Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Identification of Genomic Islands in Synechococcus sp. WH8102 Using Genomic Barcode and Whole-Genome Microarray Analysis

Author(s): Jiahui Pan, Xizi Luo, Jiang Bian, Tong Shao, Chaoying Li, Tingting Zhao, Shiwei Zhang, Fengfeng Zhou and Guoqing Wang*

Volume 16, Issue 1, 2021

Published on: 21 January, 2020

Page: [24 - 30] Pages: 7

DOI: 10.2174/1574893615666200121160615

Price: $65

Abstract

Background: Synechococcus sp. WH8102 is one of the most abundant photosynthetic organisms in many ocean regions.

Objective: The aim of this study is to identify genomic islands (GIs) in Synechococcus sp. WH8102 with integrated methods.

Methods: We have applied a genomic barcode to identify the GIs in Synechococcus sp. WH8102, which could make genomic regions of different origins visually apparent. The gene expression data of the predicted GIs was analyzed through microarray data which was collected for functional analysis of the relevant genes.

Results: Seven GIs were identified in Synechococcus sp. WH8102. Most of them are involved in cell surface modification, photosynthesis and drug resistance. In addition, our analysis also revealed the functions of these GIs, which could be used for in-depth study on the evolution of this strain.

Conclusion: Genomic barcodes provide us with a comprehensive and intuitive view of the target genome. We can use it to understand the intrinsic characteristics of the whole genome and identify GIs or other similar elements.

Keywords: Synechococcus sp. WH8102, genome analysis, genomic islands, genomic barcode, photosynthetic, microarray.

Graphical Abstract

[1]
Zheng Q, Wang Y, Xie R, et al. Dynamics of Heterotrophic Bacterial Assemblages within Synechococcus Cultures. Appl Environ Microbiol 2018; 84(3): 84.
[PMID: 29150500]
[2]
Strom SL, Brahamsha B, Fredrickson KA, Apple JK, Rodríguez AG. A giant cell surface protein in Synechococcus WH8102 inhibits feeding by a dinoflagellate predator. Environ Microbiol 2012; 14(3): 807-16.
[http://dx.doi.org/10.1111/j.1462-2920.2011.02640.x] [PMID: 22103339]
[3]
Flombaum P, Gallegos JL, Gordillo RA, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 2013; 110(24): 9824-9.
[http://dx.doi.org/10.1073/pnas.1307701110] [PMID: 23703908]
[4]
Fedida A, Lindell D. Two Synechococcus genes, Two Different Effects on Cyanophage Infection. Viruses 2017; 9(6): 9.
[http://dx.doi.org/10.3390/v9060136] [PMID: 28574452]
[5]
Xia X, Liu H, Choi D, Noh JH. Variation of Synechococcus pigment genetic diversity along two turbidity gradients in the china seas. Microb Ecol 2018; 75(1): 10-21.
[http://dx.doi.org/10.1007/s00248-017-1021-z] [PMID: 28667427]
[6]
Dupont CL, Johnson DA, Phillippy K, Paulsen IT, Brahamsha B, Palenik B. Genetic identification of a high-affinity Ni transporter and the transcriptional response to Ni deprivation in Synechococcus sp. strain WH8102. Appl Environ Microbiol 2012; 78(22): 7822-32.
[http://dx.doi.org/10.1128/AEM.01739-12] [PMID: 22904052]
[7]
Palenik B, Brahamsha B, Larimer FW, et al. The genome of a motile marine Synechococcus. Nature 2003; 424(6952): 1037-42.
[http://dx.doi.org/10.1038/nature01943] [PMID: 12917641]
[8]
Satoh S, Tanaka A. Identification of chlorophyllide a oxygenase in the Prochlorococcus genome by a comparative genomic approach. Plant Cell Physiol 2006; 47(12): 1622-9.
[http://dx.doi.org/10.1093/pcp/pcl026] [PMID: 17071624]
[9]
Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 2009; 33(2): 376-93.
[http://dx.doi.org/10.1111/j.1574-6976.2008.00136.x] [PMID: 19178566]
[10]
Bush EC, Clark AE, DeRanek CA, et al. xenoGI: reconstructing the history of genomic island insertions in clades of closely related bacteria. BMC Bioinformatics 2018; 19(1): 32.
[http://dx.doi.org/10.1186/s12859-018-2038-0] [PMID: 29402213]
[11]
Karlin S. Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol 2001; 9(7): 335-43.
[http://dx.doi.org/10.1016/S0966-842X(01)02079-0] [PMID: 11435108]
[12]
Yoon SH, Park YK, Lee S, et al. Towards pathogenomics: a web-based resource for pathogenicity islands. Nucleic Acids Res 2007; 35(Database issue): D395-400.
[http://dx.doi.org/10.1093/nar/gkl790] [PMID: 17090594]
[13]
Goldstein PZ, DeSalle R. Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. BioEssays 2011; 33(2): 135-47.
[http://dx.doi.org/10.1002/bies.201000036] [PMID: 21184470]
[14]
Zhou F, Olman V, Xu Y. Barcodes for genomes and applications. BMC Bioinformatics 2008; 9: 546.
[http://dx.doi.org/10.1186/1471-2105-9-546] [PMID: 19091119]
[15]
Wang G, Zhou F, Olman V, Li F, Xu Y. Prediction of pathogenicity islands in enterohemorrhagic Escherichia coli O157:H7 using genomic barcodes. FEBS Lett 2010; 584(1): 194-8.
[http://dx.doi.org/10.1016/j.febslet.2009.11.067] [PMID: 19941858]
[16]
Ma Q, Xu Y. Global genomic arrangement of bacterial genes is closely tied with the total transcriptional efficiency. Genomics Proteomics Bioinformatics 2013; 11(1): 66-71.
[http://dx.doi.org/10.1016/j.gpb.2013.01.004] [PMID: 23434046]
[17]
Finn RD, Tate J, Mistry J, et al. The Pfam protein families database. Nucleic Acids Res 2008; 36(Database issue): D281-8.
[PMID: 18039703]
[18]
Götz S, García-Gómez JM, Terol J, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008; 36(10): 3420-35.
[http://dx.doi.org/10.1093/nar/gkn176] [PMID: 18445632]
[19]
Andreeva A, Howorth D, Chandonia JM, et al. Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 2008; 36(Database issue): D419-25.
[PMID: 18000004]
[20]
Tai V, Paulsen IT, Phillippy K, Johnson DA, Palenik B. Whole-genome microarray analyses of Synechococcus-Vibrio interactions. Environ Microbiol 2009; 11(10): 2698-709.
[http://dx.doi.org/10.1111/j.1462-2920.2009.01997.x] [PMID: 19659554]
[21]
Cevik E, Buyukharman M, Yildiz HB. Construction of efficient bioelectrochemical devices: Improved electricity production from cyanobacteria (Leptolyngbia sp.) based on π-conjugated conducting polymer/gold nanoparticle composite interfaces. Biotechnol Bioeng 2019; 116(4): 757-68.
[http://dx.doi.org/10.1002/bit.26885] [PMID: 30516822]
[22]
Cevik E, Carbas BB, Senel M, Yildiz HB. Construction of conducting polymer/cytochrome C/thylakoid membrane based photo-bioelectrochemical fuel cells generating high photocurrent via photosynthesis. Biosens Bioelectron 2018; 113: 25-31.
[http://dx.doi.org/10.1016/j.bios.2018.04.055] [PMID: 29723772]
[23]
Yehezkeli O, Tel-Vered R, Wasserman J, et al. Integrated photosystem II-based photo-bioelectrochemical cells. Nat Commun 2012; 3: 742.
[http://dx.doi.org/10.1038/ncomms1741] [PMID: 22415833]
[24]
Sekar N, Jain R, Yan Y, Ramasamy RP. Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria. Biotechnol Bioeng 2016; 113(3): 675-9.
[http://dx.doi.org/10.1002/bit.25829] [PMID: 26348367]
[25]
Ostrowski M, Mazard S, Tetu SG, et al. PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus. ISME J 2010; 4(7): 908-21.
[http://dx.doi.org/10.1038/ismej.2010.24] [PMID: 20376102]
[26]
Kanda Y, Imai-Nishiya H, Kuni-Kamochi R, et al. Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol 2007; 130(3): 300-10.
[http://dx.doi.org/10.1016/j.jbiotec.2007.04.025] [PMID: 17559959]
[27]
Robertson AE, Wechter WP, Denny TP, Fortnum BA, Kluepfel DA. Relationship between avirulence gene (avrA) diversity in Ralstonia solanacearum and bacterial wilt incidence. Mol Plant Microbe Interact 2004; 17(12): 1376-84.
[http://dx.doi.org/10.1094/MPMI.2004.17.12.1376] [PMID: 15597743]
[28]
Bureau TE, Wessler SR. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 1992; 4(10): 1283-94.
[PMID: 1332797]
[29]
Tu Z. Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci USA 2001; 98(4): 1699-704.
[http://dx.doi.org/10.1073/pnas.98.4.1699] [PMID: 11172014]
[30]
Zhou F, Tran T, Xu Y. Nezha, a novel active miniature inverted-repeat transposable element in cyanobacteria. Biochem Biophys Res Commun 2008; 365(4): 790-4.
[http://dx.doi.org/10.1016/j.bbrc.2007.11.038] [PMID: 18035045]
[31]
Liu B, Zhang H, Zhou C, et al. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes. BMC Genomics 2016; 17: 578.
[http://dx.doi.org/10.1186/s12864-016-2982-x] [PMID: 27507169]
[32]
Chou WC, Ma Q, Yang S, et al. Analysis of strand-specific RNA-seq data using machine learning reveals the structures of transcription units in Clostridium thermocellum. Nucleic Acids Res 2015; 43(10): e67.
[http://dx.doi.org/10.1093/nar/gkv177] [PMID: 25765651]
[33]
Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg 2018; 126(5): 1763-8.
[http://dx.doi.org/10.1213/ANE.0000000000002864] [PMID: 29481436]
[34]
Tetu SG, Brahamsha B, Johnson DA, et al. Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J 2009; 3(7): 835-49.
[http://dx.doi.org/10.1038/ismej.2009.31] [PMID: 19340084]
[35]
Su Z, Mao F, Dam P, et al. Computational inference and experimental validation of the nitrogen assimilation regulatory network in cyanobacterium Synechococcus sp. WH 8102. Nucleic Acids Res 2006; 34(3): 1050-65.
[http://dx.doi.org/10.1093/nar/gkj496] [PMID: 16473855]
[36]
Peterson SN, Sung CK, Cline R, et al. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 2004; 51(4): 1051-70.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03907.x] [PMID: 14763980]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy