Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Freeze-Dried Clopidogrel Loaded Lyotropic Liquid Crystal: Box-Behnken Optimization, In-Vitro and In-Vivo Evaluation

Author(s): Eman A. Hakeem*, Galal M. El-Mahrouk, Ghada Abdelbary and Mahmoud H. Teaima

Volume 17, Issue 3, 2020

Page: [207 - 217] Pages: 11

DOI: 10.2174/1567201817666200122161433

Price: $65

conference banner
Abstract

Background: Clopidogrel (CLP) suffers from extensive first pass metabolism results in a negative impact on its oral systemic bioavailability. Cubosomes are Lyotropic Liquid Crystalline (LLC) nano-systems comprising monoolein, a steric stabilizer and an aqueous system, it considered a promising carrier for different pharmaceutical compounds. Box-Behnken Design (BBD) is an efficient tool for process analysis and optimization skipping forceful treatment combinations.

Objective: The study was designed to develop freeze-dried clopidogrel loaded LLC (cubosomes) for enhancement of its oral bioavailability.

Methods: A 33 BBD was adopted, the studied independent factors were glyceryl monooleate (GMO lipid phase), Pluronic F127 (PL F127steric stabilizer) and polyvinyl alcohol powder (stabilizer). Particle Size (PS), Polydispersity Index (PDI) and Zeta Potential (ZP) were set as independent response variables. Seventeen formulae were prepared in accordance with the bottom up approach and in-vitro evaluated regarding PS, PDI and ZP. Statistical analysis and optimization were achieved using design expert software®, then the optimum suggested formula was prepared, in-vitro revaluated, freeze-dried with 3% mannitol (cryoprotectant), solid state characterized and finally packed in hard gelatin capsule for comparative in-vitro release and in-vivo evaluation to Plavix®.

Results: Results of statistical analysis of each individual response revealed a quadratic model for PS and PDI where a linear model for ZP. The optimum suggested formula with desirability factor equal 0.990 consisting of (200 mg GMO, 78.15 mg PL F127 and 2% PVA). LC/MS/MS study confirmed significant higher Cmax, AUC0-24h and AUC0-∞ than that of Plavix®.

Conclusion: The results confirm the capability of developed carrier to overcome the low oral bioavailability.

Keywords: Clopidogrel, cubosomes, Box-Behnken, oral bioavailability, Plavix®, LC/MS/MS.

Graphical Abstract

[1]
Fox, K.A.; Chelliah, R. Clopidogrel: an updated and comprehensive review. Expert Opin. Drug Metab. Toxicol., 2007, 3(4), 621-631.
[http://dx.doi.org/10.1517/17425255.3.4.621] [PMID: 17696811]
[2]
Caplain, H.; Donat, F.; Gaud, C.; Necciari, J. Pharmacokinetics of clopidogrel. Semin. Thromb. Hemost., 1999, 25(Suppl. 2), 25-28.
[PMID: 10440419]
[3]
Savi, P.; Pereillo, J.M.; Uzabiaga, M.F.; Combalbert, J.; Picard, C.; Maffrand, J.P.; Pascal, M.; Herbert, J.M. Identification and biological activity of the active metabolite of clopidogrel. Thromb. Haemost., 2000, 84(5), 891-896.
[http://dx.doi.org/10.1055/s-0037-1614133] [PMID: 11127873]
[4]
Singh, S.S.; Sharma, K.; Barot, D.; Mohan, P.R.; Lohray, V.B. Estimation of carboxylic acid metabolite of clopidogrel in Wistar rat plasma by HPLC and its application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 821(2), 173-180.
[http://dx.doi.org/10.1016/j.jchromb.2005.05.013] [PMID: 15935741]
[5]
Liu, Y.; Zhao, Z.; Cui, J.; Ren, G. Solubility of amorphous clopidogrel hydrogen sulfate in different pure solvents. J. Chem. Eng. Data, 2015, 60(8), 2442-2446.
[6]
Kim, Y.I.; Kim, K.S.; Suh, K.H.; Shanmugam, S.; Woo, J.S.; Yong, C.S.; Choi, H.G. New clopidogrel napadisilate salt and its solid dispersion with improved stability and bioequivalence to the commercial clopidogrel bisulphate salt in beagle dogs. Int. J. Pharm., 2011, 415(1-2), 129-139.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.059] [PMID: 21645599]
[7]
Kim, D.W.; Kwon, M.S.; Yousaf, A.M.; Balakrishnan, P.; Park, J.H.; Kim, D.S.; Lee, B.J.; Park, Y.J.; Yong, C.S.; Kim, J.O.; Choi, H.G. Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate. Carbohydr. Polym., 2014, 114, 365-374.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.034] [PMID: 25263903]
[8]
Said, M.; Elsayed, I.; Aboelwafa, A.A.; Elshafeey, A.H. A novel concept of overcoming the skin barrier using augmented liquid nanocrystals: Box-Behnken optimization, ex vivo and in vivo evaluation. Colloids Surf. B Biointerfaces, 2018, 170, 258-265.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.025] [PMID: 29935419]
[9]
Karami, Z.; Hamidi, M. Cubosomes: remarkable drug delivery potential. Drug Discov. Today, 2016, 21(5), 789-801.
[http://dx.doi.org/10.1016/j.drudis.2016.01.004] [PMID: 26780385]
[10]
Esposito, E.; Eblovi, N.; Rasi, S.; Drechsler, M.; Di Gregorio, G.M.; Menegatti, E.; Cortesi, R. Lipid-based supramolecular systems for topical application: a preformulatory study. AAPS PharmSci, 2003, 5(4)E30
[http://dx.doi.org/10.1208/ps050430] [PMID: 15198518]
[11]
Lai, J.; Chen, J.; Lu, Y.; Sun, J.; Hu, F.; Yin, Z.; Wu, W. Glyceryl monooleate/poloxamer 407 cubic nanoparticles as oral drug delivery systems: I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin. AAPS PharmSciTech, 2009, 10(3), 960-966.
[http://dx.doi.org/10.1208/s12249-009-9292-4] [PMID: 19636709]
[12]
Wörle, G.; Drechsler, M.; Koch, M.H.J.; Siekmann, B.; Westesen, K.; Bunjes, H. Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. Int. J. Pharm., 2007, 329(1-2), 150-157.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.023] [PMID: 16987623]
[13]
Gabr, M.M.; Mortada, S.M.; Sallam, M.A. Hexagonal liquid crystalline nanodispersions proven superiority for enhanced oral delivery of rosuvastatin: in vitro characterization and in vivo pharmacokinetic study. J. Pharm. Sci., 2017, 106(10), 3103-3112.
[http://dx.doi.org/10.1016/j.xphs.2017.04.060] [PMID: 28479357]
[14]
Chong, J.Y.T.; Mulet, X.; Boyd, B.J.; Drummond, C.J. Steric Stabilizers for cubic phase lyotropic liquid crystal nanodispersions (cubosomes). Adv. Planar Lipid Bilayers Liposomes, 2015, 21, 131-187.
[http://dx.doi.org/10.1016/bs.adplan.2014.11.001]
[15]
Varshosaz, J.; Eskandari, S.; Tabbakhian, M. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr. Polym., 2012, 88(4), 1157-1163.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.051]
[16]
Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M. Brand, G.C.; Silva, E.G.P.; Reis, P.S.; Souza, A.S.; Santos, W.N.L.Box-Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta, 2007, 597, 179-186.
[http://dx.doi.org/10.1016/j.aca.2007.07.011] [PMID: 17683728]
[17]
Kassem, M.A.A.; ElMeshad, A.N.; Fares, A.R. Enhanced solubility and dissolution rate of lacidipine nanosuspension: Formulation via antisolvent sonoprecipitation technique and optimization using Box-Behnken design. AAPS PharmSciTech, 2017, 18(4), 983-996.
[http://dx.doi.org/10.1208/s12249-016-0604-1] [PMID: 27506564]
[18]
Garg, G.; Saraf, S.; Saraf, S. Cubosomes: an overview. Biol. Pharm. Bull., 2007, 30(2), 350-353.
[http://dx.doi.org/10.1248/bpb.30.350] [PMID: 17268078]
[19]
Morsi, N.M.; Abdelbary, G.A.; Ahmed, M.A. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: development and in vitro/in vivo characterization. Eur. J. Pharm. Biopharm., 2014, 86(2), 178-189.
[http://dx.doi.org/10.1016/j.ejpb.2013.04.018] [PMID: 23688805]
[20]
Fouda, N.H.; Abdelrehim, R.T.; Hegazy, D.A.; Habib, B.A. Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: in-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug Deliv., 2018, 25(1), 1340-1349.
[http://dx.doi.org/10.1080/10717544.2018.1477861] [PMID: 29869516]
[21]
Aziz, D.E.; Abdelbary, A.A.; Elassasy, A.I. Implementing central composite design for developing transdermal diacerein-loaded niosomes: ex vivo permeation and in vivo deposition. Curr. Drug Deliv., 2018, 15(9), 1330-1342.
[22]
Harris, J.R. Transmission electron microscopy in molecular structural biology: A historical survey. Arch. Biochem. Biophys., 2015, 581, 3-18.
[http://dx.doi.org/10.1016/j.abb.2014.11.011] [PMID: 25475529]
[23]
Chacón, M.; Molpeceres, J.; Berges, L.; Guzmán, M.; Aberturas, M.R. Stability and freeze-drying of cyclosporine loaded poly(D,L lactide-glycolide) carriers. Eur. J. Pharm. Sci., 1999, 8(2), 99-107.
[http://dx.doi.org/10.1016/S0928-0987(98)00066-9] [PMID: 10210732]
[24]
Lee, J.; Cheng, Y. Critical freezing rate in freeze drying nanocrystal dispersions. J. Control. Release, 2006, 111(1-2), 185-192.
[http://dx.doi.org/10.1016/j.jconrel.2005.12.003] [PMID: 16430987]
[25]
Gomez, Y.; Adams, E.; Hoogmartens, J. Analysis of purity in 19 drug product tablets containing clopidogrel: 18 copies versus the original brand. J. Pharm. Biomed. Anal., 2004, 34(2), 341-348.
[http://dx.doi.org/10.1016/S0731-7085(03)00533-8] [PMID: 15013148]
[26]
Nasr, M.; Ghorab, M.K.; Abdelazem, A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B, 2015, 5(1), 79-88.
[http://dx.doi.org/10.1016/j.apsb.2014.12.001] [PMID: 26579429]
[27]
Soliman, K.A.B.; Ibrahim, H.K.; Ghorab, M.M. Formulation of avanafil in a solid self-nanoemulsifying drug delivery system for enhanced oral delivery. Eur. J. Pharm. Sci., 2016, 93, 447-455.
[http://dx.doi.org/10.1016/j.ejps.2016.08.050] [PMID: 27590128]
[28]
Li, D.X.; Oh, Y.K.; Lim, S.J.; Kim, J.O.; Yang, H.J.; Sung, J.H.; Yong, C.S.; Choi, H.G. Novel gelatin microcapsule with bioavailability enhancement of ibuprofen using spray-drying technique. Int. J. Pharm., 2008, 355(1-2), 277-284.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.020] [PMID: 18243606]
[29]
Gonnissen, Y.; Gonçalves, S.I.V.; De Geest, B.G.; Remon, J.P.; Vervaet, C. Process design applied to optimise a directly compressible powder produced via a continuous manufacturing process. Eur. J. Pharm. Biopharm., 2008, 68(3), 760-770.
[http://dx.doi.org/10.1016/j.ejpb.2007.09.007] [PMID: 17964129]
[30]
Sinha, B.; Müller, R.H.; Möschwitzer, J.P. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int. J. Pharm., 2013, 453(1), 126-141.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.019] [PMID: 23333709]
[31]
Madheswaran, T.; Baskaran, R.; Thapa, R.K.; Rhyu, J.Y.; Choi, H.Y.; Kim, J.O.; Yong, C.S.; Yoo, B.K. Design and in vitro evaluation of finasteride-loaded liquid crystalline nanoparticles for topical delivery. AAPS PharmSciTech, 2013, 14(1), 45-52.
[http://dx.doi.org/10.1208/s12249-012-9888-y] [PMID: 23207960]
[32]
Barauskas, J.; Johnsson, M.; Tiberg, F. Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett., 2005, 5(8), 1615-1619.
[http://dx.doi.org/10.1021/nl050678i] [PMID: 16089498]
[33]
Gustafsson, J.; Ljusberg-Wahren, H.; Almgren, M.; Larsson, K. Cubic lipid-water phase dispersed into submicron particles. Langmuir, 1996, 12(20), 4611-4613.
[http://dx.doi.org/10.1021/la960318y]
[34]
Tamayo-Esquivel, D.; Ganem-Quintanar, A.; Martínez, A.L.; Navarrete-Rodríguez, M.; Rodríguez-Romo, S.; Quintanar-Guerrero, D. Evaluation of the enhanced oral effect of omapatrilat-monolein nanoparticles prepared by the emulsification-diffusion method. J. Nanosci. Nanotechnol., 2006, 6(9-10), 3134-3138.
[35]
Jacobs, C.; Kayser, O.; Muller, R.H.Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev., 2001, 47, 3-19.
[36]
Tamayo-Esquivel, D.; Ganem-Quintanar, A.; Martínez, A.L.; Navarrete-Rodríguez, M.; Rodríguez-Romo, S.; Quintanar-Guerrero, D.; Quintanar-Guerrero, D. Evaluation of the enhanced oral effect of omapatrilat-monolein nanoparticles prepared by the emulsification-diffusion method. J. Nanosci. Nanotechnol., 2006, 6(9-10), 3134-3138.
[http://dx.doi.org/10.1166/jnn.2006.474] [PMID: 17048528]
[37]
Matloub, A.A.; AbouSamra, M.M.; Salama, A.H.; Rizk, M.Z.; Aly, H.F.; Fouad, G.I. Cubic liquid crystalline nanoparticles containing a polysaccharide from Ulva fasciata with potent antihyperlipidaemic activity. Saudi Pharm. J., 2018, 26(2), 224-231.
[http://dx.doi.org/10.1016/j.jsps.2017.12.007] [PMID: 30166920]
[38]
Lee, M.K.; Kim, M.Y.; Kim, S.; Lee, J. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. J. Pharm. Sci., 2009, 98(12), 4808-4817.
[http://dx.doi.org/10.1002/jps.21786] [PMID: 19475555]
[39]
Hirsjärvi, S.; Peltonen, L.; Kainu, L.; Hirvonen, J. Freeze-drying of low molecular weight poly(L-lactic acid) nanoparticles: effect of cryo- and lyoprotectants. J. Nanosci. Nanotechnol., 2006, 6(9-10), 3110-3117.
[http://dx.doi.org/10.1166/jnn.2006.439] [PMID: 17048525]
[40]
Dong, Y.; Kiong, W.; Hu, J.; Shen, S.; Tan, R.B.H. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs. Int. J. Pharm., 2010, 386, 256-261.
[41]
Picco, A.S.; Ferreira, L.F.; Liberato, M.S.; Mondo, G.B.; Cardoso, M.B. Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications. Nanomedicine (Lond.), 2018, 13(2), 179-190.
[http://dx.doi.org/10.2217/nnm-2017-0280] [PMID: 29139338]
[42]
Boyd, B.J. Characterisation of drug release from cubosomes using the pressure ultrafiltration method. Int. J. Pharm., 2003, 260(2), 239-247.
[http://dx.doi.org/10.1016/S0378-5173(03)00262-X] [PMID: 12842343]
[43]
Nasr, M.; Dawoud, M. Sorbitol based powder precursor of cubosomes as an oral delivery system for improved bioavailability of poorly water soluble drugs. J. Drug Deliv. Sci. Technol., 2016, 35, 106-113.
[http://dx.doi.org/10.1016/j.jddst.2016.06.011]
[44]
Bala, R.; Khanna, S.; Pawar, P.K. Formulation and optimization of fast dissolving intraoral drug delivery system for clobazam using response surface methodology. J. Adv. Pharm. Technol. Res., 2013, 4(3), 151-159.
[http://dx.doi.org/10.4103/2231-4040.116785] [PMID: 24083203]
[45]
El-Laithy, H.M.; Badawi, A.; Abdelmalak, N.S.; Elsayyad, N.M.E. Stabilizing excipients for engineered clopidogrel bisulfate procubosome derived in situ cubosomes for enhanced intestinal dissolution: Stability and bioavailability considerations. Eur. J. Pharm. Sci., 2019, 136104954
[http://dx.doi.org/10.1016/j.ejps.2019.06.008] [PMID: 31189083]
[46]
Lestari, M.L.; Suciati, ; Indrayanto, G.; Brittain, H.G. Clopidogrel bisulfate. Profiles Drug Subst. Excip. Relat. Methodol., 2010, 35, 71-115.
[47]
Fakhari, A.; Corcoran, M.; Schwarz, A. Thermogelling properties of purified poloxamer 407. Heliyon, 2017, 3(8)e00390
[http://dx.doi.org/10.1016/j.heliyon.2017.e00390] [PMID: 28920092]
[48]
Lai, J.; Lu, Y.; Yin, Z.; Hu, F.; Wu, W. Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles. Int. J. Nanomedicine, 2010, 5(1), 13-23.
[http://dx.doi.org/10.2147/IJN.S8311] [PMID: 20161984]
[49]
Smart, J.D. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev., 2005, 57(11), 1556-1568.
[http://dx.doi.org/10.1016/j.addr.2005.07.001] [PMID: 16198441]
[50]
Ganem-Quintanar, A.; Quintanar-Guerrero, D.; Buri, P. Monoolein: a review of the pharmaceutical applications. Drug Dev. Ind. Pharm., 2000, 26(8), 809-820.
[http://dx.doi.org/10.1081/DDC-100101304] [PMID: 10900537]
[51]
Nielsen, L.S.; Schubert, L.; Hansen, J. Bioadhesive drug delivery systems. I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur. J. Pharm. Sci., 1998, 6(3), 231-239.
[http://dx.doi.org/10.1016/S0928-0987(97)10004-5] [PMID: 9795071]
[52]
Calderon, R.O.; Bronia, D.H.Trypanosoma cruzi: variable fusogenic ability by different growth phases of the epimastigote form. Exp. Parasitol., 1986, 455, 453-455.
[53]
Muranishi, S. Modification of intestinal absorption of drugs by lipoidal adjuvants. Pharm. Res., 1985, 2, 108-118.
[54]
Porter, C.J.H.; Pouton, C.W.; Cuine, J.F.; Charman, W.N. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv. Drug Deliv. Rev., 2008, 60(6), 673-691.
[http://dx.doi.org/10.1016/j.addr.2007.10.014] [PMID: 18155801]
[55]
Yang, Z.; Chen, M.; Yang, M.; Chen, J.; Fang, W.; Xu, P. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int. J. Nanomedicine, 2014, 9(1), 327-336.
[http://dx.doi.org/10.2147/IJN.S54967] [PMID: 24421641]
[56]
Liversidge, G.G. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int. J. Pharm., 1995, 125, 91-97.
[57]
He, X.; Li, Q.; Liu, X.; Wu, G.; Zhai, G. Curcumin-loaded lipid cubic liquid crystalline nanoparticles: preparation, optimization, physicochemical properties and oral absorption. J. Nanosci. Nanotechnol., 2015, 15(8), 5559-5565.
[http://dx.doi.org/10.1166/jnn.2015.10311] [PMID: 26369117]
[58]
Clark, M.A.; Jepson, M.A.; Hirst, B.H.; Exploiting, M. Exploiting M cells for drug and vaccine delivery. Adv. Drug Deliv. Rev., 2001, 50(1-2), 81-106.
[http://dx.doi.org/10.1016/S0169-409X(01)00149-1] [PMID: 11489335]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy