Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Current Frontiers

Challenging MXene-based Nanomaterials and Composite Membranes for Water Treatment

Author(s): Ling Wang, Zehai Xu, Delong Fu and Guoliang Zhang*

Volume 17, Issue 6, 2021

Published on: 23 January, 2020

Page: [731 - 736] Pages: 6

DOI: 10.2174/1573411016666200123144242

Price: $65

conference banner
Abstract

Background: The development of new emerging nanomaterials for water treatment has attracted more and more interests recently. MXenes is a generic term for a series of new twodimensional (2D) transition metal carbides and carbonitrides materials which have graphene-like structure. As a new type of 2D lamellar nanomaterial, many researches has focused on the design and synthesis of MXene-based nanomaterials owing to their large number of the inter-layer void with the two-dimensional stacking structure, large specific surface area, rich and adjustable surface functional groups, and strong hydrophilicity. On account of their unique properties, related discussion and potential of 2D MXenes nanomaterials for membrane separation and water treatment applications are provided.

Objective: The goal of this paper is to review new emerging 2D MXenes nanomaterials for the fabrication of various composite membranes and related applications for water treatment.

Methods: In this review, the design and synthesis of MXene-based composite membranes for water treatment was extensively discussed.

Results: Membrane separation technology is an effective approach for solving the water pollution problem due to its low energy consumption, environment-friendly, and easy operation. MXene-based membranes with different molecular sieving behaviors for small organic molecules and ions and corresponding applications in water purification and desalination were discussed.

Conclusion: Although composite membranes constructed by 2D MXenes nanomaterials can be prepared to achieve high water flux and satisfactory rejection, most research focused on the exploration of membrane formation with a multi-layered compound or few-layered MXenes. In the near future, the functional properties of the MXene itself should be paid more attention for the development of various novel membranes.

Keywords: 2D MXenes nanomaterials, composite membrane, desalination, Ti3C2Tx nanosheet, water purification, water treatment.

Graphical Abstract

[1]
Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM. Science and technology for water purification in the coming decades. Nature 2008; 452(7185): 301-10.
[http://dx.doi.org/10.1038/nature06599] [PMID: 18354474]
[2]
Shen C, Zhao Y, Li W, Yang Y, Liu R, Morgen D. Global profile of heavy metals and semimetals adsorption using drinking water treatment residual. Chem Eng J 2019; 372: 1019-27.
[http://dx.doi.org/10.1016/j.cej.2019.04.219]
[3]
Lefebvre O, Moletta R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res 2006; 40(20): 3671-82.
[http://dx.doi.org/10.1016/j.watres.2006.08.027] [PMID: 17070895]
[4]
Mashtalir O, Cook KM, Mochalin VN. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem A Mater Energy Sustain 2014; 2: 14334-8.
[http://dx.doi.org/10.1039/C4TA02638A]
[5]
Liu F, Zhang G, Meng Q, Zhang H. Performance of nanofiltration and reverse osmosis membranes in metal effluent treatment. Chin J Chem Eng 2008; 16: 441-5.
[http://dx.doi.org/10.1016/S1004-9541(08)60102-0]
[6]
Gong JL, Zhang YL, Jiang Y. Continuous adsorption of Pb (II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column. Appl Surf Sci 2015; 330: 148-57.
[http://dx.doi.org/10.1016/j.apsusc.2014.11.068]
[7]
Li W, Su P, Li Z, et al. Ultrathin metal-organic framework membrane production by gel-vapour deposition. Nat Commun 2017; 8(1): 406.
[http://dx.doi.org/10.1038/s41467-017-00544-1] [PMID: 28864827]
[8]
Fane AG, Wang R, Hu MX. Synthetic membranes for water purification: Status and future. Angew Chem Int Ed Engl 2015; 54(11): 3368-86.
[http://dx.doi.org/10.1002/anie.201409783] [PMID: 25613795]
[9]
Logan BE, Elimelech M. Membrane-based processes for sustainable power generation using water. Nature 2012; 488(7411): 313-9.
[http://dx.doi.org/10.1038/nature11477] [PMID: 22895336]
[10]
Li W, Zhang Y, Zhang C, et al. Transformation of metal-organic frameworks for molecular sieving membranes. Nat Commun 2016; 7: 11315.
[http://dx.doi.org/10.1038/ncomms11315] [PMID: 27090597]
[11]
Efome J, Rana D, Matsuura T, Lan C. Metal-organic frameworks supported on nanofibers to remove heavy metals. J Mater Chem A Mater Energy Sustain 2018; 6: 4550-5.
[http://dx.doi.org/10.1039/C7TA10428F]
[12]
Efome JE, Rana D, Matsuura T, Lan CQ. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ion removal from aqueous solution. ACS Appl Mater Interfaces 2018; 10(22): 18619-29.
[http://dx.doi.org/10.1021/acsami.8b01454] [PMID: 29763287]
[13]
Efome J, Rana D, Matsuura T, Lan C. Experiment and modeling for flux and permeate concentration of heavy metal ions in adsorptive membrane filtration using a metal-organic framework incorporated nano-fibrous membrane. Chem Eng J 2018; 352: 737-44.
[http://dx.doi.org/10.1016/j.cej.2018.07.077]
[14]
Efome J, Rana D, Matsuura T, Lan C. Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by metal-organic framework incorporated nano-fibrous filtration process. Sci Total Environ 2019; 674: 355-62.
[http://dx.doi.org/10.1016/j.scitotenv.2019.04.187] [PMID: 31005837]
[15]
Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015; 9(10): 9451-69.
[http://dx.doi.org/10.1021/acsnano.5b05040] [PMID: 26407037]
[16]
Liu G, Jin W, Xu N. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angew Chem Int Ed Engl 2016; 55(43): 13384-97.
[http://dx.doi.org/10.1002/anie.201600438] [PMID: 27364759]
[17]
Chen C, Yang QH, Yang Y. Self-assembled free-standing graphite oxide membrane. Adv Mater 2009; 21: 3007-11.
[http://dx.doi.org/10.1002/adma.200803726]
[18]
Zhang C, Koros WJ. Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties. Adv Mater 2017; 29(33): 1701631.
[http://dx.doi.org/10.1002/adma.201701631] [PMID: 28671716]
[19]
Zhu J, Tian M, Hou J, et al. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. J Mater Chem A Mater Energy Sustain 2016; 4: 1980-90.
[http://dx.doi.org/10.1039/C5TA08024J]
[20]
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv Mater 2011; 23(37): 4248-53.
[http://dx.doi.org/10.1002/adma.201102306] [PMID: 21861270]
[21]
Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano 2012; 6(2): 1322-31.
[http://dx.doi.org/10.1021/nn204153h] [PMID: 22279971]
[22]
Rakhi RB, Ahmed B, Hedhili MN. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem Mater 2015; 27: 5314-23.
[http://dx.doi.org/10.1021/acs.chemmater.5b01623]
[23]
Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017; 2: 16098.
[http://dx.doi.org/10.1038/natrevmats.2016.98]
[24]
Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014; 516(7529): 78-81.
[http://dx.doi.org/10.1038/nature13970] [PMID: 25470044]
[25]
Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013; 341(6153): 1502-5.
[http://dx.doi.org/10.1126/science.1241488] [PMID: 24072919]
[26]
Zhao MQ, Xie X, Ren CE, et al. Hollow mxene spheres and 3D macroporous mxene frameworks for na-ion storage. Adv Mater 2017; 29(37): 1702410.
[http://dx.doi.org/10.1002/adma.201702410] [PMID: 28741708]
[27]
Dong Y, Chertopalov S, Maleski K, et al. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv Mater 2018; 30: 1705714.
[http://dx.doi.org/10.1002/adma.201705714]
[28]
Li T, Yao L, Liu Q, et al. Fluorine-Free synthesis of high-purity Ti3 C2 Tx (T=OH, O) via alkali treatment. Angew Chem Int Ed Engl 2018; 57(21): 6115-9.
[http://dx.doi.org/10.1002/anie.201800887] [PMID: 29633442]
[29]
Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 2012; 134(40): 16909-16.
[http://dx.doi.org/10.1021/ja308463r] [PMID: 22989058]
[30]
Joshi RK, Carbone P, Wang FC, et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014; 343(6172): 752-4.
[http://dx.doi.org/10.1126/science.1245711] [PMID: 24531966]
[31]
Li W, Zhang Y, Xu Z, Yang A, Meng Q, Zhang G. Self-assembled graphene oxide microcapsules with adjustable permeability and yolk-shell superstructures derived from atomized droplets. Chem Commun (Camb) 2014; 50(100): 15867-9.
[http://dx.doi.org/10.1039/C4CC07734B] [PMID: 25372659]
[32]
Zhang M, Guan K, Ji Y, Liu G, Jin W, Xu N. Controllable ion transport by surface-charged graphene oxide membrane. Nat Commun 2019; 10(1): 1253.
[http://dx.doi.org/10.1038/s41467-019-09286-8] [PMID: 30890713]
[33]
Li H, Song Z, Zhang X, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 2013; 342(6154): 95-8.
[http://dx.doi.org/10.1126/science.1236686] [PMID: 24092739]
[34]
Li W, Zhang Y, Su P, et al. Metal-organic framework channelled graphene composite membranes for H2/CO2 separation. J Mater Chem A Mater Energy Sustain 2016; 4: 18747-52.
[http://dx.doi.org/10.1039/C6TA09362K]
[35]
Sun P, Wang K, Zhu H. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv Mater 2016; 28(12): 2287-310.
[http://dx.doi.org/10.1002/adma.201502595] [PMID: 26797529]
[36]
Liu G, Jin W, Xu N. Graphene-based membranes. Chem Soc Rev 2015; 44(15): 5016-30.
[http://dx.doi.org/10.1039/C4CS00423J] [PMID: 25980986]
[37]
Han R, Ma X, Xie Y, Teng D, Zhang S. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC Advances 2017; 7: 56204-10.
[http://dx.doi.org/10.1039/C7RA10318B]
[38]
Wang H H, Ding L, Wang Y J, Wei Y Y. High-performance two-dimensional layered Ti3C2-MXene membrane, preparation method thereof and application of membrane in water treatment. CN106178979(A) 2016.
[39]
Jimenez-Solomon MF, Song Q, Jelfs KE, Munoz-Ibanez M, Livingston AG. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat Mater 2016; 15(7): 760-7.
[http://dx.doi.org/10.1038/nmat4638] [PMID: 27135857]
[40]
Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew Chem Int Ed Engl 2017; 56(7): 1825-9.
[http://dx.doi.org/10.1002/anie.201609306] [PMID: 28071850]
[41]
Kang KM, Kim DW, Ren CE, et al. Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl Mater Interfaces 2017; 9(51): 44687-94.
[http://dx.doi.org/10.1021/acsami.7b10932] [PMID: 29098847]
[42]
Xu ZYe. S.; Zhang, G.; Li, W.; Gao, C.; Shen, C.; Meng, Q. Antimicrobial polysulfone blended ultrafiltration membranes prepared with Ag/Cu2O hybrid nanowires. J Membr Sci 2016; 509: 83-93.
[http://dx.doi.org/10.1016/j.memsci.2016.02.035]
[43]
Xu ZYe. S.; Zheng, F.; Ren, F.; Gao, C.; Li, Q.; Li, G.; Zhang, G. Preparation of Cu2O nanowire-blended polysulfone ultrafiltration membrane with improved stability and antimicrobial activity. J Nanopart Res 2015; 17: 409.
[http://dx.doi.org/10.1007/s11051-015-3215-y]
[44]
Zhang G, Zhou M, Xu Z, Jiang C, Shen C, Meng Q. Guanidyl-functionalized graphene/polysulfone mixed matrix ultrafiltration membrane with superior permselective, antifouling and antibacterial properties for water treatment. J Colloid Interface Sci 2019; 540: 295-305.
[http://dx.doi.org/10.1016/j.jcis.2019.01.050] [PMID: 30660082]
[45]
Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, Gogotsi Y. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep 2017; 7(1): 1598-609.
[http://dx.doi.org/10.1038/s41598-017-01714-3] [PMID: 28487521]
[46]
Pandey RP, Rasool K, Vinod EM, Aïssa B, Gogotsi Y, Mahmoud KA. Ultrahigh-flux and fouling-resistant membrane based on layered silver/MXene (Ti3C2Tx) nanosheets. J Mater Chem A Mater Energy Sustain 2018; 6: 3522-33.
[http://dx.doi.org/10.1039/C7TA10888E]
[47]
Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Lett 2012; 12(7): 3602-8.
[http://dx.doi.org/10.1021/nl3012853] [PMID: 22668008]
[48]
Spiegler K, El-Sayed Y. The energetics of desalination processes. Desalination 2001; 134: 109-28.
[http://dx.doi.org/10.1016/S0011-9164(01)00121-7]
[49]
Ren CE, Hatzell KB, Alhabeb M, Ling Z, Mahmoud KA, Gogotsi Y. Charge-and size-selective ion sieving through Ti3C2Tx MXene membranes. J Phys Chem Lett 2015; 6(20): 4026-31.
[http://dx.doi.org/10.1021/acs.jpclett.5b01895] [PMID: 26722772]
[50]
Berdiyorov GR, Madjet ME, Mahmoud KA. Ionic sieving through Ti3C2(OH)2 MXene: First-principles calculations. Appl Phys Lett 2016; 108: 5016-30.
[http://dx.doi.org/10.1063/1.4944393]
[51]
Xu XL, Lin FW, Du Y, Zhang X, Wu J, Xu ZK. Graphene oxide nanofiltration membranes stabilized by cationic porphyrin for high salt rejection. ACS Appl Mater Interfaces 2016; 8(20): 12588-93.
[http://dx.doi.org/10.1021/acsami.6b03693] [PMID: 27158976]
[52]
Zhao Y, Zhang Z, Dai L, Zhang S. Preparation of a highly permeable nanofiltration membrane using a novel acyl chloride monomer with -PO(Cl)(2) group. Desalination 2018; 431: 56-65.
[http://dx.doi.org/10.1016/j.desal.2017.11.022]
[53]
Zhao S, Zhu H, Wang Z, Song P, Ban M, Song X. A loose hybrid nanofiltration membrane fabricated via chelating-assisted in-situ growth of Co/Ni LDHs for dye wastewater treatment. Chem Eng J 2018; 353: 460-71.
[http://dx.doi.org/10.1016/j.cej.2018.07.081]
[54]
Liu G, Shen J, Liu Q, et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination. J Membr Sci 2018; 548: 548-58.
[http://dx.doi.org/10.1016/j.memsci.2017.11.065]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy