2003, 21(10), 1171-1178.
[http://dx.doi.org/10.1038/nbt874 ] [PMID: 14520402]
[8]
Stupp, S.I. Self-assembly and biomaterials. Nano Lett., 2010, 10(12), 4783-4786.
[http://dx.doi.org/10.1021/nl103567y ] [PMID: 21028843]
[9]
Steed, J.W.; Turner, D.R.; Wallace, K. Core Concepts in Supramolecular Chemistry and Nanotechnology; , 2007. xii + 308 pp..
[10]
Laverty, G.; McCloskey, A.P.; Gilmore, B.F.; Jones, D.S.; Zhou, J.; Xu, B. Ultrashort cationic naphthalene-derived self-assembled peptides as antimicrobial nanomaterials. Biomacromolecules, 2014, 15(9), 3429-3439.
[http://dx.doi.org/10.1021/bm500981y ] [PMID: 25068387]
[11]
Reches, M.; Gazit, E. Self‐assembly of peptide nanotubes and amyloid‐like structures by charged‐termini‐capped diphenylalanine peptide analogues. Isr. J. Chem., 2005, 45(3), 363-371.
[http://dx.doi.org/10.1560/5MC0-V3DX-KE0B-YF3J]
[12]
Zhu, P.; Yan, X.; Su, Y.; Yang, Y.; Li, J. Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chemistry, 2010, 16(10), 3176-3183.
[http://dx.doi.org/10.1002/chem.200902139 ] [PMID: 20119986]
[13]
Mason, T.O.; Chirgadze, D.Y.; Levin, A.; Adler-Abramovich, L.; Gazit, E.; Knowles, T.P.; Buell, A.K. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures. ACS Nano, 2014, 8(2), 1243-1253.
[http://dx.doi.org/10.1021/nn404237f ] [PMID: 24422499]
[14]
Liu, X.; Fei, J.; Wang, A.; Cui, W.; Zhu, P.; Li, J. Transformation of Dipeptide-Based Organogels into Chiral Crystals by Cryogenic Treatment. Angew. Chem. Int. Ed. Engl., 2017, 56(10), 2660-2663.
[http://dx.doi.org/10.1002/anie.201612024 ] [PMID: 28140492]
[15]
Yan, X.; Zhu, P.; Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev., 2010, 39(6), 1877-1890.
[http://dx.doi.org/10.1039/b915765b ] [PMID: 20502791]
[16]
Ghadiri, M.R.; Granja, J.R.; Milligan, R.A.; McRee, D.E.; Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature, 1993, 366(6453), 324-327.
[http://dx.doi.org/10.1038/366324a0 ] [PMID: 8247126]
[17]
Kholkin, A.; Amdursky, N.; Bdikin, I.; Gazit, E.; Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano, 2010, 4(2), 610-614.
[http://dx.doi.org/10.1021/nn901327v ] [PMID: 20131852]
[18]
Bystrov, V.S.; Bdikin, I.K.; Heredia, A.; Pullar, R.C.; Mishina, E.D.; Sigov, A.S.; Kholkin, A.L. Piezoelectric Nanomaterials for Biomedical Applications., 2012.
[http://dx.doi.org/10.1007/978-3-642-28044-3_7]
[19]
Tatman, P.D.; Muhonen, E.G.; Wickers, S.T.; Gee, A.O.; Kim, E.S.; Kim, D.H. Self-assembling peptides for stem cell and tissue engineering. Biomater. Sci., 2016, 4(4), 543-554.
[http://dx.doi.org/10.1039/C5BM00550G ] [PMID: 26878078]
[20]
Banerjee, J.; Radvar, E.; Azevedo, H.S. Self-assembling peptides and their application in tissue engineering and regenerative medicine., Book: Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair; 2018, 245-281..Editors: Mário A. Barbos, M. Cristina L. Martins,Woodhead Publishing.
[21]
Hosseinkhani, H.; Hong, P.D.; Yu, D.S. Self-assembled proteins and peptides for regenerative medicine. Chem. Rev., 2013, 113(7), 4837-4861.
[http://dx.doi.org/10.1021/cr300131h ] [PMID: 23547530]
[22]
Kim, J.E.; Lee, J.H.; Kim, S.H.; Jung, Y. Skin regeneration with self-assembled peptide hydrogels conjugated with substance P in a diabetic rat model. Tissue Eng. Part A, 2018, 24(1-2), 21-33.
[http://dx.doi.org/10.1089/ten.tea.2016.0517 ] [PMID: 28467735]
[23]
Schneider, A.; Garlick, J.A.; Egles, C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One, 2008, 3(1)e1410
[http://dx.doi.org/10.1371/journal.pone.0001410 ] [PMID: 18183291]
[24]
Pandit, G.; Roy, K.; Agarwal, U.; Chatterjee, S. Self-Assembly Mechanism of a Peptide-Based Drug Delivery Vehicle. ACS Omega, 2018, 3(3), 3143-3155.
[http://dx.doi.org/10.1021/acsomega.7b01871 ] [PMID: 30023862]
[25]
Yan, J.; He, W.; Yan, S.; Niu, F.; Liu, T.; Ma, B.; Shao, Y.; Yan, Y.; Yang, G.; Lu, W.; Du, Y.; Lei, B.; Ma, P.X. Self-assembled peptide-lanthanide nanoclusters for safe tumor therapy: overcoming and utilizing biological barriers to peptide drug delivery. ACS Nano, 2018, 12(2), 2017-2026.
[http://dx.doi.org/10.1021/acsnano.8b00081 ] [PMID: 29376322]
[26]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870)389. 415, 389.
