Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

New Aspects of Monoamine Oxidase B Inhibitors: The Key Role of Halogens to Open the Golden Door

Author(s): Bijo Mathew*, Simone Carradori*, Paolo Guglielmi, Md. Sahab Uddin and Hoon Kim

Volume 28, Issue 2, 2021

Published on: 21 January, 2020

Page: [266 - 283] Pages: 18

DOI: 10.2174/0929867327666200121165931

Price: $65

Abstract

A large plethora of drugs and promising lead compounds contain halogens in their structures. The introduction of such moieties strongly modulates their physical-chemical features as well as pharmacokinetic and pharmacodynamic profile. The most important outcome was shown to be the ability of these halogens to favourably influence the drug-target interaction and energetic stability within the active site by the establishment of halogen bonds. This review attempted to demonstrate the key role exerted by these versatile moieties when correctly located in an organic scaffold to display Monoamine Oxidase (MAO) inhibition and selectivity towards the B isoform of this important enzyme. Human MAOs are well-recognized as therapeutic targets for mood disorders and neurodegenerative diseases and medicinal chemists were prompted to discover the structural requirements crucial to discriminate the slight differences between the active sits of the two isoforms (MAO-A and MAOB). The analysis of the structure-activity relationships of the most important scaffolds (hydrazothiazoles, coumarins, chromones, chalcones, pyrazolines) and the impact of halogen (F, Cl, Br and I) insertion on this biological activity and isozyme selectivity have been reported being a source of inspiration for the medicinal chemists.

Keywords: Monoamine oxidase B, inhibitors, halogen, coumarin, chromone, thiazole, chalcone.

[1]
Carradori, S.; Petzer, J.P. Novel monoamine oxidase inhibitors: A patent review (2012 - 2014). Expert Opin. Ther. Pat., 2015, 25(1), 91-110.
[http://dx.doi.org/10.1517/13543776.2014.982535] [PMID: 25399762]
[2]
Mathew, B.; Mathew, G.E.; Suresh, J.; Ucar, G.; Sasidharan, R.; Vilapurathu, J.K.; Anbazhagan, S.; Jayaprakash, V. Monoamine oxidase inhibitors: Perspective design for the treatment of depression and, neurological disorders. Curr. Enzym. Inhib., 2016, 12, 115-122.
[http://dx.doi.org/10.2174/1573408012666160402001715]
[3]
Youdim, M.B.; Bakhle, Y.S. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol., 2006, 147(Suppl. 1), S287-S296.
[http://dx.doi.org/10.1038/sj.bjp.0706464] [PMID: 16402116]
[4]
Wouters, J. Structural aspects of monoamine oxidase and its reversible inhibition. Curr. Med. Chem., 1998, 5(2), 137-162.
[PMID: 9481038]
[5]
Kalgutkar, A.S.; Castagnoli, N., Jr; Testa, B. Selective inhibitors of monoamine oxidase (MAO-A and MAO-B) as probes of its catalytic site and mechanism. Med. Res. Rev., 1995, 15(4), 325-388.
[http://dx.doi.org/10.1002/med.2610150406] [PMID: 7475507]
[6]
Ramsay, R.R. Inhibitor design for monoamine oxidases. Curr. Pharm. Des., 2013, 19(14), 2529-2539.
[http://dx.doi.org/10.2174/1381612811319140004] [PMID: 23116392]
[7]
Carradori, S.; Silvestri, R. New frontiers in selective human MAO-B Inhibitors. J. Med. Chem., 2015, 58(17), 6717-6732.
[http://dx.doi.org/10.1021/jm501690r] [PMID: 25915162]
[8]
Binda, C.; Wang, J.; Pisani, L.; Caccia, C.; Carotti, A.; Salvati, P.; Edmondson, D.E.; Mattevi, A. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J. Med. Chem., 2007, 50(23), 5848-5852.
[http://dx.doi.org/10.1021/jm070677y] [PMID: 17915852]
[9]
Binda, C.; Hubálek, F.; Li, M.; Castagnoli, N.; Edmondson, D.E.; Mattevi, A. Structure of the human mitochondrial monoamine oxidase B: new chemical implications for neuroprotectant drug design. Neurology, 2006, 67(7)(Suppl. 2), S5-S7.
[http://dx.doi.org/10.1212/WNL.67.7_suppl_2.S5] [PMID: 17030739]
[10]
Binda, C.; Li, M.; Hubalek, F.; Restelli, N.; Edmondson, D.E.; Mattevi, A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc. Natl. Acad. Sci. USA, 2003, 100(17), 9750-9755.
[http://dx.doi.org/10.1073/pnas.1633804100] [PMID: 12913124]
[11]
Bolasco, A.; Carradori, S.; Fioravanti, R. Focusing on new monoamine oxidase inhibitors. Expert Opin. Ther. Pat., 2010, 20(7), 909-939.
[http://dx.doi.org/10.1517/13543776.2010.495716] [PMID: 20553094]
[12]
Tripathi, R.K.P.; Ayyannan, S.R. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: An overview and update. Med. Res. Rev., 2019, 39(5), 1603-1706.
[http://dx.doi.org/10.1002/med.21561] [PMID: 30604512]
[13]
Guglielmi, P.; Carradori, S.; Ammazzalorso, A.; Secci, D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin. Drug Discov., 2019, 14(10), 995-1035.
[http://dx.doi.org/10.1080/17460441.2019.1637415] [PMID: 31268358]
[14]
Mathew, B.; Adeniyi, A.A.; Dev, S.; Joy, M.; Ucar, G.; Mathew, G.E.; Singh-Pillay, A.; Soliman, M.E. Pharmacophore based 3D-QSAR analysis of thienyl chalcone as new class of human MAO-B inhibitors. Investigation of combined quantum chemical and molecular dynamics approach. J. Phys. Chem. B, 2017, 121(6), 1186-1203.
[http://dx.doi.org/10.1021/acs.jpcb.6b09451] [PMID: 28084742]
[15]
Mathew, B.; Dev, S.; Mathew, G.E.; Marathakam, A.; Krishnan, G.K. Refining the structural features of chromones as selective MAO-B inhibitors: exploration of combined pharmacophore-based 3D-QSAR and quantum chemical studies. ChemistrySelect, 2017, 2, 11645-11652.
[http://dx.doi.org/10.1002/slct.201701213]
[16]
Kumar, B.; Sheetal, S.; Mantha, A.K.; Kumar, V. Recent developments on the structure‐activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Advances, 2016, 6, 42660-42683.
[http://dx.doi.org/10.1039/C6RA00302H]
[17]
Kumar, B.; Gupta, V.P.; Kumar, V. A perspective on monoamine oxidase enzyme as drug target. Challenges and opportunities. Curr. Drug Targets, 2017, 18(1), 87-97.
[http://dx.doi.org/10.2174/1389450117666151209123402] [PMID: 26648064]
[18]
Secci, D.; Bolasco, A.; Chimenti, P.; Carradori, S. The state of the art of pyrazole derivatives as monoamine oxidase inhibitors and antidepressant/anticonvulsant agents. Curr. Med. Chem., 2011, 18(33), 5114-5144.
[http://dx.doi.org/10.2174/092986711797636090] [PMID: 22050759]
[19]
Mathew, B.; Suresh, J.; Anbazhagan, S.; Mathew, G.E. Pyrazoline: a promising scaffold for the inhibition of monoamine oxidase. Cent. Nerv. Syst. Agents Med. Chem., 2013, 13(3), 195-206.
[http://dx.doi.org/10.2174/1871524914666140129122632] [PMID: 24533911]
[20]
Matos, M.J.; Viña, D.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Focusing on new monoamine oxidase inhibitors: differently substituted coumarins as an interesting scaffold. Curr. Top. Med. Chem., 2012, 12(20), 2210-2239.
[http://dx.doi.org/10.2174/156802612805220002] [PMID: 23231397]
[21]
Guglielmi, P.; Secci, D.; Petzer, A.; Bagetta, D.; Chimenti, P.; Rotondi, G.; Ferrante, C.; Recinella, L.; Leone, S.; Alcaro, S.; Zengin, G.; Petzer, J.P.; Ortuso, F.; Carradori, S. Benzo[b]tiophen-3-ol derivatives as effective inhibitors of human monoamine oxidase: design, synthesis, and biological activity. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1511-1525.
[http://dx.doi.org/10.1080/14756366.2019.1653864] [PMID: 31422706]
[22]
Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Bizzarri, B.; Granese, A.; Carradori, S.; Yáñez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. Synthesis, molecular modeling, and selective inhibitory activity against human monoamine oxidases of 3-carboxamido-7-substituted coumarins. J. Med. Chem., 2009, 52(7), 1935-1942.
[http://dx.doi.org/10.1021/jm801496u] [PMID: 19267475]
[23]
Tipton, K.F. 90 years of monoamine oxidase: some progress and some confusion. J. Neural Transm. (Vienna), 2018, 125(11), 1519-1551.
[http://dx.doi.org/10.1007/s00702-018-1881-5] [PMID: 29637260]
[24]
Joy, M.; Mathew, B.; Sudarsanakumar, C. Structural features of safinamide: a combined hirshfeld surface analysis quantum chemical treatment. Chem. Data Collect, 2018, 17-18, 404-414.
[http://dx.doi.org/10.1016/j.cdc.2018.10.009]
[25]
Lu, Y.; Wang, Y.; Xu, Z.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W.C-X. H contacts in biomolecular systems: how they contribute to protein-ligand binding affinity. J. Phys. Chem. B, 2009, 113(37), 12615-12621.
[http://dx.doi.org/10.1021/jp906352e] [PMID: 19708644]
[26]
Wilcken, R.; Zimmermann, M.O.; Lange, A.; Joerger, A.C.; Boeckler, F.M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem., 2013, 56(4), 1363-1388.
[http://dx.doi.org/10.1021/jm3012068] [PMID: 23145854]
[27]
Lu, Y.; Liu, Y.; Xu, Z.; Li, H.; Liu, H.; Zhu, W. Halogen bonding for rational drug design and new drug discovery. Expert Opin. Drug Discov., 2012, 7(5), 375-383.
[http://dx.doi.org/10.1517/17460441.2012.678829] [PMID: 22462734]
[28]
Clark, T.; Hennemann, M.; Murray, J.S.; Politzer, P. Halogen bonding: the sigma-hole. Proceedings of “Modeling interactions in biomolecules II”, Prague, September 5th-9th, 2005. J. Mol. Model., 2007, 13(2), 291-296.
[http://dx.doi.org/10.1007/s00894-006-0130-2] [PMID: 16927107]
[29]
Politzer, P.; Lane, P.; Concha, M.C.; Ma, Y.; Murray, J.S. An overview of halogen bonding. J. Mol. Model., 2007, 13(2), 305-311.
[http://dx.doi.org/10.1007/s00894-006-0154-7] [PMID: 17013631]
[30]
Kolář, M.; Hobza, P.; Bronowska, A.K. Plugging the explicit σ-holes in molecular docking. Chem. Commun. (Camb.), 2013, 49(10), 981-983.
[http://dx.doi.org/10.1039/C2CC37584B] [PMID: 23257988]
[31]
Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev., 2016, 116(4), 2478-2601.
[http://dx.doi.org/10.1021/acs.chemrev.5b00484] [PMID: 26812185]
[32]
Cavallo, G.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bond: a long overlooked interaction. Top. Curr. Chem., 2015, 358, 1-17.
[http://dx.doi.org/10.1007/128_2014_573] [PMID: 25504313]
[33]
Fang, W.Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 173, 117-153.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.063] [PMID: 30995567]
[34]
Mathew, B.; Adeniyi, A.A.; Joy, M.; Mathew, G.E.; Singh-Pillay, A.; Sudarsanakumar, C.; Soliman, M.E.S.; Suresh, J. Anti-oxidant behaviour of functionalized chalcone-a combined quantum chemical and crystallographic structural investigation. J. Mol. Struct., 2017, 1146, 301-308.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.100]
[35]
Mathew, B.; Suresh, J.; Anbazhagan, S.; Paulraj, J.; Krishnan, G.K. Heteroaryl chalcones: mini review about their therapeutic voyage. Bio. Med. Prev. Nut., 2014, 4, 451-458.
[http://dx.doi.org/10.1016/j.bionut.2014.04.003]
[36]
Tanaka, S.; Kuwai, Y.; Tabata, M. Isolation of monoamine oxidase inhibitors from Glycyrrhiza uralensis roots and the structure-activity relationship. Planta Med., 1987, 53(1), 5-8.
[http://dx.doi.org/10.1055/s-2006-962604] [PMID: 3575512]
[37]
Chimenti, F.; Fioravanti, R.; Bolasco, A.; Chimenti, P.; Secci, D.; Rossi, F.; Yáñez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. Chalcones: a valid scaffold for monoamine oxidases inhibitors. J. Med. Chem., 2009, 52(9), 2818-2824.
[http://dx.doi.org/10.1021/jm801590u] [PMID: 19378991]
[38]
Robinson, S.J.; Petzer, J.P.; Petzer, A.; Bergh, J.J.; Lourens, A.C.U. Selected furanochalcones as inhibitors of monoamine oxidase. Bioorg. Med. Chem. Lett., 2013, 23(17), 4985-4989.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.050] [PMID: 23860591]
[39]
Jo, G.; Ahn, S.; Kim, B.G.; Park, H.R.; Kim, Y.H.; Choo, H.A.; Koh, D.; Chong, Y.; Ahn, J.H.; Lim, Y. Chromenylchalcones with inhibitory effects on monoamine oxidase B. Bioorg. Med. Chem., 2013, 21(24), 7890-7897.
[http://dx.doi.org/10.1016/j.bmc.2013.10.004] [PMID: 24169316]
[40]
Morales-Camilo, N.; Salas, C.O.; Sanhueza, C.; Espinosa-Bustos, C.; Sepúlveda-Boza, S.; Reyes-Parada, M.; Gonzalez-Nilo, F.; Caroli-Rezende, M.; Fierro, A. Synthesis, biological evaluation, and molecular simulation of chalcones and aurones as selective MAO-B inhibitors. Chem. Biol. Drug Des., 2015, 85(6), 685-695.
[http://dx.doi.org/10.1111/cbdd.12458] [PMID: 25346162]
[41]
Choi, J.W.; Jang, B.K.; Cho, N.C.; Park, J.H.; Yeon, S.K.; Ju, E.J.; Lee, Y.S.; Han, G.; Pae, A.N.; Kim, D.J.; Park, K.D. Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors. Bioorg. Med. Chem., 2015, 23(19), 6486-6496.
[http://dx.doi.org/10.1016/j.bmc.2015.08.012] [PMID: 26337020]
[42]
Mathew, B.; Haridas, A.; Suresh, J.; Mathew, G.E.; Uçar, G.; Jayaprakash, V. Monoamine oxidase inhibitory actions of chalcones. A mini review. Cent. Nerv. Syst. Agents Med. Chem., 2016, 16(2), 120-136.
[http://dx.doi.org/10.2174/1871524915666151002124443] [PMID: 26429556]
[43]
Mathew, B. Unraveling the structural requirements of chalcone chemistry towards monoamine oxidase inhibition. Cent. Nerv. Syst. Agents Med. Chem., 2019, 19(1), 6-7.
[http://dx.doi.org/10.2174/1871524919666190131160122] [PMID: 30706795]
[44]
Mathew, B.; Mathew, G.E.; Uçar, G.; Baysal, I.; Suresh, J.; Vilapurathu, J.K.; Prakasan, A.; Suresh, J.K.; Thomas, A. Development of fluorinated methoxylated chalcones as selective monoamine oxidase-B inhibitors: Synthesis, biochemistry and molecular docking studies. Bioorg. Chem., 2015, 62, 22-29.
[http://dx.doi.org/10.1016/j.bioorg.2015.07.001] [PMID: 26189013]
[45]
Mathew, B.; Uçar, G.; Yabanoğlu-Çiftçi, S.; Baysal, I.; Suresh, J.; Mathew, G.E.; Vilapurathu, J.K.; Nadeena, A.M.; Nabeela, P.; Lakshmi, V.; Haridas, A.; Fathima, F. Development of fluorinated thienylchalcones as monoamine oxidase-b inhibitors: Design, synthesis, biological evaluation and molecular docking studies. Lett. Org. Chem., 2015, 12, 605-613.
[http://dx.doi.org/10.2174/1570178612666150903213416]
[46]
Mathew, B.; Mathew, G.E.; Uçar, G.; Baysal, I.; Suresh, J.; Mathew, S.; Haridas, A.; Jayaprakash, V. Potent and selective monoamine oxidase-b inhibitory activity: Fluoro- vs trifluoromethyl-4-hydroxylated chalcone derivatives. Chem. Biodivers., 2016, 13(8), 1046-1052.
[http://dx.doi.org/10.1002/cbdv.201500367] [PMID: 27402375]
[47]
Mathew, B.; Haridas, A.; Uçar, G.; Baysal, I.; Adeniyi, A.A.; Soliman, M.E.S.; Joy, M.; Mathew, G.E.; Lakshmanan, B.; Jayaprakash, V. Exploration of chlorinated thienyl chalcones: A new class of monoamine oxidase-B inhibitors. Int. J. Biol. Macromol., 2016, 91, 680-695.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.110] [PMID: 27262516]
[48]
Mathew, B.; Haridas, A.; Uçar, G.; Baysal, I.; Joy, M.; Mathew, G.E.; Lakshmanan, B.; Jayaprakash, V. Synthesis, biochemistry, and computational studies of brominated thienyl chalcones: A new class of reversible MAO-B inhibitors. ChemMedChem, 2016, 11(11), 1161-1171.
[http://dx.doi.org/10.1002/cmdc.201600122] [PMID: 27159243]
[49]
Mathew, B.; Uçar, G.; Mathew, G.E.; Mathew, S.; Kalatharakkal Purapurath, P.; Moolayil, F.; Mohan, S.; Varghese Gupta, S. Monoamine oxidase inhibitory activity: Methyl- versus chloro-chalcone derivatives. ChemMedChem, 2016, 11(24), 2649-2655.
[http://dx.doi.org/10.1002/cmdc.201600497] [PMID: 27902880]
[50]
Sasidharan, R.; Manju, S.L.; Uçar, G.; Baysal, I.; Mathew, B. Identification of indole based chalcones: Discovery of potent, selective and reversible class of MAO-B inhibitors. Arch. Pharm. (Weinheim), 2016, 349(8), 627-637.
[http://dx.doi.org/10.1002/ardp.201600088] [PMID: 27373997]
[51]
Mathew, B.; Uçar, G.; Raphael, C.; Mathew, G.E.; Joy, M.; Machaba, K.E. Characterization of thienylchalcones as hMAO-B inhibitors: Synthesis, biochemistry and molecular dynamics studies. ChemistrySelect, 2017, 2, 11113-11119.
[http://dx.doi.org/10.1002/slct.201702141]
[52]
Mathew, B.; Baek, S.C.; Parambi, D.G.T.; Lee, J.P.; Mathew, G.E.; Jayanthi, S.; Vinod, D.; Raphael, C.; Devikrishna, V.; Kondarath, S.S.; Uddin, M.S.; Kim, H. Potent and highly selective dual-targeting monoamine oxi-dase-B inhibitors: Fluorinated chalcones of morpholine ver-sus imidazole. Arch. Pharm. (Weinheim), 2019, 352(4)e1800309
[http://dx.doi.org/10.1002/ardp.201800309] [PMID: 30663112]
[53]
Shalaby, R.; Petzer, J.P.; Petzer, A.; Ashraf, U.M.; Atari, E.; Alasmari, F.; Kumarasamy, S.; Sari, Y.; Khalil, A. SAR and molecular mechanism studies of monoamine oxidase inhibition by selected chalcone analogs. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 863-876.
[http://dx.doi.org/10.1080/14756366.2019.1593158] [PMID: 30915862]
[54]
Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855]
[55]
Carradori, S.; D’Ascenzio, M.; Chimenti, P.; Secci, D.; Bolasco, A. Selective MAO-B inhibitors: a lesson from natural products. Mol. Divers., 2014, 18(1), 219-243.
[http://dx.doi.org/10.1007/s11030-013-9490-6] [PMID: 24218136]
[56]
Mathew, B.; Suresh, J.; Mathew, G.E.; Parasuraman, R.; Abdulla, N. Plant secondary metabolites- potent inhibitors of monoamine oxidase isoforms. Cent. Nerv. Syst. Agents Med. Chem., 2014, 14(1), 28-33.
[http://dx.doi.org/10.2174/1871524914666140826111930] [PMID: 25142815]
[57]
Mathew, B.; Mathew, G.E.; Petzer, J.P.; Petzer, A. Structural exploration of synthetic chromones as selective MAO-B inhibitors. A mini review. Comb. Chem. High Throughput Screen., 2017, 20(6), 522-532.
[http://dx.doi.org/10.2174/1386207320666170227155517] [PMID: 28245770]
[58]
Gaspar, A.; Silva, T.; Yáñez, M.; Viña, D.; Orallo, F.; Ortuso, F.; Uriarte, E.; Alcaro, S.; Borges, F. Chromone, a privileged scaffold for the development of monoamine oxidase inhibitors. J. Med. Chem., 2011, 54(14), 5165-5173.
[http://dx.doi.org/10.1021/jm2004267] [PMID: 21696156]
[59]
Gaspar, A.; Teixeira, F.; Uriarte, E.; Milhazes, N.; Melo, A.; Cordeiro, M.N.D.S.; Ortuso, F.; Alcaro, S.; Borges, F. Towards the discovery of a novel class of monoamine oxidase inhibitors: structure-property-activity and docking studies on chromone amides. ChemMedChem, 2011, 6(4), 628-632.
[http://dx.doi.org/10.1002/cmdc.201000452] [PMID: 21442758]
[60]
Reis, J.; Cagide, F.; Chavarria, D.; Silva, T.; Fernandes, C.; Gaspar, A.; Uriarte, E.; Remião, F.; Alcaro, S.; Ortuso, F.; Borges, F. Discovery of new chemical entities of old targets. Insight on the lead optimization of chromones based monoamine oxidase B inhibitors. J. Med. Chem., 2016, 59(12), 5879-5893.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00527] [PMID: 27244485]
[61]
Legoabe, L.J.; Petzer, A.; Petzer, J.P. Inhibition of monoamine oxidase by selected C6-substituted chromone derivatives. Eur. J. Med. Chem., 2012, 49, 343-353.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.037] [PMID: 22309913]
[62]
Legoabe, L.J.; Petzer, A.; Petzer, J.P. Selected C7-substituted chromone derivatives as monoamine oxidase inhibitors. Bioorg. Chem., 2012, 45, 1-11.
[http://dx.doi.org/10.1016/j.bioorg.2012.08.003] [PMID: 23064123]
[63]
Nayak, B.V.; Ciftci-Yabanoglu, S.; Bhakat, S.; Timiri, A.K.; Sinha, B.N.; Uçar, G.; Soliman, M.E.S.; Jayaprakash, V. Monoamine oxidase inhibitory activity of 2-aryl-4H-chromen-4-ones. Bioorg. Chem., 2015, 58, 72-80.
[http://dx.doi.org/10.1016/j.bioorg.2014.11.008] [PMID: 25506816]
[64]
Mi, Z.; Gan, B.; Yu, S.; Guo, J.; Zhang, C.; Jiang, X.; Zhou, T.; Su, J.; Bai, R.; Xie, Y. Dual-target anti-Alzheimer’s disease agents with both iron ion chelating and monoamine oxidase-B inhibitory activity. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1489-1497.
[http://dx.doi.org/10.1080/14756366.2019.1634703] [PMID: 31416364]
[65]
Secci, D.; Carradori, S.; Bolasco, A.; Chimenti, P.; Yáñez, M.; Ortuso, F.; Alcaro, S. Synthesis and selective human monoamine oxidase inhibition of 3-carbonyl, 3-acyl, and 3-carboxyhydrazido coumarin derivatives. Eur. J. Med. Chem., 2011, 46(10), 4846-4852.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.017] [PMID: 21872365]
[66]
Fonseca, A.; Reis, J.; Silva, T.; Matos, M.J.; Bagetta, D.; Ortuso, F.; Alcaro, S.; Uriarte, E.; Borges, F. Coumarin versus chromone monoamine oxidase B inhibitors: Quo vadis? J. Med. Chem., 2017, 60(16), 7206-7212.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00918] [PMID: 28753307]
[67]
Pan, Z-X.; He, X.; Chen, Y-Y.; Tang, W-J.; Shi, J-B.; Tang, Y-L.; Song, B-A.; Li, J.; Liu, X-H. New 2H-chromene-3-carboxamide derivatives: design, synthesis and use as inhibitors of hMAO. Eur. J. Med. Chem., 2014, 80, 278-284.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.060] [PMID: 24793878]
[68]
He, X.; Chen, Y-Y.; Shi, J-B.; Tang, W-J.; Pan, Z-X.; Dong, Z-Q.; Song, B-A.; Li, J.; Liu, X-H. New coumarin derivatives: design, synthesis and use as inhibitors of hMAO. Bioorg. Med. Chem., 2014, 22(14), 3732-3738.
[http://dx.doi.org/10.1016/j.bmc.2014.05.002] [PMID: 24856304]
[69]
Matos, M.J.; Vilar, S.; García-Morales, V.; Tatonetti, N.P.; Uriarte, E.; Santana, L.; Viña, D. Insight into the functional and structural properties of 3-arylcoumarin as an interesting scaffold in monoamine oxidase B inhibition. ChemMedChem, 2014, 9(7), 1488-1500.
[http://dx.doi.org/10.1002/cmdc.201300533] [PMID: 24715707]
[70]
Chementi, J.; Foka, G.B.; Repsold, B.P.; Oliver, D.W.; Kapp, E.; Malan, S.F. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 853-864.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.041] [PMID: 27744252]
[71]
Secci, D.; Carradori, S.; Petzer, A.; Guglielmi, P.; D’Ascenzio, M.; Chimenti, P.; Bagetta, D.; Alcaro, S.; Zengin, G.; Petzer, J.P.; Ortuso, F. 4-(3-Nitrophenyl) thiazol-2-ylhydrazone derivatives as antioxidants and selective hMAO-B inhibitors: synthesis, biological activity and computational analysis. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 597-612.
[http://dx.doi.org/10.1080/14756366.2019.1571272] [PMID: 30727777]
[72]
Carradori, S.; Ortuso, F.; Petzer, A.; Bagetta, D.; De Monte, C.; Secci, D.; De Vita, D.; Guglielmi, P.; Zengin, G.; Aktumsek, A.; Alcaro, S.; Petzer, J.P. Design, synthesis and biochemical evaluation of novel multi-target inhibitors as potential anti-Parkinson agents. Eur. J. Med. Chem., 2018, 143, 1543-1552.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.050] [PMID: 29126727]
[73]
Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Carradori, S.; Maccioni, E.; Cardia, M.C.; Yáñez, M.; Orallo, F.; Alcaro, S.; Ortuso, F.; Cirilli, R.; Ferretti, R.; Distinto, S.; Kirchmair, J.; Langer, T. Synthesis, semipreparative HPLC separation, biological evaluation, and 3D-QSAR of hydrazothiazole derivatives as human monoamine oxidase B inhibitors. Bioorg. Med. Chem., 2010, 18(14), 5063-5070.
[http://dx.doi.org/10.1016/j.bmc.2010.05.070] [PMID: 20579890]
[74]
Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Carradori, S.; Yáñez, M.; Orallo, F.; Sanna, M.L.; Gallinella, B.; Cirilli, R. Synthesis, stereochemical separation, and biological evaluation of selective inhibitors of human MAO-B: 1-(4-arylthiazol-2-yl)-2-(3-methyl-cyclohexylidene)hydrazines. J. Med. Chem., 2010, 53(17), 6516-6520.
[http://dx.doi.org/10.1021/jm100120s] [PMID: 20715818]
[75]
D’Ascenzio, M.; Carradori, S.; Secci, D.; Mannina, L.; Sobolev, A.P.; De Monte, C.; Cirilli, R.; Yáñez, M.; Alcaro, S.; Ortuso, F. Identification of the stereochemical requirements in the 4-aryl-2-cycloalkylidenhydrazinyl-thiazole scaffold for the design of selective human monoamine oxidase B inhibitors. Bioorg. Med. Chem., 2014, 22(10), 2887-2895.
[http://dx.doi.org/10.1016/j.bmc.2014.03.042] [PMID: 24746464]
[76]
D’Ascenzio, M.; Chimenti, P.; Gidaro, M.C.; De Monte, C.; De Vita, D.; Granese, A.; Scipione, L.; Di Santo, R.; Costa, G.; Alcaro, S.; Yáñez, M.; Carradori, S. (Thiazol-2-yl)hydrazone derivatives from acetylpyridines as dual inhibitors of MAO and AChE: synthesis, biological evaluation and molecular modeling studies. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 908-919.
[http://dx.doi.org/10.3109/14756366.2014.987138] [PMID: 25807300]
[77]
Secci, D.; Bolasco, A.; Carradori, S.; D’Ascenzio, M.; Nescatelli, R.; Yáñez, M. Recent advances in the development of selective human MAO-B inhibitors: (hetero)arylidene-(4-substituted-thiazol-2-yl)hydrazines. Eur. J. Med. Chem., 2012, 58, 405-417.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.032] [PMID: 23153812]
[78]
Tripathi, R.K.P.; M. Sasi, V.; Gupta, S.K.; Krishnamurthy, S.; Ayyannan, S.R. Design, synthesis, and pharmacological evaluation of 2-amino-5-nitrothiazole derived semicarbazones as dual inhibitors of monoamine oxidase and cholinesterase: effect of the size of aryl binding site. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 37-57.
[http://dx.doi.org/10.1080/14756366.2017.1389920] [PMID: 29098902]
[79]
Sağlık, B.N.; Kaya Çavuşoğlu, B.; Osmaniye, D.; Levent, S.; Acar Çevik, U.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A.; Öztürk, Y. In vitro and in silico evaluation of new thiazole compounds as monoamine oxidase inhibitors. Bioorg. Chem., 2019, 85, 97-108.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.019] [PMID: 30605888]
[80]
Kumar, S.; Bawa, S.; Drabu, S.; Kumar, R.; Gupta, H. Biological activities of pyrazoline derivatives--a recent development. Recent Pat. Antiinfect. Drug Discov., 2009, 4(3), 154-163.
[http://dx.doi.org/10.2174/157489109789318569] [PMID: 19545230]
[81]
Neudorfer, C.; Shanab, K.; Jurik, A.; Schreiber, V.; Neudorfer, C.; Vraka, C.; Schirmer, E.; Holzer, W.; Ecker, G.; Mitterhauser, M.; Wadsak, W.; Spreitzer, H. Development of potential selective and reversible pyrazoline based MAO-B inhibitors as MAO-B PET tracer precursors and reference substances for the early detection of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2014, 24(18), 4490-4495.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.085] [PMID: 25127869]
[82]
Badavath, V.N.; Baysal, İ.; Uçar, G.; Sinha, B.N.; Jayaprakash, V. Monoamine oxidase inhibitory activity of novel pyrazoline analogues: Curcumin based design and synthesis. ACS Med. Chem. Lett., 2015, 7(1), 56-61.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00326] [PMID: 26819666]
[83]
Sahoo, A.; Yabanoglu, S.; Sinha, B.N.; Uçar, G.; Basu, A.; Jayaprakash, V. Towards development of selective and reversible pyrazoline based MAO-inhibitors: Synthesis, biological evaluation and docking studies. Bioorg. Med. Chem. Lett., 2010, 20(1), 132-136.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.015] [PMID: 19945874]
[84]
Tripathi, A.C.; Upadhyay, S.; Paliwal, S.; Saraf, S.K. N1-benzenesulfonyl-2-pyrazoline hybrids in neurological disorders: Syntheses, biological screening and computational studies. EXCLI J., 2018, 17, 126-148.
[http://dx.doi.org/10.17179/excli2017-871] [PMID: 29743852]
[85]
Secci, D.; Carradori, S.; Bolasco, A.; Bizzarri, B.; D’Ascenzio, M.; Maccioni, E. Discovery and optimization of pyrazoline derivatives as promising monoamine oxidase inhibitors. Curr. Top. Med. Chem., 2012, 12(20), 2240-2257.
[http://dx.doi.org/10.2174/156802612805220057] [PMID: 23276158]
[86]
Chimenti, F.; Carradori, S.; Secci, D.; Bolasco, A.; Bizzarri, B.; Chimenti, P.; Granese, A.; Yáñez, M.; Orallo, F. Synthesis and inhibitory activity against human monoamine oxidase of N1-thiocarbamoyl-3,5-di(hetero)aryl-4,5-dihydro-(1H)-pyrazole derivatives. Eur. J. Med. Chem., 2010, 45(2), 800-804.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.003] [PMID: 19926363]
[87]
Salgin-Gökşen, U.; Yabanoğlu-Çiftçi, S.; Ercan, A.; Yelekçi, K.; Uçar, G.; Gökhan-Kelekçi, N. Evaluation of selective human MAO inhibitory activities of some novel pyrazoline derivatives. J. Neural Transm. (Vienna), 2013, 120(6), 863-873.
[http://dx.doi.org/10.1007/s00702-013-0980-6] [PMID: 23361656]
[88]
Vishnu Nayak, B.; Ciftci-Yabanoglu, S.; Jadav, S.S.; Jagrat, M.; Sinha, B.N.; Uçar, G.; Jayaprakash, V. Monoamine oxidase inhibitory activity of 3,5-biaryl-4,5-dihydro-1H-pyrazole-1-carboxylate derivatives. Eur. J. Med. Chem., 2013, 69, 762-767.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.010] [PMID: 24099995]
[89]
Evranos-Aksöz, B.; Yabanoğlu-Çiftçi, S.; Uçar, G.; Yelekçi, K.; Ertan, R. Synthesis of some novel hydrazone and 2-pyrazoline derivatives: monoamine oxidase inhibitory activities and docking studies. Bioorg. Med. Chem. Lett., 2014, 24(15), 3278-3284.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.015] [PMID: 24986657]
[90]
Guglielmi, P.; Carradori, S.; Poli, G.; Secci, D.; Cirilli, R.; Rotondi, G.; Chimenti, P.; Petzer, A.; Petzer, J.P. Design, synthesis, docking studies and monoamine oxidase inhibition of a small library of 1-acetyl- and 1-thiocarbamoyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazoles. Molecules, 2019, 24(3), 484.
[http://dx.doi.org/10.3390/molecules24030484] [PMID: 30700029]
[91]
Heidelberg Institute for Theoretical Studies; Small change for big improvement: halogen bonds and drug discovery., Available from:. www.sciencedaily.com/releases/2013/01/130118064729.htm accessed at 6 November2019.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy