Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Review Article

Manganese Ore-based Wet Flue-Gas Desulfurization: A Review

Author(s): Yutong Liu , Wenju Jiang *, Lu Yao , Lin Yang and Xia Jiang

Volume 13, Issue 3, 2020

Page: [180 - 193] Pages: 14

DOI: 10.2174/2405520413666200122092300

Price: $65

Abstract

The removal of SO2 from flue gases is necessary for eliminating haze and controlling acid rain. However, developing the traditional wet and dry flue-gas desulfurization (FGD) is challenging due to the disposal issue of several byproducts. Manganese (Mn) orebased wet FGD possesses many advantages, including good desulfurization property, low cost, and high economic benefit. The environment friendliness and reusability of MnSO4 provide new ideas and methods in the future research direction of FGD. This review summarizes the background information of Mn ore slurry desulfurization, the desulfurization mechanism, the technological process, and the desulfurization devices. The role of operating parameters, such as temperature, liquid/solid ratio, pH, SO2 concentration, and particle size, in the desulfurization efficiency and manganese leaching rate are also discussed. The temperature (20°C-80°C) has exerted little effect on the desulfurization efficiency, whereas a low pH value is beneficial for SO2 removal. Moreover, a low inlet SO2 concentration and small particle size are beneficial for SO2 removal. The control and digestion techniques related to the byproduct (manganese dithionate) are also presented, along with the future development direction of Mn ore-based wet FGD in different industries.

Keywords: Flue-gas desulfurization, manganese oxides ore, technology, manganese dithionate, desulfurization efficiency, byproducts.