[http://dx.doi.org/10.1038/415389a]
[27]
Chu, H.; Pazgier, M.; Jung, G.; Nuccio, S.P.; Castillo, P.A.; de Jong, M.F.; Winter, M.G.; Winter, S.E.; Wehkamp, J.; Shen, B.; Salzman, N.H.; Underwood, M.A.; Tsolis, R.M.; Young, G.M.; Lu, W.; Lehrer, R.I.; Bäumler, A.J.; Bevins, C.L. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science, 2012, 337(6093), 477-481.
[http://dx.doi.org/10.1126/science.1218831 ] [PMID: 22722251]
[28]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543 ] [PMID: 24287494]
[29]
Malhotra, K.; Shankar, S.; Rai, R.; Singh, Y. Broad-spectrum antibacterial activity of proteolytically stable self-assembled αγ-hybrid peptide gels. Biomacromolecules, 2018, 19(3), 782-792.
[http://dx.doi.org/10.1021/acs.biomac.7b01582 ] [PMID: 29384665]
[30]
Schnaider, L.; Brahmachari, S.; Schmidt, N.W.; Mensa, B.; Shaham-Niv, S.; Bychenko, D.; Adler-Abramovich, L.; Shimon, L.J.W.; Kolusheva, S.; DeGrado, W.F.; Gazit, E. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat. Commun., 2017, 8(1), 1365.
[http://dx.doi.org/10.1038/s41467-017-01447-x ] [PMID: 29118336]
[31]
Puiu, M.; Bala, C. Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays. Bioelectrochemistry, 2018, 120, 66-75.
[http://dx.doi.org/10.1016/j.bioelechem.2017.11.009 ] [PMID: 29182910]
[32]
Lian, M.; Chen, X.; Lu, Y.; Yang, W. Self-assembled peptide hydrogel as a smart biointerface for enzyme-based electrochemical biosensing and cell monitoring. ACS Appl. Mater. Interfaces, 2016, 8(38), 25036-25042.
[http://dx.doi.org/10.1021/acsami.6b05409 ] [PMID: 27598654]
[33]
King, P.J.; Saiani, A.; Bichenkova, E.V.; Miller, A.F. A de novo self-assembling peptide hydrogel biosensor with covalently immobilised DNA-recognising motifs. Chem. Commun. (Camb.), 2016, 52(40), 6697-6700.
[http://dx.doi.org/10.1039/C6CC01433J ] [PMID: 27117274]
[34]
Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300(5619), 625-627.
[http://dx.doi.org/10.1126/science.1082387 ] [PMID: 12714741]
[35]
Gottlieb, D.; Morin, S.A.; Jin, S.; Raines, R.T. Self-assembled collagen-like peptide fibers as templates for metallic nanowires. J. Mater. Chem., 2008, 18(32), 3865-3870.
[http://dx.doi.org/10.1039/b807150k ] [PMID: 20130788]
[36]
Kim, J.; Han, T.H.; Kim, Y.I.; Park, J.S.; Choi, J.; Churchill, D.G.; Kim, S.O.; Ihee, H. Role of water in directing diphenylalanine assembly into nanotubes and nanowires. Adv. Mater., 2010, 22(5), 583-587.
[http://dx.doi.org/10.1002/adma.200901973 ] [PMID: 20217753]
[37]
Ryu, J.; Kim, S.W.; Kang, K.; Park, C.B. Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries. Adv. Mater., 2010, 22(48), 5537-5541.
[http://dx.doi.org/10.1002/adma.201000669 ] [PMID: 20661948]
[38]
Susapto, H.H.; Kudu, O.U.; Garifullin, R.; Yılmaz, E.; Guler, M.O. One-dimensional peptide nanostructure templated growth of iron phosphate nanostructures for lithium-ion battery cathodes. ACS Appl. Mater. Interfaces, 2016, 8(27), 17421-17427.
[http://dx.doi.org/10.1021/acsami.6b02528 ] [PMID: 27315038]
[39]
Liu, K.; Abass, M.; Zou, Q.; Yan, X. Self-assembly of biomimetic light-harvesting complexes capable of hydrogen evolution. Green Energy & Environment, 2017, 2(1), 58-63.
[http://dx.doi.org/10.1016/j.gee.2016.12.005]
[40]
Miller, R.A.; Presley, A.D.; Francis, M.B. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J. Am. Chem. Soc., 2007, 129(11), 3104-3109.
[http://dx.doi.org/10.1021/ja063887t ] [PMID: 17319656]
[41]
Kim, J.H.; Lee, M.; Lee, J.S.; Park, C.B. Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis. Angew. Chem. Int. Ed. Engl., 2012, 51(2), 517-520.
[http://dx.doi.org/10.1002/anie.201103244 ] [PMID: 21976303]
[42]
Ko, J.W.; Choi, W.S.; Kim, J.; Kuk, S.K.; Lee, S.H.; Park, C.B. Self-assembled peptide-carbon nitride hydrogel as a light-responsive scaffold material. Biomacromolecules, 2017, 18(11), 3551-3556.
[http://dx.doi.org/10.1021/acs.biomac.7b00889 ] [PMID: 28825470]
[43]
Gellman, S.H. Foldamers: A Manifesto. Acc. Chem. Res., 1998, 31, 173-180.
[http://dx.doi.org/10.1021/ar960298r]
[44]
Goodman, C.M.; Choi, S.; Shandler, S.; DeGrado, W.F. Foldamers as versatile frameworks for the design and evolution of function. Nat. Chem. Biol., 2007, 3(5), 252-262.
[http://dx.doi.org/10.1038/nchembio876 ] [PMID: 17438550]
[45]
Seebach, D.; Beck, A.K.; Bierbaum, D.J. The world of β- and γ-peptides comprised of homologated proteinogenic amino acids and other components. Chem. Biodivers., 2004, 1(8), 1111-1239.
[http://dx.doi.org/10.1002/cbdv.200490087 ] [PMID: 17191902]
[46]
Seebach, D.; Hook, D.F.; Glättli, A. Helices and other secondary structures of β- and γ-peptides. Biopolymers, 2006, 84(1), 23-37.
[http://dx.doi.org/10.1002/bip.20391 ] [PMID: 16235225]
[47]
Vasudev, P.G.; Chatterjee, S.; Shamala, N.; Balaram, P. Structural chemistry of peptides containing backbone expanded amino acid residues: conformational features of β, γ, and hybrid peptides. Chem. Rev., 2011, 111(2), 657-687.
[http://dx.doi.org/10.1021/cr100100x ] [PMID: 20843067]
[48]
Baldauf, C.; Günther, R.; Hofmann, H.J. Mixed helices--a general folding pattern in homologous peptides? Angew. Chem. Int. Ed. Engl., 2004, 43(12), 1594-1597.
[http://dx.doi.org/10.1002/anie.200353249 ] [PMID: 15022243]
[49]
Cheng, R.P.; Gellman, S.H.; DeGrado, W.F. β-Peptides: from structure to function. Chem. Rev., 2001, 101(10), 3219-3232.
[http://dx.doi.org/10.1021/cr000045i ] [PMID: 11710070]
[50]
Hill, D.J.; Mio, M.J.; Prince, R.B.; Hughes, T.S.; Moore, J.S. A field guide to foldamers. Chem. Rev., 2001, 101(12), 3893-4012.
[http://dx.doi.org/10.1021/cr990120t ] [PMID: 11740924]
[51]
Roy, R.S.; Karle, I.L.; Raghothama, S.; Balaram, P. α,β hybrid peptides: a polypeptide helix with a central segment containing two consecutive β-amino acid residues. Proc. Natl. Acad. Sci. USA, 2004, 101(47), 16478-16482.
[http://dx.doi.org/10.1073/pnas.0407557101 ] [PMID: 15546995]
[52]
Schmitt, M.A.; Choi, S.H.; Guzei, I.A.; Gellman, S.H. New helical foldamers: heterogeneous backbones with 1:2 and 2:1 α:β-amino acid residue patterns. J. Am. Chem. Soc., 2006, 128(14), 4538-4539.
[http://dx.doi.org/10.1021/ja060281w ] [PMID: 16594667]
[53]
Seebach, D.; Gardiner, J. Beta-peptidic peptidomimetics. Acc. Chem. Res., 2008, 41(10), 1366-1375.
[http://dx.doi.org/10.1021/ar700263g ] [PMID: 18578513]
[54]
Ananda, K.; Vasudev, P.G.; Sengupta, A.; Raja, K.M.; Shamala, N.; Balaram, P. Polypeptide helices in hybrid peptide sequences. J. Am. Chem. Soc., 2005, 127(47), 16668-16674.
[http://dx.doi.org/10.1021/ja055799z ] [PMID: 16305256]
[55]
Guo, L.; Zhang, W.; Reidenbach, A.G.; Giuliano, M.W.; Guzei, I.A.; Spencer, L.C.; Gellman, S.H. Characteristic structural parameters for the γ-peptide 14-helix: importance of subunit preorganization. Angew. Chem. Int. Ed. Engl., 2011, 50(26), 5843-5846.
[http://dx.doi.org/10.1002/anie.201101301 ] [PMID: 21567680]
[56]
Vasudev, P.G.; Chatterjee, S.; Shamala, N.; Balaram, P. Gabapentin: a stereochemically constrained γ amino acid residue in hybrid peptide design. Acc. Chem. Res., 2009, 42(10), 1628-1639.
[http://dx.doi.org/10.1021/ar9001153 ] [PMID: 19572698]
[57]
Hanessian, S.; Luo, X.; Schaum, R.; Michnick, S. Design of secondary structures in unnatural peptides: stable helical γ-tetra-, hexa-, and octapeptides and consequences of α-substitution. J. Am. Chem. Soc., 1998, 120(33), 8569-8570.
[http://dx.doi.org/10.1021/ja9814671]
[58]
Hintermann, T.; Gademann, K.; Jaun, B.; Seebach, D. γ‐Peptides Forming More Stable Secondary Structures than α‐Peptides: Synthesis and helical NMR‐solution structure of the γ‐hexapeptide analog of H‐(Val‐Ala‐Leu)2‐OH. Helv. Chim. Acta, 1998, 81(5‐8), 983-1002.
[http://dx.doi.org/10.1002/hlca.19980810514]
[59]
Martinek, T.A.; Fülöp, F. Peptidic foldamers: ramping up diversity. Chem. Soc. Rev., 2012, 41(2), 687-702.
[http://dx.doi.org/10.1039/C1CS15097A ] [PMID: 21769415]
[60]
Bandyopadhyay, A.; Jadhav, S.V.; Gopi, H.N. α/γ(4)-Hybrid peptide helices: synthesis, crystal conformations and analogy with the α-helix. Chem. Commun. (Camb.), 2012, 48(57), 7170-7172.
[http://dx.doi.org/10.1039/c2cc32911e ] [PMID: 22692298]
[61]
Gudlur, S.; Sukthankar, P.; Gao, J.; Avila, L.A.; Hiromasa, Y.; Chen, J.; Iwamoto, T.; Tomich, J.M. Peptide nanovesicles formed by the self-assembly of branched amphiphilic peptides. PLoS One, 2012, 7(9)e45374
[http://dx.doi.org/10.1371/journal.pone.0045374 ] [PMID: 23028970]
[62]
Moitra, P.; Kumar, K.; Kondaiah, P.; Bhattacharya, S. Efficacious anticancer drug delivery mediated by a pH-sensitive self-assembly of a conserved tripeptide derived from tyrosine kinase NGF receptor. Angew. Chem. Int. Ed. Engl., 2014, 53(4), 1113-1117.
[http://dx.doi.org/10.1002/anie.201307247 ] [PMID: 24338837]
[63]
Niu, L.; Chen, X.; Allen, S.; Tendler, S.J. Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes. Langmuir, 2007, 23(14), 7443-7446.
[http://dx.doi.org/10.1021/la7010106 ] [PMID: 17550276]
[64]
Bose, P.P.; Das, A.K.; Hegde, R.P.; Shamala, N.; Banerjee, A. pH-sensitive nanostructural transformation of a synthetic self-assembling water-soluble tripeptide: nanotube to nanovesicle. Chem. Mater., 2007, 19(25), 6150-6157.
[http://dx.doi.org/10.1021/cm0716147]
[65]
Yemini, M.; Reches, M.; Rishpon, J.; Gazit, E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett., 2005, 5(1), 183-186.
[http://dx.doi.org/10.1021/nl0484189 ] [PMID: 15792436]
[66]
Ryu, J.; Lim, S.Y.; Park, C.B. Photoluminescent peptide nanotubes. Adv. Mater., 2009, 21(16), 1577-1581.
[http://dx.doi.org/10.1002/adma.200802700]
[67]
Kim, S.W.; Han, T.H.; Kim, J.; Gwon, H.; Moon, H.S.; Kang, S.W.; Kim, S.O.; Kang, K. Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. ACS Nano, 2009, 3(5), 1085-1090.
[http://dx.doi.org/10.1021/nn900062q ] [PMID: 19397336]
[68]
Ryu, J.; Park, C.B. High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks. Biotechnol. Bioeng., 2010, 105(2), 221-230.
[http://dx.doi.org/10.1002/bit.22544 ] [PMID: 19777585]
[69]
Ryu, J.; Park, C.B. High‐temperature self‐assembly of peptides into vertically well‐aligned nanowires by aniline vapor. Adv. Mater., 2008, 20(19), 3754-3758.
[http://dx.doi.org/10.1002/adma.200800364]
[70]
Ryu, J.; Park, C.B. Synthesis of diphenylalanine/polyaniline core/shell conducting nanowires by peptide self-assembly. Angew. Chem. Int. Ed. Engl., 2009, 48(26), 4820-4823.
[http://dx.doi.org/10.1002/anie.200900668 ] [PMID: 19466726]
[71]
Lee, J.S.; Ryu, J.; Park, C.B. Bio-inspired fabrication of superhydrophobic surfaces through peptide self-assembly. Soft Matter, 2009, 5(14), 2717-2720.
[http://dx.doi.org/10.1039/b906783c]
[72]
Ryu, J.; Kim, S.W.; Kang, K.; Park, C.B. Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano, 2010, 4(1), 159-164.
[http://dx.doi.org/10.1021/nn901156w ] [PMID: 20000841]
[73]
Yan, X.; He, Q.; Wang, K.; Duan, L.; Cui, Y.; Li, J. Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew. Chem. Int. Ed. Engl., 2007, 46(14), 2431-2434.
[http://dx.doi.org/10.1002/anie.200603387 ] [PMID: 17328086]
[74]
Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J. Organogels based on self-assembly of diphenylalanine peptide and their application to immobilize quantum dots. Chem. Mater., 2008, 20(4), 1522-1526.
[http://dx.doi.org/10.1021/cm702931b]
[75]
Smith, A.M.; Williams, R.J.; Tang, C.; Coppo, P.; Collins, R.F.; Turner, M.L.; Saiani, A.; Ulijn, R.V. Fmoc‐diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked β‐sheets. Adv. Mater., 2008, 20(1), 37-41.
[http://dx.doi.org/10.1002/adma.200701221]
[76]
Rad-Malekshahi, M.; Visscher, K.M.; Rodrigues, J.P.; de Vries, R.; Hennink, W.E.; Baldus, M.; Bonvin, A.M.; Mastrobattista, E.; Weingarth, M. The supramolecular organization of a peptide-based nanocarrier at high molecular detail. J. Am. Chem. Soc., 2015, 137(24), 7775-7784.
[http://dx.doi.org/10.1021/jacs.5b02919 ] [PMID: 26022089]
[77]
Reches, M.; Gazit, E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett., 2004, 4(4), 581-585.
[http://dx.doi.org/10.1021/nl035159z]
[78]
Brizard, A.; Aimé, C.; Labrot, T.; Huc, I.; Berthier, D.; Artzner, F.; Desbat, B.; Oda, R. Counterion, temperature, and time modulation of nanometric chiral ribbons from gemini-tartrate amphiphiles. J. Am. Chem. Soc., 2007, 129(12), 3754-3762.
[http://dx.doi.org/10.1021/ja0682172 ] [PMID: 17328548]
[79]
Kim, B.S.; Hong, D.J.; Bae, J.; Lee, M. Controlled self-assembly of carbohydrate conjugate rod-coil amphiphiles for supramolecular multivalent ligands. J. Am. Chem. Soc., 2005, 127(46), 16333-16337.
[http://dx.doi.org/10.1021/ja055999a ] [PMID: 16287329]
[80]
Garcia, A.M.; Iglesias, D.; Parisi, E.; Styan, K.E.; Waddington, L.J.; Deganutti, C.; Marchesan, S. Chirality effects on peptide self-assembly unraveled from molecules to materials. Chem, 2018, 4(8), 1862-1876.
[http://dx.doi.org/10.1016/j.chempr.2018.05.016]
[81]
Li, X.; Du, X.; Li, J.; Gao, Y.; Pan, Y.; Shi, J.; Zhou, N.; Xu, B. Introducing D-amino acid or simple glycoside into small peptides to enable supramolecular hydrogelators to resist proteolysis. Langmuir, 2012, 28(37), 13512-13517.
[http://dx.doi.org/10.1021/la302583a ] [PMID: 22906360]
[82]
Nanda, J.; Banerjee, A. β-Amino acid containing proteolitically stable dipeptide based hydrogels: encapsulation and sustained release of some important biomolecules at physiological pH and temperature. Soft Matter, 2012, 8(12), 3380-3386.
[http://dx.doi.org/10.1039/c2sm07168a]
[83]
Santoso, S.; Hwang, W.; Hartman, H.; Zhang, S. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett., 2002, 2(7), 687-691.
[http://dx.doi.org/10.1021/nl025563i]
[84]
da Silva, E.R.; Walter, M.N.M.; Reza, M.; Castelletto, V.; Ruokolainen, J.; Connon, C.J.; Alves, W.A.; Hamley, I.W. Self-assembled arginine-capped peptide bolaamphiphile nanosheets for cell culture and controlled wettability surfaces. Biomacromolecules, 2015, 16(10), 3180-3190.
[http://dx.doi.org/10.1021/acs.biomac.5b00820 ] [PMID: 26348849]
[85]
Zhang, S.; Greenfield, M.A.; Mata, A.; Palmer, L.C.; Bitton, R.; Mantei, J.R.; Aparicio, C.; de la Cruz, M.O.; Stupp, S.I. A self-assembly pathway to aligned monodomain gels. Nat. Mater., 2010, 9(7), 594-601.
[http://dx.doi.org/10.1038/nmat2778 ] [PMID: 20543836]
[86]
Sargeant, T.D.; Guler, M.O.; Oppenheimer, S.M.; Mata, A.; Satcher, R.L.; Dunand, D.C.; Stupp, S.I. Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials, 2008, 29(2), 161-171.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.012 ] [PMID: 17936353]
[87]
Hartgerink, J.D.; Beniash, E.; Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294(5547), 1684-1688.
[http://dx.doi.org/10.1126/science.1063187 ] [PMID: 11721046]
[88]
Matson, J.B.; Stupp, S.I. Drug release from hydrazone-containing peptide amphiphiles. Chem. Commun. (Camb.), 2011, 47(28), 7962-7964.
[http://dx.doi.org/10.1039/c1cc12570b ] [PMID: 21674107]
[89]
Moyer, T.J.; Kassam, H.A.; Bahnson, E.S.; Morgan, C.E.; Tantakitti, F.; Chew, T.L.; Kibbe, M.R.; Stupp, S.I. Shape‐dependent targeting of injured blood vessels by peptide amphiphile supramolecular nanostructures. Small, 2015, 11(23), 2750-2755.
[http://dx.doi.org/10.1002/smll.201403429 ] [PMID: 25649528]
[90]
Schnaider, L.; Brahmachari, S.; Schmidt, N.W.; Mensa, B.; Shaham-Niv, S.; Bychenko, D.; Adler-Abramovich, L.; Shimon, L.J.W.; Kolusheva, S.; DeGrado, W.F.; Gazit, E. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat. Commun., 2017, 8(1), 1365.
[http://dx.doi.org/10.1038/s41467-017-01447-x ] [PMID: 29118336]
[91]
Gazit, E.; Mahler, A.; Reches, M. United States patent application US 10/004,828.. 2018.
[92]
Reches, M.; Gazit, E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett., 2004, 4(4), 581-585.
[http://dx.doi.org/10.1021/nl035159z]
[93]
Tao, K.; Levin, A.; Adler-Abramovich, L.; Gazit, E. Fmocmodified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chem. Soc. Rev., 2016, 45(14), 3935-3953.
[http://dx.doi.org/10.1039/C5CS00889A ] [PMID: 27115033]
[94]
Gazit, E. Molecular self assembly: Searching sequence space. Nat. Chem., 2015, 7(1), 14-15.
[http://dx.doi.org/10.1038/nchem.2140 ] [PMID: 25515880]
[95]
Arnon, Z.A.; Vitalis, A.; Levin, A.; Michaels, T.C.T.; Caflisch, A.; Knowles, T.P.J.; Adler-Abramovich, L.; Gazit, E. Dynamic microfluidic control of supramolecular peptide self-assembly. Nat. Commun., 2016, 7, 13190.
[http://dx.doi.org/10.1038/ncomms13190 ] [PMID: 27779182]
[96]
Seebach, D.; Beck, A.K.; Bierbaum, D.J. The world of β- and γ-peptides comprised of homologated proteinogenic amino acids and other components. Chem. Biodivers., 2004, 1(8), 1111-1239.
[http://dx.doi.org/10.1002/cbdv.200490087 ] [PMID: 17191902]
[97]
Clark, T.D.; Buehler, L.K.; Ghadiri, M.R. Self-assembling cyclic β3-peptide nanotubes as artificial transmembrane ion channels. J. Am. Chem. Soc., 1998, 120(4), 651-656.
[http://dx.doi.org/10.1021/ja972786f]
[98]
Raguse, T.L.; Lai, J.R.; LePlae, P.R.; Gellman, S.H. Toward β-peptide tertiary structure: self-association of an amphiphilic 14-helix in aqueous solution. Org. Lett., 2001, 3(24), 3963-3966.
[http://dx.doi.org/10.1021/ol016868r ] [PMID: 11720580]
[99]
Dutt, A.; Drew, M.G.; Pramanik, A. β-Sheet mediated self-assembly of dipeptides of ω-amino acids and remarkable fibrillation in the solid state. Org. Biomol. Chem., 2005, 3(12), 2250-2254.
[http://dx.doi.org/10.1039/b504112k ] [PMID: 16010358]
[100]
Yang, Z.; Liang, G.; Xu, B. Supramolecular hydrogels based on β-amino acid derivatives. Chem. Commun. (Camb.), 2006, (7), 738-740.
[http://dx.doi.org/10.1039/b516133a ] [PMID: 16465324]
[101]
Miller, C. A.; Hernández-Ortiz, J. P.; Abbott, N. L.; Gellman, S. H.; de Pablo, J. J. Dipole-induced self-assembly of helical β- peptides. J. Chem. Phy.,, 2008, 129(1) 07B603.
[http://dx.doi.org/10.1063/1.2928700]
[102]
Mándity, I.M.; Fülöp, L.; Vass, E.; Tóth, G.K.; Martinek, T.A.; Fülöp, F. Building β-peptide H10/12 foldamer helices with six membered cyclic side chains: fine tuning of folding and self-assembly. Org. Lett., 2010, 12(23), 5584-5587.
[http://dx.doi.org/10.1021/ol102494m ] [PMID: 21050013]
[103]
Koley, P.; Pramanik, A. Nanostructures from Single Amino Acid‐Based Molecules: Stability, Fibrillation, Encapsulation, and Fabrication of Silver Nanoparticles. Adv. Funct. Mater., 2011, 21(21), 4126-4136.
[http://dx.doi.org/10.1002/adfm.201101465]
[104]
Kwon, S.; Shin, H.S.; Gong, J.; Eom, J.H.; Jeon, A.; Yoo, S.H.; Chung, I.S.; Cho, S.J.; Lee, H.S. Self-assembled peptide architecture with a tooth shape: folding into shape. J. Am. Chem. Soc., 2011, 133(44), 17618-17621.
[http://dx.doi.org/10.1021/ja2082476 ] [PMID: 21985392]
[105]
Kwon, S.; Jeon, A.; Yoo, S.H.; Chung, I.S.; Lee, H.S. Unprecedented molecular architectures by the controlled self-assembly of a β-peptide foldamer. Angew. Chem. Int. Ed. Engl., 2010, 49(44), 8232-8236.
[http://dx.doi.org/10.1002/anie.201003302 ] [PMID: 20734367]
[106]
Kim, J.; Kwon, S.; Kim, S.H.; Lee, C.K.; Lee, J.H.; Cho, S.J.; Lee, H.S.; Ihee, H. Microtubes with rectangular cross-section by self-assembly of a short β-peptide foldamer. J. Am. Chem. Soc., 2012, 134(51), 20573-20576.
[http://dx.doi.org/10.1021/ja3088482 ] [PMID: 23215019]
[107]
Kwon, S.; Kim, B. J.; Lim, H. K.; Kang, K.; Yoo, S. H.; Gong, J.; Yoon, E.; Lee, J.; Choi, I.S.; Kim, H.; Lee, H. S. Magnetotactic molecular architectures from self-assembly of β-peptide foldamers. Nat. comm,, 2015, 6, 8747..
[http://dx.doi.org/10.1038/ncomms9747]
[108]
Del Borgo, M.P.; Mechler, A.I.; Traore, D.; Forsyth, C.; Wilce, J.A.; Wilce, M.C.; Aguilar, M.I.; Perlmutter, P. Supramolecular self-assembly of N-acetyl-capped β-peptides leads to nano- to macroscale fiber formation. Angew. Chem. Int. Ed. Engl., 2013, 52(32), 8266-8270.
[http://dx.doi.org/10.1002/anie.201303175 ] [PMID: 23784963]
[109]
Kar, S.; Huang, B.H.; Wu, K.W.; Lee, C.R.; Tai, Y. A simple N,N′-dicyclohexylurea adduct of β-alanine can self-assemble to generate nano-morphological versatility in response to different environmental conditions. Soft Matter, 2014, 10(40), 8075-8082.
[http://dx.doi.org/10.1039/C4SM01488J ] [PMID: 25170841]
[110]
Seoudi, R.S.; Dowd, A.; Del Borgo, M.; Kulkarni, K.; Perlmutter, P.; Aguilar, M.I.; Mechler, A. Amino acid sequence controls the self-assembled superstructure morphology of N-acetylated tri-β3-peptides. Pure Appl. Chem., 2015, 87(9-10), 1021-1028.
[http://dx.doi.org/10.1515/pac-2015-0108]
[111]
Motamed, S.; Del Borgo, M.P.; Kulkarni, K.; Habila, N.; Zhou, K.; Perlmutter, P.; Forsythe, J.S.; Aguilar, M.I. A self-assembling β-peptide hydrogel for neural tissue engineering. Soft Matter, 2016, 12(8), 2243-2246.
[http://dx.doi.org/10.1039/C5SM02902C ] [PMID: 26853859]
[112]
Fears, K. P.; Kolel-Veetil, M. K.; Barlow, D. E.; Bernstein, N.; So, C. R.; Wahl, K. J.; Li, X.; Kulp, J.L.; Latour, R.A.; Clark, T. D. High-performance nanomaterials formed by rigid yet extensible cyclic β-peptide polymers. Nat. comm,, 2018, 9(1), 4090..
[http://dx.doi.org/10.1038/s41467-018-06576-5]
[113]
Gopalan, R.D.; Del Borgo, M.P.; Bergman, Y.E.; Unabia, S.; Mulder, R.J.; Wilce, M.C.; Wilce, J.A.; Aguilar, M.I.; Perlmutter, P. Conformational stability studies of a stapled hexa-β3-peptide library. Org. Biomol. Chem., 2012, 10(9), 1802-1806.
[http://dx.doi.org/10.1039/c2ob06617c ] [PMID: 22252416]
[114]
Koley, P.; Pramanik, A. Multilayer vesicles, tubes, various porous structures and organo gels through the solvent-assisted self-assembly of two modified tripeptides and their different applications. Soft Matter, 2012, 8(19), 5364-5374.
[http://dx.doi.org/10.1039/c2sm25205h]
[115]
Jadhav, S.V.; Gopi, H.N. Remarkable thermoresponsive nanofibers from γ-peptides. Chem. Commun. (Camb.), 2013, 49(80), 9179-9181.
[http://dx.doi.org/10.1039/c3cc45383a ] [PMID: 23989185]
[116]
da Silva, F.F.; de Menezes, F.L.; da Luz, L.L.; Alves, S. Supramolecular luminescent hydrogels based on β-amino acid and lanthanide ions obtained by self-assembled hydrothermal reactions. New J. Chem., 2014, 38(3), 893-896.
[http://dx.doi.org/10.1039/C3NJ01560B]
[117]
Konda, M.; Kauffmann, B.; Rasale, D.B.; Das, A.K. Structural and morphological diversity of self-assembled synthetic γ-amino acid containing peptides. Org. Biomol. Chem., 2016, 14(17), 4089-4102.
[http://dx.doi.org/10.1039/C6OB00380J ] [PMID: 27064926]
[118]
Misra, R.; Sharma, A.; Shiras, A.; Gopi, H.N. Backbone engineered γ-peptide amphitropic gels for immobilization of semiconductor quantum dots and 2D cell culture. Langmuir, 2017, 33(31), 7762-7768.
[http://dx.doi.org/10.1021/acs.langmuir.7b01283 ] [PMID: 28715636]
[119]
Gopalan, R.D.; Del Borgo, M.P.; Mechler, A.I.; Perlmutter, P.; Aguilar, M.I. Geometrically precise building blocks: the self-assembly of β-peptides. Chem. Biol., 2015, 22(11), 1417-1423.
[http://dx.doi.org/10.1016/j.chembiol.2015.10.005 ] [PMID: 26584778]
[120]
Segman-Magidovich, S.; Lee, M.R.; Vaiser, V.; Struth, B.; Gellman, S.H.; Rapaport, H. Sheet-like assemblies of charged amphiphilic α/β-peptides at the air-water interface. Chemistry, 2011, 17(52), 14857-14866.
[http://dx.doi.org/10.1002/chem.201101775 ] [PMID: 22105992]
[121]
Parween, S.; Misra, A.; Ramakumar, S.; Chauhan, V.S. Self-assembled dipeptide nanotubes constituted by flexible β-phenylalanine and conformationally constrained α, β-dehydrophenylalanine residues as drug delivery system. Mater. Chem. B, 2014, 2(20), 3096-3106.
[http://dx.doi.org/10.1039/c3tb21856b]
[122]
Mangelschots, J.; Bibian, M.; Gardiner, J.; Waddington, L.; Van Wanseele, Y.; Van Eeckhaut, A.; Acevedo, M.M.D.; Van Mele, B.; Madder, A.; Hoogenboom, R.; Ballet, S. Mixed α/β-peptides as a class of short amphipathic peptide hydrogelators with enhanced proteolytic stability. Biomacromolecules, 2016, 17(2), 437-445.
[http://dx.doi.org/10.1021/acs.biomac.5b01319 ] [PMID: 26741458]
[123]
Goel, R.; Sharma, A.K.; Gupta, A. Self-assembled amphiphilic mixed α/β-tetrapeptoid nanostructures as promising drug delivery vehicles. New J. Chem., 2017, 41(6), 2340-2348.
[http://dx.doi.org/10.1039/C6NJ03281H]
[124]
Tabata, Y.; Uji, H.; Imai, T.; Kimura, S. Two one-dimensional arrays of naphthyl and anthryl groups along peptide nanotubes prepared from cyclic peptides comprising α- and β-amino acids. Soft Matter, 2018, 14(37), 7597-7604.
[http://dx.doi.org/10.1039/C8SM01627E ] [PMID: 30215660]
[125]
García-Fandiño, R.; Amorín, M.; Castedo, L.; Granja, J.R. Transmembrane ion transport by self-assembling α, γ-peptide nanotubes. Chem. Sci. (Camb.), 2012, 3(11), 3280-3285.
[http://dx.doi.org/10.1039/c2sc21068a]
[126]
Khara, J.S.; Priestman, M.; Uhía, I.; Hamilton, M.S.; Krishnan, N.; Wang, Y.; Yang, Y.Y.; Langford, P.R.; Newton, S.M.; Robertson, B.D.; Ee, P.L.R. Unnatural amino acid analogues of membrane-active helical peptides with anti-mycobacterial activity and improved stability. J. Antimicrob. Chemother., 2016, 71(8), 2181-2191.
[http://dx.doi.org/10.1093/jac/dkw107 ] [PMID: 27118774]
[127]
Heck, T.; Limbach, M.; Geueke, B.; Zacharias, M.; Gardiner, J.; Kohler, H. P. E.; Seebach, D. Enzymatic degradation of β‐and mixed α, β‐oligopeptides. Chem. biodiver, 2006, 3(12), 1325-1348.
[128]
Mishra, A.; Panda, J.J.; Basu, A.; Chauhan, V.S. Nanovesicles based on self-assembly of conformationally constrained aromatic residue containing amphiphilic dipeptides. Langmuir, 2008, 24(9), 4571-4576.
[http://dx.doi.org/10.1021/la7034533 ] [PMID: 18358051]
[129]
Carrejo, N.C.; Moore, A.N.; Lopez Silva, T.L.; Leach, D.G.; Li, I.C.; Walker, D.R.; Hartgerink, J.D. Multidomain Peptide Hydrogel Accelerates Healing of Full-Thickness Wounds in Diabetic Mice. ACS Biomater. Sci. Eng., 2018, 4(4), 1386-1396.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00031 ] [PMID: 29687080]
[130]
Seow, W.Y.; Salgado, G.; Lane, E.B.; Hauser, C.A. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds. Sci. Rep., 2016, 6, 32670.
[http://dx.doi.org/10.1038/srep32670 ] [PMID: 27600999]
[131]
Chen, W.Y.; Chang, H.Y.; Lu, J.K.; Huang, Y.C.; Harroun, S.G.; Tseng, Y.T.; Li, Y.J.; Huang, C.C.; Chang, H.T. Self‐assembly of antimicrobial peptides on gold nanodots: against multidrug‐resistant bacteria and wound‐healing application. Adv. Funct. Mater., 2015, 25(46), 7189-7199.
[http://dx.doi.org/10.1002/adfm.201503248]
[132]
Pandit, G.; Roy, K.; Agarwal, U.; Chatterjee, S. Self-Assembly Mechanism of a Peptide-Based Drug Delivery Vehicle. ACS Omega, 2018, 3(3), 3143-3155.
[http://dx.doi.org/10.1021/acsomega.7b01871 ] [PMID: 30023862]
[133]
Baral, A.; Roy, S.; Dehsorkhi, A.; Hamley, I.W.; Mohapatra, S.; Ghosh, S.; Banerjee, A. Assembly of an injectable noncytotoxic peptide-based hydrogelator for sustained release of drugs. Langmuir, 2014, 30(3), 929-936.
[http://dx.doi.org/10.1021/la4043638 ] [PMID: 24397440]
[134]
Betriu, N.; Recha-Sancho, L.; Semino, C. E. Culturing Mammalian Cells in Three-Dimensional Peptide Scaffolds JoVE (Journal of Visualized Experiments), 2018, (136) e57259.
[http://dx.doi.org/10.3791/57259]
[135]
Koutsopoulos, S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J. Biomed. Mater. Res. A, 2016, 104(4), 1002-1016.
[http://dx.doi.org/10.1002/jbm.a.35638 ] [PMID: 26707893]
[136]
Nagai, Y.; Yokoi, H.; Kaihara, K.; Naruse, K. The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel. Biomaterials, 2012, 33(4), 1044-1051.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.049 ] [PMID: 22056753]
[137]
Escuder, B.; Rodríguez-Llansola, F.; Miravet, J. F. Supramolecular gels as active media for organic reactions and catalysis New J.Chem, 2010, 34(6)1044-1054-34, 1044..
[http://dx.doi.org/10.1039/b9nj00764d]
[138]
Ray, S.; Das, A.K.; Banerjee, A. pH-responsive, bolaamphiphile-based smart metallo-hydrogels as potential dye-adsorbing agents, water purifier, and vitamin B12 carrier. Chem. Mater., 2007, 19(7), 1633-1639.
[http://dx.doi.org/10.1021/cm062672f]
[139]
Adhikari, B.; Palui, G.; Banerjee, A. Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water. Soft Matter, 2009, 5(18), 3452-3460.
[http://dx.doi.org/10.1039/b905985g]
[140]
Rodríguez-Llansola, F.; Escuder, B.; Miravet, J.F.; Hermida-Merino, D.; Hamley, I.W.; Cardin, C.J.; Hayes, W. Selective and highly efficient dye scavenging by a pH-responsive molecular hydrogelator. Chem. Commun. (Camb.), 2010, 46(42), 7960-7962.
[http://dx.doi.org/10.1039/c0cc02338h ] [PMID: 20871912]
[141]
Wang, W.; Yang, Z.; Patanavanich, S.; Xu, B.; Chau, Y. Controlling self-assembly within nanospace for peptide nanoparticle fabrication. Soft Matter, 2008, 4(8), 1617-1620.
[http://dx.doi.org/10.1039/b801890a]
[142]
Xu, H.; Das, A.K.; Horie, M.; Shaik, M.S.; Smith, A.M.; Luo, Y.; Lu, X.; Collins, R.; Liem, S.Y.; Song, A.; Popelier, P.L.; Turner, M.L.; Xiao, P.; Kinloch, I.A.; Ulijn, R.V. An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assembly. Nanoscale, 2010, 2(6), 960-966.
[http://dx.doi.org/10.1039/b9nr00233b ] [PMID: 20648293]
[143]
Hook, D.F.; Bindschädler, P.; Mahajan, Y.R.; Sebesta, R.; Kast, P.; Seebach, D. The proteolytic stability of ‘designed’ β-peptides containing α-peptide-bond mimics and of mixed α,β-peptides: application to the construction of MHC-binding peptides. Chem. Biodivers., 2005, 2(5), 591-632.
[http://dx.doi.org/10.1002/cbdv.200590039 ] [PMID: 17192006]
[144]
Gazit, E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev., 2007, 36(8), 1263-1269.
[http://dx.doi.org/10.1039/b605536m ] [PMID: 17619686]
[145]
Sun, L.; Zheng, C.; Webster, T.J. Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls. Int. J. Nanomedicine, 2016, 12, 73-86.
[http://dx.doi.org/10.2147/IJN.S117501 ] [PMID: 28053525]
[146]
Al‐Halifa, S.; Babych, M.; Zottig, X.; Archambault, D.; Bourgault, S. Amyloid self-assembling peptides: Potential applications in nanovaccine engineering and biosensing. Peptide Sci., 2018, 111(1)e24095
[http://dx.doi.org/10.1002/pep2.24095]
[147]
Wei, G.; Su, Z.; Reynolds, N.P.; Arosio, P.; Hamley, I.W.; Gazit, E.; Mezzenga, R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem. Soc. Rev., 2017, 46(15), 4661-4708.
[http://dx.doi.org/10.1039/C6CS00542J ] [PMID: 28530745]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy