[6]
Bilello JA, Thurmond LM, Smith KM, Rubin R, Wright SM, et al. MDDScore: confirmation of a blood test to aid in the diagnosis of major depressive disorder. J Clin Psychiatry 2015; 76(2): e199-206.
[14]
Delgado PL. Depression: the case for a monoamine deficiency. J Clin Psychiatry 2000; 61(Suppl. 6): 7-11.
[17]
Reiner A, Levitz J. Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 2018; 98(6): 1080-98.
[20]
Kraus C, Wasserman D, Henter ID. The influence of ketamine on drug discovery in depression.In: drug discovery today. Elsevier 2019; 24: 2033-43.
[21]
Hashimoto K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: a historical overview and future perspective.n: psychiatry and clinical neurosciences. Blackwell Pub 2019; 73: 613-27.
[22]
CRANEGE. Cyloserine as an antidepressant agent. Am J Psychiatry 1959; 115(11): 1025-6.
[23]
Papp M, Moryl E. Antidepressant-like effects of 1-aminocyclopropanecarboxylic acid and D-cycloserine in an animal model of depression. Eur J Pharmacol 1996; 316(2-3): 145-51.
[24]
Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim Y-K. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94109668
[28]
Insel T, Cuthbert B, Garvey M, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010; 167(7): 748-51.
[29]
Gadad BS, Jha MK, Czysz A, et al. Peripheral biomarkers of major depression and antidepressant treatment response: current knowledge and future outlooks. J Affect Disord 2018; 233: 3-14.
[32]
Dang Y-H. MaX-C, ZhangJ-C , et al.Targeting of NMDA receptors in the treatment of major depression. Curr Pharm Des 2014; 20(32): 5151-9.
[34]
Kim Y-K. NaK-S. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70: 117-26.
[35]
Lin C-H, Huang M-W, Lin C-H, Huang C-H, Lane H-Y. Altered mRNA expressions for N-methyl-D-aspartate receptor-related genes in WBC of patients with major depressive disorder. J Affect Disord 2019; 245: 1119-25.
[38]
Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(1): 70-5.
[39]
Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62(3): 405-96.
[42]
Flores-Soto ME, Chaparro-Huerta V, Escoto-Delgadillo M, Vazquez-Valls E, González-Castañeda RE, Beas-Zarate C. Estructura y función de las subunidades del receptor a glutamato tipo NMDA. Neurologia 2012; 27(5): 301-10.
[46]
Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984; 309(5965): 261-3.
[49]
Johnson J. Kotermanskis. Mechanism of action of memantine. Curr Opin Pharmacol 2006; 6(1): 61-7.
[51]
Fadda E, Danysz W, Wroblewski JT, Costa E. Glycine and D-serine increase the affinity of N-methyl-D-aspartate sensitive glutamate binding sites in rat brain synaptic membranes. Neuropharmacology 1988; 27(11): 1183-5.
[52]
Wolosker H. D-Serine regulation of NMDA receptor activity. Sci STKE 2006; 2006(356)e41
[53]
Nong Y, Huang Y-Q. Ju W, Kalia LV, et al. Glycine binding primes NMDA receptor internalization. Nature 2003; 422(6929): 302-7.
[54]
Shleper M, Kartvelishvily E, Wolosker H. D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci 2005; 25(41): 9413-7.
[55]
MacKay M-AB, Kravtsenyuk M, Thomas R, Mitchell ND, Dursun SM, Baker GB. D-Serine: potential therapeutic agent and/or biomarker in schizophrenia and depression? Front Psychiatry 2019; 10.
[58]
Ishiwata S, Hattori K, Sasayama D, et al. Cerebrospinal fluid D -serine concentrations in major depressive disorder negatively correlate with depression severity. J Affect Disord 2018; 226: 155-62.
[59]
Levin R, Dor-Abarbanel AE, Edelman S, et al. Behavioral and cognitive effects of the N-methyl-d-aspartate receptor co-agonist d-serine in healthy humans: initial findings. J Psychiatr Res 2015; 61: 188-95.
[60]
Wang J, Zhang K, Chen X, et al. Epigenetic activation of ASCT2 in the hippocampus contributes to depression-like behavior by regulating D-Serine in mice. Front Mol Neurosci 2017; 10.
[61]
Wei I-H, Chen K-T, Tsai M-H. Wu C-H, LaneH-Y, Huang C-C. Acute amino acid d-serine administration, similar to ketamine, produces antidepressant-like effects through identical mechanisms. J Agric Food Chem 2017; 65(49): 10792-803.
[62]
Wolosker H, Blackshaw S, Snyder SH. Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 1999; 96(23): 13409-14.
[63]
Hashimoto K, Fukushima T, Shimizu E, et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 2003; 60(6): 572-6.
[64]
Otte D-M, Barcena de Arellano ML, Bilkei-Gorzo A, et al. Effects of chronic D-Serine elevation on animal models of depression and anxiety-related behavior. PLoS One 2013; 8(6)e67131
[66]
Goldberg TE, Straub RE, Callicott JH, et al. The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 2006; 31(9): 2022-32.
[69]
Zhao Z-X, Fu J, Ma S-R, et al. Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin. Theranostics 2018; 8(21): 5945-59.
[70]
Wake K, Yamazaki H, Hanzawa S, et al. Exaggerated responses to chronic nociceptive stimuli and enhancement of N-methyl-D-aspartate receptor-mediated synaptic transmission in mutant mice lacking D-amino-acid oxidase. Neurosci Lett 2001; 297(1): 25-8.
[71]
Rosenberg D, Artoul S, Segal AC, et al. Neuronal D-serine and glycine release Via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 2013; 33(8): 3533-44.
[72]
Yang CR, Svensson KA. Allosteric modulation of NMDA receptor via elevation of brain glycine and d-serine: the therapeutic potentials for schizophrenia. Pharmacol Ther 2008; 120(3): 317-32.
[73]
Sason H, Billard JM, Smith GP, et al. Asc-1 transporter regulation of synaptic activity via the tonic release of d-serine in the forebrain. Cereb Cortex 2017; 27(2): 1573-87.
[74]
Billard J-M, Freret T. Asc-1 transporter activation: an alternative to rescue age-related alterations in functional plasticity at rat hippocampal CA3/CA1 synapses. J Neurochem 2018; 147(4): 514-25.
[75]
Vargas-Lopes C, Madeira C, Kahn SA, et al. Protein kinase C activity regulates d-serine availability in the brain. J Neurochem 2011; 116(2): 281-90.
[76]
Hikida T, Mustafa AK, Maeda K, et al. Modulation of D-serine levels in brains of mice lacking PICK1. Biol Psychiatry 2008; 63(10): 997-1000.
[77]
Pizerli. The pathway and control of serine biosynthesis in escherichia coli. J Biol Chem 1963; 238: 3934-44.
[81]
Lu Y-R, Fu X-Y, Shi L-G, et al. Decreased plasma neuroactive amino acids and increased nitric oxide levels in melancholic major depressive disorder. BMC Psychiatry 2014; 14(1): 123.
[82]
Henter ID. deSousaRT, ZarateCA. Glutamatergic modulators in depression. Harv Rev Psychiatry 2018; 1.
[84]
Strzelecki D, Kropiwnicki P, Rabe-Jabłońska J. [Augmentation of antipsychotics with glycine may ameliorate depressive and extrapyramidal symptoms in schizophrenic patients-a preliminary 10-week open-label study].Psychiatr Pol 2013; 47(4): 609-20.
[86]
Heresco-LU, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 1999; 56(1): 29-36.
[88]
Waziri R, Mott J, Wilcox J. Differentiation of psychotic from nonpsychotic depression by a biological marker. J Affect Disord 1985; 9(2): 175-80.
[90]
Mohammad NS, Jain JMN, Chintakindi KP, Singh RP, Naik U, Akella RRD. Aberrations in folate metabolic pathway and altered susceptibility to autism. Psychiatr Genet 2009; 19(4): 171-6.
[91]
McGilvray D, Morris JG. Utilization of L-threonine by a species of arthrobacter. A novel catabolic role for “aminoacetone synthase”. Biochem J 1969; 112(5): 657-71.
[93]
Harsing LG, Zsilla G, Matyus P, et al. Interactions between glycine transporter type 1 (GlyT-1) and some inhibitor molecules - glycine transporter type 1 and its inhibitors. (review) Acta Physiol Hung 2012; 99(1): 1-17.
[94]
Chen L, Muhlhauser M, Yang CR. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 2003; 89(2): 691-703.
[95]
Tsai G, Ralph-Williams RJ, Martina M, et al. Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proc Natl Acad Sci 2004; 101(22): 8485-90.
[96]
López-Corcuera B, Martínez-Maza R, Núñez E, Roux M, Supplisson S, Aragón C. Differential properties of two stably expressed brain-specific glycine transporters. J Neurochem 1998 2019; 71(5): 2211-9.
[97]
Zhang HX, Hyrc K, Thio LL. The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine. J Physiol 2009; 587(13): 3207-20.
[100]
Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008; 33(1): 88-109.
[101]
Racagni G, Popoli M. Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin Neurosci 2008; 10(4): 385-400.
[104]
Altamura CA, Mauri MC, Ferrara A, Moro AR. D’AndreaG, ZamberlanF. Plasma and platelet excitatory amino acids in psychiatric disorders. Am J Psychiatry 1993; 150(11): 1731-3.
[106]
Hasler G, van derVeen JW, Tumonis T, Meyers N, Shen J, Drevets WC. Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007; 64(2): 193.
[107]
Kim JS, Schmid-Burgk W, Claus D, Kornhuber HH. Increased serum glutamate in depressed patients. Arch Psychiatr Nervenkr 1982; 232(4): 299-304.
[108]
Levine ES, Kolb JE. Brain-derived neurotrophic factor increases activity of NR2B-containing N-methyl-D-aspartate receptors in excised patches from hippocampal neurons. J Neurosci Res 2000; 62(3): 357-62.
[110]
Sanacora G, Gueorguieva R, Epperson CN, et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 2004; 61(7): 705-13.
[113]
Alcaro A, Panksepp J, Witczak J, Hayes DJ, Northoff G. Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci Biobehav Rev 2010; 34(4): 592-605.
[115]
Tordera RM, Garcia-García AL, Elizalde N, et al. Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex. Eur Neuropsychopharmacol 2011; 21(1): 23-32.
[116]
Davidson RJ, Putnam KM, Larson CL. Dysfunction in the neural circuitry of emotion regulation-a possible prelude to violence. Science 2000; 289(5479): 591-4.
[117]
Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res 2009; 201(2): 239-43.
[120]
Varea E, Guirado R, Gilabert-Juan J, et al. Expression of PSA-NCAM and synaptic proteins in the amygdala of psychiatric disorder patients. J Psychiatr Res 2012; 46(2): 189-97.
[121]
Hettema JM, An SS, Neale MC, et al. Association between glutamic acid decarboxylase genes and anxiety disorders, major depression, and neuroticism. Mol Psychiatry 2006; 11(8): 752-62.
[122]
Choi K-D, Jen JC, Choi SY, et al. Late-onset episodic ataxia associated with SLC1A3 mutation. J Hum Genet 2017; 62(3): 443-6.
[123]
Matsugami TR, Tanemura K, Mieda M, et al. From the cover: indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proc Natl Acad Sci USA 2006; 103(32): 12161-6.
[124]
Choudary PV, Molnar M, Evans SJ, et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 2005; 102(43): 15653-8.
[125]
Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 2012; 13(1): 2237.
[126]
Oh DH, Son H, Hwang S, Kim SH. Neuropathological abnormalities of astrocytes, GABAergic neurons, and pyramidal neurons in the dorsolateral prefrontal cortices of patients with major depressive disorder. Eur Neuropsychopharmacol 2012; 22(5): 330-8.
[127]
Sibille E, Morris HM, Kota RS, Lewis DA. GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int J Neuropsychopharmacol 2011; 14(6): 721-34.
[129]
Dean B, Karl T, Pavey G, Boer S, Duffy L, Scarr E. Increased levels of serotonin 2A receptors and serotonin transporter in the CNS of neuregulin 1 hypomorphic/mutant mice. Schizophr Res 2008; 99(1-3): 341-9.
[130]
Wen Z, Chen J, Song Z, et al. Genetic association between NRG1 and schizophrenia, major depressive disorder, bipolar disorder in Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2016; 171B(3): 468-78.
[133]
Jentsch MC, VanBuel EM, Bosker FJ, et al. Biomarker approaches in major depressive disorder evaluated in the context of current hypotheses. Biomarkers Med 2015; 9(3): 277-97.
[136]
Stahl SM. dextromethorphan/bupropion: a novel oral NMDA (N-methyl-d-aspartate) receptor antagonist with multimodal activity. CNS Spectr 2019; 24(5): 461-6.