Graphical Abstract

[1]
Boyadjiev C. On the gas purification from low SO2 concentration. Recent Innov Chem Eng 2015; 7(1): 39-46.
[http://dx.doi.org/10.2174/2211334707666141218204238]
[2]
Sun Y, Zwolińska E, Chmielewski AG. Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review. Crit Rev Environ Sci Technol 2016; 46(2): 119-42.
[http://dx.doi.org/10.1080/10643389.2015.1063334]
[3]
Karousos D, Labropoulos AI, Sapalidis A, et al. Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas. Chem Eng J 2017; 313: 777-90.
[http://dx.doi.org/10.1016/j.cej.2016.11.005]
[4]
Brandt P, Nuhnen A, Lange M, Möllmer J, Weingart O, Janiak C. Metal-Organic frameworks with potential application for SO2 separation and flue gas desulfurization. ACS Appl Mater Interfaces 2019; 11(19): 17350-8.
[http://dx.doi.org/10.1021/acsami.9b00029] [PMID: 31002493 ]
[5]
Li K, Yang Y, Wang T, et al. Simultaneous SO2 removal and CO2 reduction in a nano-BiVO4 Cu-In nanoalloy photoelectrochemical cell. Chem Eng J 2019; 355: 11-21.
[http://dx.doi.org/10.1016/j.cej.2018.08.093]
[6]
Ma C, Yia H, Tang X, et al. Improving simultaneous removal efficiency of SO2 and NOx from flue gas by surface modification of MgO with organic component. J Clean Prod 2019; 230: 508-17.
[http://dx.doi.org/10.1016/j.jclepro.2019.05.109]
[7]
Dou B, Pan W, Jin Q, Wang W, Li Y. Prediction of SO2 removal efficiency for wet flue gas desulfurization. Energy Convers Manage 2009; 50(10): 2547-53.
[http://dx.doi.org/10.1016/j.enconman.2009.06.012]
[8]
Ma Y, Zhang J, Huang Y, Cao J. A novel process combined with flue-gas desulfurization technology to reduce lead dioxide from spent lead-acid batteries. Hydrometallurgy 2018; 178: 146-50.
[http://dx.doi.org/10.1016/j.hydromet.2018.04.006]
[9]
Zhao Y, Wang S, Li Y. Long-term performance of flue gas desulfurization gypsum in a large-scale application in a saline-alkali wasteland in northwest China. Agric Ecosyst Environ 2018; 261: 115-24.
[http://dx.doi.org/10.1016/j.agee.2018.01.009]
[10]
Rosas JM, Ruiz-Rosas R, Rodríguez-Mirasol J, Cordero T. Kinetic study of SO2 removal over lignin-based activated carbon. Chem Eng J 2017; 307: 707-21.
[http://dx.doi.org/10.1016/j.cej.2016.08.111]
[11]
Wang J, Yang P. Potential flue gas desulfurization gypsum utilization in agriculture: A comprehensive review. Renew Sustain Energy Rev 2018; 82: 1969-78.
[http://dx.doi.org/10.1016/j.rser.2017.07.029]
[12]
Blázquez E, Baeza JA, Gabriel D, Guisasola A. Treatment of real flue gas desulfurization wastewater in an autotrophic biocathode in view of elemental sulfur recovery: Microbial communities involved. Sci Total Environ 2019; 657: 945-52.
[http://dx.doi.org/10.1016/j.scitotenv.2018.12.037] [PMID: 30677960]
[13]
Kang J, Gou X, Hu Y, et al. Efficient utilisation of flue gas desulfurization gypsum as a potential material for fluoride removal. Sci Total Environ 2019; 649: 344-52.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.416] [PMID: 30176447]
[14]
Yang L, Jiang X, Yang Z-S, Jiang W-J. Effect of MnSO4 on the removal of SO2 by manganese-modified activated coke. Ind Eng Chem Res 2015; 54(5): 1689-96.
[http://dx.doi.org/10.1021/ie503729a]
[15]
Yang L, Huang T, Jiang X, Li J, Liang W. The effects of metal oxide blended activated coke on flue gas desulphurization. RSC Adv 2016; 6(60): 55135-43.
[http://dx.doi.org/10.1039/C6RA05407B]
[16]
Wang P, Jiang S, Zhang C, Zhou Q, Li J, Jiang W. Desulfurization and regeneration performance of titanium-ore-modified activated coke. Energy Fuels 2017; 31(5): 5266-74.
[http://dx.doi.org/10.1021/acs.energyfuels.6b03153]
[17]
Yuan J. jiang X, Zou M, Yao L, Zhang C, Jiang W. Copper ore-modified activated coke: Highly efficient and regenerable catalysts for the removal of SO2. Ind Eng Chem Res 2018; 57(46): 15731-9.
[http://dx.doi.org/10.1021/acs.iecr.8b03872]
[18]
Yao L, Yang L, Jiang W, Jiang X. Removal of SO2 from flue gas on a copper modified activated coke prepared by a novel one-step carbonization activation blending method. Ind Eng Chem Res 2019; 58(34): 15693-700.
[http://dx.doi.org/10.1021/acs.iecr.9b02237]
[19]
Tao L. Research progress on flue gas desulfurization and utilization with slurry. Chem Ind Engineer Prog 2017; 36(5): 1868-79.
[20]
Murray JW. The interaction of cobalt with hydrous manganese dioxide. Geochim Cosmochim Acta 1975; 39(5): 635-47.
[http://dx.doi.org/10.1016/0016-7037(75)90007-1]
[21]
Li L, King DL. High-capacity sulfur dioxide absorbents for diesel emissions control. Ind Eng Chem Res 2005; 44(1): 168-77.
[http://dx.doi.org/10.1021/ie049111n]
[22]
Sinha AK, Suzuki K, Takahara M, Azuma H, Nonaka T, Fukumoto K. Mesostructured manganese oxide/ gold nanoparticle composites for extensive air purification. Angew Chem Int Ed Engl 2007; 46(16): 2891-4.
[http://dx.doi.org/10.1002/anie.200605048] [PMID: 17340659 ]
[23]
Mathieu Y, Tzanis L, Soulard M, Patarin J, Vierling M, Molièreb M. Adsorption of SOx by oxide materials: A review. Fuel Process Technol 2013; 114: 81-100.
[http://dx.doi.org/10.1016/j.fuproc.2013.03.019]
[24]
Li S, Wei L, Fei P, Yu-xin G, Huan L. Enrichment and purification process of by-product manganese sulfate in the flue gas desulphurization. Guangzhou Huagong 2016; 44(1): 53-5.
[25]
Jin H. Study on SO2 absorption from waste gases by pyrolusite slurry. Energy Eng 2003; 4: 33-5.
[26]
Ye W, Li Y-J, Kong L, Reno M-MM, Han Q. Feasibility of flue-gas desulfurization by manganese oxides. Trans Nonferrous Met Soc China 2013; 23(10): 3089-94.
[http://dx.doi.org/10.1016/S1003-6326(13)62838-1]
[27]
Raisoni PR, Dixit SG. Leaching of manganese ore with aqueous sulphur dioxide solutions. Bull Mater Sci 1988; 10(5): 479-83.
[http://dx.doi.org/10.1007/BF02744663]
[28]
Petrie LM. Molecular interpretation for SO2 dissolution kinetics of pyrolusite, manganite and hematite. Appl Geochem 1995; 10(3): 253-67.
[http://dx.doi.org/10.1016/0883-2927(94)00050-G]
[29]
Demirbaş A. Non-isothermal leaching kinetics of braunite in water saturated with sulphur dioxide. Resour Conserv Recycling 1999; 26(1): 35-42.
[http://dx.doi.org/10.1016/S0921-3449(98)00073-1]
[30]
Vegliò F, Trifoni M, Abbruzzese C, Torob L. Column leaching of a manganese dioxide ore: A study by using fractional factorial design. Hydrometallurgy 2001; 59(1): 31-44.
[http://dx.doi.org/10.1016/S0304-386X(00)00139-0]
[31]
Abou-El-Sherbini KS. Simultaneous extraction of manganese from low grade manganese dioxide ore and beneficiation of sulphur slag. Separ Purif Tech 2002; 27(1): 67-75.
[http://dx.doi.org/10.1016/S1383-5866(01)00193-9]
[32]
Xue J, Zhong H, Wang S, Li C, Li J, Wu F. Kinetics of reduction leaching of manganese dioxide ore with Phytolacca americana in sulfuric acid solution. J Saudi Chem Soc 2014; 20(4): 437-42.
[http://dx.doi.org/10.1016/j.jscs.2014.09.011]
[33]
Naik PK, Sukla L, Das S. Aqueous SO2 leaching studies on Nishikhal manganese ore through factorial experiment. Hydrometallurgy 2000; 54(2-3): 217-28.
[http://dx.doi.org/10.1016/S0304-386X(99)00075-4]
[34]
You Z, Li G, Zhang Y, Peng Z, Jiang T. Extraction of manganese from iron rich MnO2 ores via selective sulfation roasting with SO2 followed by water leaching. Hydrometallurgy 2015; 156: 225-31.
[http://dx.doi.org/10.1016/j.hydromet.2015.05.017]
[35]
Yuan J. Mechanism and influence factors of flue gas desulfurization by symbiotic manganese oxides ore. Chin J Environ Engineer 2018; 12(4): 1104-11.
[36]
Miller JD, Wan R-Y. Reaction kinetics for the leaching of MnO2 by sulfur dioxide. Hydrometallurgy 1983; 10(2): 219-42.
[http://dx.doi.org/10.1016/0304-386X(83)90007-5]
[37]
Grimanelis D, Neou-Syngouna P, Vazarlis H. Leaching of a rich Greek manganese ore by aqueous solutions of sulphur dioxide. Hydrometallurgy 1992; 31(1-2): 139-46.
[http://dx.doi.org/10.1016/0304-386X(92)90113-E]
[38]
Abbruzzese C. Percolation leaching of manganese ore by aqueous sulfur dioxide. Hydrometallurgy 1990; 25(1): 85-97.
[http://dx.doi.org/10.1016/0304-386X(90)90066-B]
[39]
Sun W. Pyrolusite slurry flue gas desulfurization technique. Chongqing Enviro Sci 1999; 21(3): 25-7.
[40]
Naik PK, Sukla LB, Das SC. Application of statistical design in the leaching study of low-grade manganese ore using aqueous sulfur dioxide. Sep Sci Technol 2002; 37(6): 1375-89.
[http://dx.doi.org/10.1081/SS-120002616]
[41]
Sun W, Wang Q, Ding S, Su S. Simultaneous absorption of SO2 and NOx with pyrolusite slurry combined with gas-phase oxidation of NO using ozone: Effect of molar ratio of O2/(SO2 + 0.5NOx) in flue gas. Chem Eng J 2013; 228(28): 700-7.
[http://dx.doi.org/10.1016/j.cej.2013.05.003]
[42]
He K, Su S, Ding S-L, Sun W-Y. Formation characteristics of dithionate and sulfate ions in the pyrolusite leaching process with SO2. React Kinet Mech Catal 2018; 123(2): 757-70.
[http://dx.doi.org/10.1007/s11144-018-1365-5]
[43]
Pasiuk-Bronikowska W, Bronikowski T. The rate equation for SO2 autoxidation in aqueous MnSO4 solutions containing H2SO4. Chem Eng Sci 1981; 36(2): 215-9.
[http://dx.doi.org/10.1016/0009-2509(81)80069-3]
[44]
Zhu X, Jiang W. Process and study on removal of SO2 in flue gas with pyrolusite. China’s Manganese Industry 2001; 19(2): 10-2.
[45]
Li J. Study on producing manganese sulfate with pyrolusite absorbed industry waste-gas SO2. J Guizhou Univ Technol 2003; 32(5): 4-8.
[46]
Li Y. An experimental study on smelting flue gas desulfurization with pyrolusite pulp to produce manganese sulphate. Environ Sci Technol 2010; 33(12F): 133-6.
[47]
Sun J, et al. Study on the process of preparing electrolytic manganese from absorption solution of flue gas desulfurization with pyrolusite pulp. J Chem Engineer Chin Univ 2006; 20(6): 967.
[48]
Sun J. The new process of utilizing the resource from flue gas desulfurization with pyrolusite pulp. Environ Engineer 2007; 25(4): 49-52.
[49]
Sun W, Shi-jun S, Qing-yuan W, Sang-lan D. Lab-scale circulation process of electrolytic manganese production with low-grade pyrolusite leaching by SO2. Hydrometallurgy 2013; 133: 118-25.
[http://dx.doi.org/10.1016/j.hydromet.2012.12.005]
[50]
Kikkawa H, Nakamoto T, Morishita M, Yamada K. New wet FGD process using granular limestone. Ind Eng Chem Res 2002; 41(12): 3028-36.
[http://dx.doi.org/10.1021/ie0109760]
[51]
Feng G. Experimental studies of horizontal mechanical spray absorber. J Guangxi Univ 1995; 20(3): 212-7.
[52]
Liu G, Wang Z, Wei Y, Ji Q. Experimental study and modeling for ammonia desulphurization in spray tower. Ciesc J 2010; 61(9): 2463-7.
[53]
Liu L, Zhang H. Design of multistage reactor and study on flue gas desulfurization with pyrolusite slurry. Chemical World 2010; 8: 449.
[54]
Strock TW, Gohara WF. Experimental approach and techniques for the evaluation of wet flue gas desulfurization scrubber fluid mechanics. Chem Eng Sci 1994; 49(24): 4667-79.
[http://dx.doi.org/10.1016/S0009-2509(05)80050-8]
[55]
Michalski JA. Aerodynamic characteristics of FGD spray towers. Chem Engineer Technol. Indust Chem‐Plant Equip‐Process Engineer‐Biotechnol 1997; 20(2): 108-17.
[http://dx.doi.org/10.1002/ceat.270200208]
[56]
Strock TW, White FL. White. Stacked interspacial spray header for FGD wet scrubber 1997. US5620144A
[57]
Kiil S, Michelsen ML, Dam-Johansen K. Experimental investigation and modeling of a wet flue gas desulfurization pilot plant. Ind Eng Chem Res 1998; 37(7): 2792-806.
[http://dx.doi.org/10.1021/ie9709446]
[58]
Michalski JA. Aerodynamic characteristics of flue gas desulfurization spray towers polydispersity consideration. Ind Eng Chem Res 2000; 39(9): 3314-24.
[http://dx.doi.org/10.1021/ie990791h]
[59]
Zhao J, Jin B, Zhong Z. The degree of desulphurization of a limestone/gypsum wet FGD spray tower using response surface methodology. Chem Engineer Technol. Indust Chem‐Plant Equip‐Process Engineer‐Biotechnol 2007; 30(4): 517-22.
[http://dx.doi.org/10.1002/ceat.200600347]
[60]
Liu Q. Effective practical new technique and it's process for desulfurizing with pyrolusite slurry Guangdong Chem Industry 1998; (2): 19-20.
[61]
Huang Y, Wang Z, Tong Z. Research on removing SO2 from fume by pyrolusite sludge. Environ Engineer 1998; 16(4): 43-6.
[62]
Zeng T. Analysis on design and operation of the absorber system in wet FGD plant. Electric Power Environ Protect 2002; 18(4): 5-9.
[63]
Hozumi Y, Yoshizawa Y. Numerical analysis of dust particles motion inside gas bubbles for flue gas desulfurization in a jet bubbling reactor. Comput Fluids 1992; 21(2): 211-9.
[http://dx.doi.org/10.1016/0045-7930(92)90020-V]
[64]
Srivastava RK, Jozewicz W. Flue gas desulfurization: The state of the art. J Air Waste Manag Assoc 2001; 51(12): 1676-88.
[http://dx.doi.org/10.1080/10473289.2001.10464387] [PMID: 15666473 ]
[65]
Zheng Y, Kiil S, Johnsson JE. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation. Chem Eng Sci 2003; 58(20): 4695-703.
[http://dx.doi.org/10.1016/j.ces.2003.07.002]
[66]
Ren Z. Study on flue gas desulfurization reactor with pyrolusite slurry. Techniques Equipment for Environ Pollution Control 2004; 5(11): 90-3.
[67]
Su SJ, Zhu XF, Liu YJ, Jiang WJ, Jin Y. A pilot-scale jet bubbling reactor for wet flue gas desulfurization with pyrolusite. J Environ Sci (China) 2005; 17(5): 827-31.
[PMID: 16313012]
[68]
Wang Z, Tong Z. Flue gas desulfurization by pyrolusite slurry in orifice column. Nat Sci J Xiangtan Univ 1999; 21(4): 78-82.
[69]
Tian X, Wen X, Yang C, Liang Y, Pi Z, Wang Y. Reductive leaching of manganese from low-grade manganese dioxide ores using corncob as reductant in sulfuric acid solution. Hydrometallurgy 2010; 100(3-4): 157-60.
[http://dx.doi.org/10.1016/j.hydromet.2009.11.008]
[70]
Han X. Preparation of manganese sulfate from pyrolusite by absorpting sulfur dioxide(I). Mining and Metallurgical Engineering 2003; 23(2): 53-5.
[71]
Jia R. Absorption of SO2 in flue gas by manganese ore slurry. Inorg Salt Industry 1996; (4): 10-3.
[72]
Herring AP, Ravitz S. Rate of dissolution of manganese dioxide in sulfurous acid. Berkeley: Univ California 1965.
[73]
Ning P. Study on SO2 absorption with manganese waste slag to produce MnSO4•H2O. Environ Sci 1997; 18(6): 58-60.
[74]
Qu B, Deng L, Deng B, He K, Liao B, Su S. Oxidation kinetics of dithionate compound in the leaching process of manganese dioxide with manganese dithionate. React Kinet Mech Catal 2018; 123(2): 743-55.
[http://dx.doi.org/10.1007/s11144-017-1284-x]
[75]
Lee JH, Gilje J, Zeitlin H, Fernando Q. Low-temperature interaction of sulfur dioxide with Pacific ferromanganese nodules. Environ Sci Technol 1978; 12(13): 1428-31.
[http://dx.doi.org/10.1021/es60148a001]
[76]
Zhu X. Study on flue gas desulfurization with pyrolusite pulp. J Sichuan Univ 2000; 32(5): 36-9. [Engineering Science Edition].
[77]
Lente G, Fábián I. Effect of dissolved oxygen on the oxidation of dithionate ion. Extremely unusual kinetic traces. Inorg Chem 2004; 43(13): 4019-25.
[http://dx.doi.org/10.1021/ic0499087] [PMID: 15206884 ]
[78]
Chow N, Nacu A, Warkentin D. The H, Aksenov I, Fisher JW. New developments in the recovery of manganese from lower-grade resources. Mining. Metallurgy Explorat 2012; 29(1): 61-74.
[http://dx.doi.org/10.1007/BF03402334]
[79]
He K, Su S, Ding S. Oxidation of SO2 by O2 and its effects on dithionate formation during pyrolusite leaching process with mixture gas containing SO2 and O2. ChemistrySelect 2018; 3(46): 13154-60.
[http://dx.doi.org/10.1002/slct.201801894]
[80]
Feng G, Lei Y. The measurements of thermodynamic functions of manganese dithionate hydrates. J Guangxi Univ 1992; 17(2): 1-6.
[81]
Meissner T, Eisenbeiss F, Jastorff B. New leading electrolyte for the direct determination of chloride and other anions in analytical isotachophoresis. J Chromatogr A 1999; 838(1-2): 81-8.
[http://dx.doi.org/10.1016/S0021-9673(98)00968-6] [PMID: 10327633 ]
[82]
Cui T, Huang Z, Li X. Study on decomposition of hyposulfate. J Honghe Univ 2010; 8(2): 7-9.
[83]
House Jr. Thermal studies on dithionate compounds. II. Dithionates of lithium, sodium, and magnesium. Thermochim Acta 1983; 70(1-3): 189-93.
[http://dx.doi.org/10.1016/0040-6031(83)80192-0]
[84]
Yang Q, Zhang Z. Thermodynamic analysis and experimental investigation on restraining generation of manganese dithionate in leaching process of MnO2 with SO2. J Chin Soc Rare Earths 2012; 30: 37-41.
[85]
Chen J. Study on conditions for removing MnS2O6 from MnSO4 solution Chinese. J Environ Eng 2011; 5(1): 175-8.
[86]
Senanayake G. A mixed surface reaction kinetic model for the reductive leaching of manganese dioxide with acidic sulfur dioxide. Hydrometallurgy 2004; 73(3-4): 215-24.
[http://dx.doi.org/10.1016/j.hydromet.2003.10.010]
[87]
Senanayake G, Childs J, Akerstrom BD, Pugaev D. Reductive acid leaching of laterite and metal oxides—A review with new data for Fe (Ni, Co)OOH and a limonitic ore. Hydrometallurgy 2011; 110(1-4): 13-32.
[http://dx.doi.org/10.1016/j.hydromet.2011.07.011]
[88]
Wei W, Wang X-D, Dai W, Jin Y. Flue gas desulfuration by catalysis and oxidation of pyrolusite and bacteria. Environ Sci 2007; 28(1): 48-52.
[89]
Zhang Y, Ding S, Jiang W. Study in Absorption of SO2 by Low Concentration Pyrolusite Slurry and Thiobacillus Ferrooxidans. China’s Manganese Industry 2007; 25(1): 21-3.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy