Review Article

单克隆抗体载药纳米系统作为癌症治疗策略

卷 28, 期 2, 2021

发表于: 21 January, 2020

页: [401 - 418] 页: 18

弟呕挨: 10.2174/0929867327666200121121409

价格: $65

摘要

纳米系统携带的单克隆抗体已被广泛研究和报道,作为一种有希望的工具,治疗各种类型的癌症。单克隆抗体在治疗癌症方面具有很大的优势,因为其蛋白结构可以与靶组织结合;然而,它也存在一些挑战,如高温后的变性,pH、温度和溶剂的极值,水解、氧化和脱氨的能力,以及非天然聚集物的形成,在很大程度上影响药物的稳定性。除了这些特性外,它们在血液中会迅速消除,导致半衰期短,产生中和抗体,使剂量无效。这些挑战通过纳米体系(脂质体、聚合物纳米颗粒、环糊精、固体脂质纳米颗粒、纳米脂质载体、树枝状大分子和胶束)的封装而得以克服,因为它们具有改善溶解度、渗透性和仅对肿瘤组织具有选择性的特性;从而减少了药物控制释放以外的副作用,这对提高癌症治疗的疗效至关重要。本文对不同类型的纳米系统进行了分类,并对它们的定义和在不同类型癌症中的应用进行了描述。因此,本文综述了纳米系统封装单克隆抗体的应用以及生物仿制药的临床研究。生物仿制药是指单克隆抗体专利到期后生产的与单克隆抗体类似的产品。

关键词: 纳米药物输送系统,生物制药,癌症治疗,生物仿制药,抗体,新疗法。

[1]
Iarc. International Association of Cancer Registries. Global Cancer Observatory. Available at: . https://gco.iarc.fr/tomorrow/home(Accessed Date: 2nd February,2020.
[2]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[3]
Pillai, G. Nanotechnology Toward Treating Cancer; Elsevier Inc: Amsterdam, 2019, Vol. 9, pp. 221-256.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00009-0]
[4]
Guichard, M.J.; Leal, T.; Vanbever, R. PEGylation, an approach for improving the pulmonary delivery of biopharmaceuticals. Curr. Opin. Colloid Interface Sci., 2017, 31, 43-50.
[http://dx.doi.org/10.1016/j.cocis.2017.08.001]
[5]
Agyei, D.; Ahmed, I.; Akram, Z.; Iqbal, H.M.; Danquah, M.K. Protein and peptide biopharmaceuticals: an overview. Protein Pept. Lett., 2017, 24(2), 94-101.
[http://dx.doi.org/10.2174/0929866523666161222150444] [PMID: 28017145]
[6]
Jozala, A.F.; Geraldes, D.C.; Tundisi, L.L.; Feitosa, V.A.; Breyer, C.A.; Cardoso, S.L.; Mazzola, P.G.; Oliveira-Nascimento, L.; Rangel-Yagui, C.O.; Magalhães, P.O.; Oliveira, M.A.; Pessoa, A., Jr Biopharmaceuticals from microorganisms: from production to purification. Braz. J. Microbiol., 2016, 47(Suppl. 1), 51-63.
[http://dx.doi.org/10.1016/j.bjm.2016.10.007] [PMID: 27838289]
[7]
Vass, P.; Démuth, B.; Hirsch, E.; Nagy, B.; Andersen, S.K.; Vigh, T.; Verreck, G.; Csontos, I.; Nagy, Z.K.; Marosi, G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J. Control. Release, 2019, 296, 162-178.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.023] [PMID: 30677436]
[8]
Harloff-Helleberg, S.; Nielsen, L.H.; Nielsen, H.M. Animal models for evaluation of oral delivery of biopharmaceuticals. J. Control. Release, 2017, 268, 57-71.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.025] [PMID: 28935596]
[9]
Walsh, G. Second-generation biopharmaceuticals. Eur. J. Pharm. Biopharm., 2004, 58(2), 185-196.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.012] [PMID: 15296948]
[10]
Basso, A.M.M.; Prado, G.S.; Pelegrini, P.B.; Grossi-de-Sa, M.F. Biopharmaceuticals and biosimilars.In: Current Developments in Biotechnology and Bioengineering; , 2016. 23-48.
[http://dx.doi.org/10.1016/B978-0-444-63660-7.00002-4]
[11]
LeVine, H. Biopharmaceuticals; Elsevier Ltd: London, 2013, Vol. 12, pp. 171-188.
[http://dx.doi.org/10.1016/B978-0-7020-4299-7.00012-3]
[12]
Schloot, N.C.; Hood, R.C.; Corrigan, S.M.; Panek, R.L.; Heise, T. Concentrated insulins in current clinical practice. Diabetes Res. Clin. Pract., 2019, 148, 93-101.
[http://dx.doi.org/10.1016/j.diabres.2018.12.007] [PMID: 30583034]
[13]
French, C. Erythropoietin in critical illness and trauma. Crit. Care Clin., 2019, 35(2), 277-287.
[http://dx.doi.org/10.1016/j.ccc.2018.11.015] [PMID: 30784609]
[14]
Ohno, M.; Natsume, A.; Wakabayashi, T. Cytokine therapy. Adv. Exp. Med. Biol., 2012, 746, 86-94.
[http://dx.doi.org/10.1007/978-1-4614-3146-6_7] [PMID: 22639161]
[15]
Cardoso, T.; Saracoglu, A. Factor VII and thromboembolism. Trends Anaesth. Crit. Care, 2018, 22, 33-40.
[http://dx.doi.org/10.1016/j.tacc.2018.04.010]
[16]
Zhou, L.; Xu, N.; Sun, Y.; Liu, X.M. Targeted biopharmaceuticals for cancer treatment. Cancer Lett., 2014, 352(2), 145-151.
[http://dx.doi.org/10.1016/j.canlet.2014.06.020] [PMID: 25016064]
[17]
Feher, J. Protein structure in: Quantitative human physiology (Second Edition); Elsevier Inc: Amsterdam; , 2017, 2.3, pp. 130-141.
[18]
Engelking, L.R. Protein structure in: Textbook of Veterinary Physiological Chemistry, Third Edition; Elsevier Inc: Amsterdam, 2015, Vol. 4, pp. 18-25.
[19]
Littlechild, J.A. Protein structure and function in: Introduction to Biological and Small Molecule Drug Research and Development; Elsevier Ltd: Amsterdam, 2013, Vol. 2, pp. 57-79.
[20]
Tripathi, N.K.; Shrivastava, A. Scale up of biopharmaceuticals production. In: Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology; Grumezescu, A.M., Ed.; Elsevier Inc: Amsterdam, 2018, Vol. 4, pp. 133-172.
[http://dx.doi.org/10.1016/B978-0-12-813629-4.00004-8]
[21]
Leachman, R.C.; Johnston, L.; Li, S.; Shen, Z.J. An automated planning engine for biopharmaceutical production. Eur. J. Oper. Res., 2014, 238(1), 327-338.
[http://dx.doi.org/10.1016/j.ejor.2014.03.002]
[22]
Hong, M.S.; Severson, K.A.; Jiang, M.; Lu, A.E.; Love, J.C.; Braatz, R.D. Challenges and opportunities in biopharmaceutical manufacturing control. Comput. Chem. Eng., 2018, 110, 106-114.
[http://dx.doi.org/10.1016/j.compchemeng.2017.12.007]
[23]
Fang, Z. Wusgal; Cheng, H.; Liang, L. Natural biodegradable medical polymers: therapeutic peptides and proteins.Science and Principles of Biodegradable and Bioresorbable Medical Polymers; Elsevier Ltd: Cambridge, 2016, Vol. 11, pp. 321-350.
[http://dx.doi.org/10.1016/B978-0-08-100372-5.00011-8]
[24]
Aulton, M.E.; Taylor, K.M.G. Delineamento de Formas Farmacêuticas, 4th ed; Elsevier: São Paulo, 2016.
[25]
Langguth, P.; Bohner, V.; Heizmann, J.; Merkle, H.P.; Wolffram, S.; Amidon, G.L.; Yamashita, S. The challenge of proteolysis enzymes in intestinal peptide delivery. J. Control. Release, 1997, 46(1-2), 39-57.
[http://dx.doi.org/10.1016/S0168-3659(96)01586-6]
[26]
Khafagy, S.; Morishita, M. Oral biodrug delivery using cell-penetrating peptide. Adv. Drug Deliv. Rev., 2012, 64(6), 531-539.
[http://dx.doi.org/10.1016/j.addr.2011.12.014] [PMID: 22245080]
[27]
Antosova, Z.; Mackova, M.; Kral, V.; Macek, T. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol., 2009, 27(11), 628-635.
[http://dx.doi.org/10.1016/j.tibtech.2009.07.009] [PMID: 19766335]
[28]
Zhou, X.H.; Zhou, X.H.; Li-Wan-Pao, A. Peptide and protein drugs: I. Therapeutic applications, absorption and parenteral administration. Int. J. Pharm., 1991, 75(2–3), 97-115.
[http://dx.doi.org/10.1016/0378-5173(91)90184-P]
[29]
Gondim, B.L.C.; Oshiro, J.A. Jr.; Fernanandes, F.H.A.; Nóbrega, F.P.; Castellano, L.R.C.; Medeiros, A.C.D. Plant extracts loaded in nanostructured drug delivery systems for treating parasitic and antimicrobial diseases. Curr. Pharm. Des., 2019, 25(14), 1604-1615.
[http://dx.doi.org/10.2174/1381612825666190628153755] [PMID: 31264539]
[30]
Raza, K.; Kumar, P.; Kumar, N.; Malik, R. Pharmacokinetics and biodistribution of the nanoparticles.In: Advances in nanomedicine for the delivery of therapeutic nucleic acids; , 2017. pp. 166-186.
[http://dx.doi.org/10.1016/B978-0-08-100557-6.00009-2]
[31]
Araújo, G.M.F.; Barros, A.R.A.; Oshiro, J.A. Jr.; Soares, L.F.; da Rocha, L.G.; de Lima, Á.A.N.; da Silva, J.A.; Converti, A.; Damasceno, B.P.G.L. Nanoemulsions loaded with amphotericin B: development, characterization and leishmanicidal activity. Curr. Pharm. Des., 2019, 25(14), 1616-1622.
[http://dx.doi.org/10.2174/1381612825666190705202030] [PMID: 31298163]
[32]
Tan, M.L.; Choong, P.F.M.; Dass, C.R. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides, 2010, 31(1), 184-193.
[http://dx.doi.org/10.1016/j.peptides.2009.10.002] [PMID: 19819278]
[33]
Sánchez-Paulete, A.R.; Cueto, F.J.; Martínez-López, M.; Labiano, S.; Morales-Kastresana, A.; Rodríguez-Ruiz, M.E.; Jure-Kunkel, M.; Azpilikueta, A.; Aznar, M.A.; Quetglas, J.I.; Sancho, D.; Melero, I. Monoclonal antibodies. Cancer Discov., 2016, 6(1), 71-79.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0510] [PMID: 26493961]
[34]
Parr, M.K.; Montacir, O.; Montacir, H. Physicochemical characterization of biopharmaceuticals. J. Pharm. Biomed. Anal., 2016, 130, 366-389.
[http://dx.doi.org/10.1016/j.jpba.2016.05.028] [PMID: 27324698]
[35]
Moosavian, S.A.; Sahebkar, A. Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett., 2019, 448, 144-154.
[http://dx.doi.org/10.1016/j.canlet.2019.01.045] [PMID: 30763718]
[36]
Oshiro-Junior, J.A.; Alves, R.C.; Hanck-Silva, G.; Sato, M.R.; Rodero, C.; Eloy, J.O.; Chorilli, M. Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr. Med. Chem., 2018, 26, 1-19.
[http://dx.doi.org/10.2174/0929867325666181009120610] [PMID: 30306849]
[37]
Batista, C.M.; de Carvalho, C.M.B.; Magalhães, N.S.S. Lipossomas e suas aplicações terapêuticas: estado da arte. Rev. Bras. Ciências Farm., 2007, 43(2), 167-179.
[http://dx.doi.org/10.1590/S1516-93322007000200003]
[38]
Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem., 2019, 164, 640-653.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[39]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[40]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[41]
Zununi Vahed, S.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C, 2017, 71, 1327-1341.
[http://dx.doi.org/10.1016/j.msec.2016.11.073] [PMID: 27987688]
[42]
Kuesters, G.M.; Campbell, R.B. Conjugation of bevacizumab to cationic liposomes enhances their tumor-targeting potential. Nanomedicine (Lond.), 2010, 5(2), 181-192.
[http://dx.doi.org/10.2217/nnm.09.105] [PMID: 20148631]
[43]
Karumanchi, D.K.; Skrypai, Y.; Thomas, A.; Gaillard, E.R. Rational design of liposomes for sustained release drug delivery of bevacizumab to treat ocular angiogenesis. J. Drug Deliv. Sci. Technol., 2018, 47, 275-282.
[http://dx.doi.org/10.1016/j.jddst.2018.07.003]
[44]
Danino, D.; Portnoy, E.; Magdassi, S.; Lazarovici, P.; Lecht, S. Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine nanotechnology. Biol. Med. (Aligarh), 2011, 7(4), 480-488.
[http://dx.doi.org/10.1016/j.nano.2011.01.001]
[45]
Zalba, S.; Contreras, A.M.; Haeri, A.; Ten Hagen, T.L.; Navarro, I.; Koning, G.; Garrido, M.J. Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release, 2015, 210, 26-38.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.271] [PMID: 25998052]
[46]
Nguyen, H.T.; Tran, T.H.; Thapa, R.K.; Phung, C.D.; Shin, B.S.; Jeong, J.H.; Choi, H.G.; Yong, C.S.; Kim, J.O. Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy. Int. J. Pharm., 2017, 527(1-2), 61-71.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.034] [PMID: 28528212]
[47]
Amin, M.; Pourshohod, A.; Kheirollah, A.; Afrakhteh, M.; Gholami-Borujeni, F.; Zeinali, M.; Jamalan, M. Specific delivery of idarubicin to HER2-positive breast cancerous cell line by trastuzumab-conjugated liposomes. J. Drug Deliv. Sci. Technol., 2018, 47, 209-214.
[http://dx.doi.org/10.1016/j.jddst.2018.07.017]
[48]
Sarcan, E.T.; Silindir-Gunay, M.; Ozer, A.Y. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. Int. J. Pharm., 2018, 551(1-2), 329-338.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.019] [PMID: 30244148]
[49]
Buishvili, L.L.; Khalvashi, E.K. The theory of nonstationary dynamic polarization of nuclei. Radiophys. Quantum Electron., 1974, 14(9), 1143-1144.
[http://dx.doi.org/10.1007/BF01029480]
[50]
Cheng, C.J.; Tietjen, G.T.; Saucier-Sawyer, J.K.; Saltzman, W.M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov., 2015, 14(4), 239-247.
[http://dx.doi.org/10.1038/nrd4503] [PMID: 25598505]
[51]
Karra, N.; Nassar, T.; Ripin, A.N.; Schwob, O.; Borlak, J.; Benita, S. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model. Small, 2013, 9(24), 4221-4236.
[http://dx.doi.org/10.1002/smll.201301417] [PMID: 23873835]
[52]
Tseng, S.H.; Chou, M.Y.; Chu, I.M. Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy. Int. J. Nanomedicine, 2015, 10, 3663-3685.
[http://dx.doi.org/10.2147/ijn.s80134] [PMID: 26056447]
[53]
Wu, F-L.; Zhang, J.; Li, W.; Bian, B-X.; Hong, Y-D.; Song, Z-Y.; Wang, H-Y.; Cui, F-B.; Li, R-T.; Liu, Q.; Jiang, X.D.; Li, X.M.; Zheng, J.N. Enhanced antiproliferative activity of antibody-functionalized polymeric nanoparticles for targeted delivery of anti-miR-21 to HER2 positive gastric cancer. Oncotarget, 2017, 8(40), 67189-67202.
[http://dx.doi.org/10.18632/oncotarget.18066] [PMID: 28978026]
[54]
Aydın, R.S.T. Herceptin-decorated salinomycin-loaded nanoparticles for breast tumor targeting. J. Biomed. Mater. Res. A, 2013, 101(5), 1405-1415.
[http://dx.doi.org/10.1002/jbm.a.34448] [PMID: 23086911]
[55]
Hu, N.; Yin, J.F.; Ji, Z.; Hong, Y.; Wu, P.; Bian, B.; Song, Z.; Li, R.; Liu, Q.; Wu, F. Strengthening gastric cancer therapy by trastuzumab-conjugated nanoparticles with simultaneous encapsulation of anti-MiR-21 and 5-fluorouridine. Cell. Physiol. Biochem., 2017, 44(6), 2158-2173.
[http://dx.doi.org/10.1159/000485955] [PMID: 29241186]
[56]
Nobs, L.; Buchegger, F.; Gurny, R.; Allémann, E. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug. Chem., 2006, 17(1), 139-145.
[http://dx.doi.org/10.1021/bc050137k] [PMID: 16417262]
[57]
Cirstoiu-Hapca, A.; Bossy-Nobs, L.; Buchegger, F.; Gurny, R.; Delie, F. Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Int. J. Pharm., 2007, 331(2), 190-196.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.002.]
[58]
Maya, S.; Kumar, L.G.; Sarmento, B.; Sanoj Rejinold, N.; Menon, D.; Nair, S.V.; Jayakumar, R. Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells. Carbohydr. Polym., 2013, 93(2), 661-669.
[http://dx.doi.org/10.1016/j.carbpol.2012.12.032] [PMID: 23499109]
[59]
Maya, S.; Sarmento, B.; Lakshmanan, V.K.; Menon, D.; Seabra, V.; Jayakumar, R. Chitosan cross-linked docetaxel loaded EGF receptor targeted nanoparticles for lung cancer cells. Int. J. Biol. Macromol., 2014, 69, 532-541.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.009] [PMID: 24950310]
[60]
Deepagan, V.G.; Sarmento, B.; Menon, D.; Nascimento, A.; Jayasree, A.; Sreeranganathan, M.; Koyakutty, M.; Nair, S.V.; Rangasamy, J. In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine (Lond.), 2012, 7(4), 507-519.
[http://dx.doi.org/10.2217/nnm.11.139] [PMID: 22471719]
[61]
Voltan, R.; Secchiero, P.; Ruozi, B.; Forni, F.; Agostinis, C.; Caruso, L.; Vandelli, M.A.; Zauli, G. Nanoparticles engineered with rituximab and loaded with Nutlin-3 show promising therapeutic activity in B-leukemic xenografts. Clin. Cancer Res., 2013, 19(14), 3871-3880.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0015] [PMID: 23719263]
[62]
Kutlu, C.; Çakmak, A.S.; Gümüşderelioğlu, M. Double-effective chitosan scaffold-PLGA nanoparticle system for brain tumour therapy: in vitro study. J. Microencapsul., 2014, 31(7), 700-707.
[http://dx.doi.org/10.3109/02652048.2014.913727] [PMID: 24963961]
[63]
Colzani, B.; Pandolfi, L.; Hoti, A.; Iovene, P.A.; Natalello, A.; Avvakumova, S.; Colombo, M.; Prosperi, D. Investigation of antitumor activities of trastuzumab delivered by PLGA nanoparticles. Int. J. Nanomedicine, 2018, 13, 957-973.
[http://dx.doi.org/10.2147/IJN.S152742] [PMID: 29491709]
[64]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[65]
Calderón-Colón, X.; Raimondi, G.; Benkoski, J.J.; Patrone, J.B. Solid lipid nanoparticles (SLNs) for intracellular targeting applications. J. Vis. Exp., 2015, 105(105), 1-8.
[http://dx.doi.org/10.3791/53102] [PMID: 26650036]
[66]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133, 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[67]
Rigon, R.B.; Fachinetti, N.; Severino, P.; Santana, M.H.A.; Chorilli, M. Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies. Molecules, 2016, 21(1)E116
[http://dx.doi.org/10.3390/molecules21010116] [PMID: 26805794]
[68]
Rigon, R.B.; Gonçalez, M.L.; Severino, P.; Alves, D.A.; Santana, M.H.A.; Souto, E.B.; Chorilli, M. Solid lipid nanoparticles optimized by 22 factorial design for skin administration: Cytotoxicity in NIH3T3 fibroblasts. Colloids Surf. B Biointerfaces, 2018, 171, 501-505.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.065] [PMID: 30081382]
[69]
Graverini, G.; Piazzini, V.; Landucci, E.; Pantano, D.; Nardiello, P.; Casamenti, F.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Bergonzi, M.C. Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: in vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2018, 161, 302-313.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.062] [PMID: 29096375]
[70]
Battaglia, L.; Gallarate, M.; Peira, E.; Chirio, D.; Solazzi, I.; Giordano, S.M.A.; Gigliotti, C.L.; Riganti, C.; Dianzani, C. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: preliminary in vitro studies. Nanotechnology, 2015, 26(25)255102
[http://dx.doi.org/10.1088/0957-4484/26/25/255102] [PMID: 26043866]
[71]
Kuo, Y-C.; Lee, C-H. Dual targeting of solid lipid nanoparticles grafted with 83-14 MAb and anti-EGF receptor for malignant brain tumor therapy. Life Sci., 2016, 146, 222-231.
[http://dx.doi.org/10.1016/j.lfs.2016.01.025] [PMID: 26784850]
[72]
Kuo, Y.C.; Chao, I.W. Conjugation of melanotransferrin antibody on solid lipid nanoparticles for mediating brain cancer malignancy. Biotechnol. Prog., 2016, 32(2), 480-490.
[http://dx.doi.org/10.1002/btpr.2214] [PMID: 26701338]
[73]
Büyükköroǧlu, G.; Şenel, B.; Gezgin, S.; Dinh, T. The simultaneous delivery of paclitaxel and Herceptin® using solid lipid nanoparticles: in vitro evaluation. J. Drug Deliv. Sci. Technol., 2016, 35, 98-105.
[http://dx.doi.org/10.1016/j.jddst.2016.06.010]
[74]
Sato, M.R.; Oshiro, J.A. Jr.; Machado, R.T.; de Souza, P.C.; Campos, D.L.; Pavan, F.R.; da Silva, P.B.; Chorilli, M. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2017, 11, 909-921.
[http://dx.doi.org/10.2147/DDDT.S127048] [PMID: 28356717]
[75]
Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[76]
Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine (Lond.), 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[77]
Liu, D.; Liu, F.; Liu, Z.; Wang, L.; Zhang, N. Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody. Mol. Pharm., 2011, 8(6), 2291-2301.
[http://dx.doi.org/10.1021/mp200402e] [PMID: 21923159]
[78]
Guo, S.; Zhang, Y.; Wu, Z.; Zhang, L.; He, D.; Li, X.; Wang, Z. Synergistic combination therapy of lung cancer: Cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin. Biomed. Pharmacother., 2019, 118(12)109225
[http://dx.doi.org/10.1016/j.biopha.2019.109225] [PMID: 31325705]
[79]
Varshosaz, J.; Davoudi, M.A.; Rasoul-Amini, S. Docetaxel-loaded nanostructured lipid carriers functionalized with trastuzumab (Herceptin) for HER2-positive breast cancer cells. J. Liposome Res., 2018, 28(4), 285-295.
[http://dx.doi.org/10.1080/08982104.2017.1370471] [PMID: 28826287]
[80]
Han, C.; Li, Y.; Sun, M.; Liu, C.; Ma, X.; Yang, X.; Yuan, Y.; Pan, W. Small peptide-modified nanostructured lipid carriers distribution and targeting to EGFR-overexpressing tumor in vivo. Artif. Cells Nanomed. Biotechnol., 2014, 42(3), 161-166.
[http://dx.doi.org/10.3109/21691401.2013.801848] [PMID: 23731383]
[81]
Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int., 2015, 2015198268
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[82]
Lakkakula, J.R.; Maçedo Krause, R.W. A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine (Lond.), 2014, 9(6), 877-894.
[http://dx.doi.org/10.2217/nnm.14.41] [PMID: 24981652]
[83]
Pham, E.; Yin, M.; Peters, C.G.; Lee, C.R.; Brown, D.; Xu, P.; Man, S.; Jayaraman, L.; Rohde, E.; Chow, A.; Lazarus, D.; Eliasof, S.; Foster, F.S.; Kerbel, R.S. Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle-drug conjugate, in treatment of metastatic triple-negative breast cancer. Cancer Res., 2016, 76(15), 4493-4503.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3435] [PMID: 27325647]
[84]
Pham, E.; Birrer, M.J.; Eliasof, S.; Garmey, E.G.; Lazarus, D.; Lee, C.R.; Man, S.; Matulonis, U.A.; Peters, C.G.; Xu, P.; Krasner, C.; Kerbel, R.S. Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin. Cancer Res., 2015, 21(4), 808-818.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2810] [PMID: 25524310]
[85]
Keefe, S.M.; Hoffman-Censits, J.; Cohen, R.B.; Mamtani, R.; Heitjan, D.; Eliasof, S.; Nixon, A.; Turnbull, B.; Garmey, E.G.; Gunnarsson, O.; Waliki, M.; Ciconte, J.; Jayaraman, L.; Senderowicz, A.; Tellez, A.B.; Hennessy, M.; Piscitelli, A.; Vaughn, D.; Smith, A.; Haas, N.B. Efficacy of the nanoparticle-drug conjugate CRLX101 in combination with bevacizumab in metastatic renal cell carcinoma: results of an investigator-initiated phase I-IIa clinical trial. Ann. Oncol., 2016, 27(8), 1579-1585.
[http://dx.doi.org/10.1093/annonc/mdw188] [PMID: 27457310]
[86]
Tomalia, D.A.; Huang, B.; Swanson, D.R.; Brothers, H.M.; Klimash, J.W. Structure control within poly(amidoamine) dendrimers: size, shape and regio-chemical mimicry of globular proteins. Tetrahedro., 2003, 59(22), 3799-3813.
[http://dx.doi.org/10.1016/S0040-4020(03)00430-7]
[87]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[88]
Jain, N.K.; Tare, M.S.; Mishra, V.; Tripathi, P.K. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine (Lond.), 2015, 11(1), 207-218.
[http://dx.doi.org/10.1016/j.nano.2014.09.006] [PMID: 25262579]
[89]
Marcinkowska, M.; Sobierajska, E.; Stanczyk, M.; Janaszewska, A.; Chworos, A.; Klajnert-Maculewicz, B. Conjugate of PAMAM dendrimer, doxorubicin and monoclonal antibody-trastuzumab: the new approach of a well-known strategy. Polymers (Basel), 2018, 10(2), 187.
[http://dx.doi.org/10.3390/polym10020187] [PMID: 30966223]
[90]
Kulhari, H.; Pooja, D.; Shrivastava, S.; Kuncha, M.; Naidu, V.G.M.; Bansal, V.; Sistla, R.; Adams, D.J. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep., 2016, 6, 23179.
[http://dx.doi.org/10.1038/srep23179] [PMID: 27052896]
[91]
Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci., 2016, 83, 184-202.
[http://dx.doi.org/10.1016/j.ejps.2015.12.031] [PMID: 26747018]
[92]
Raveendran, R. Polymeric micelles: smart nanocarriers for anticancer drug delivery.Drug delivery nanosystems for biomedical applications; Elsevier Inc: Amsterdam, 2018, Vol. 12, pp. 255-273.
[93]
Rafael, D.; Martínez, F.; Andrade, F.; Seras-Franzoso, J.; Garcia-Aranda, N.; Gener, P.; Sayós, J.; Arango, D.; Abasolo, I.; Schwartz, S. Efficient EFGR Mediated SiRNA delivery to breast cancer cells by cetuximab functionalized Pluronic® F127/Gelatin. Chem. Eng. J., 2018, 340, 81-93.
[http://dx.doi.org/10.1016/j.cej.2017.12.114]
[94]
Kutty, R.V.; Chia, S.L.; Setyawati, M.I.; Muthu, M.S.; Feng, S.S.; Leong, D.T. In vivo and ex vivo proofs of concept that cetuximab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer. Biomaterials, 2015, 63, 58-69.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.005] [PMID: 26081868]
[95]
Chang, M-H.; Pai, C-L.; Chen, Y-C.; Yu, H-P.; Hsu, C-Y.; Lai, P-S. Enhanced antitumor effects of epidermal growth factor receptor targetable cetuximab-conjugated polymeric micelles for photodynamic therapy. Nanomaterials (Basel), 2018, 8(2), 121.
[http://dx.doi.org/10.3390/nano8020121] [PMID: 29470420]
[96]
Tesan, F.; Cerqueira-Coutinho, C.; Salgueiro, J.; de Souza Albernaz, M.; Pinto, S.R.; Rezende Dos Reis, S.R.; Bernardes, E.S.; Chiapetta, D.; Zubillaga, M.; Santos-Oliveira, R. Characterization and biodistribution of bevacizumab tpgs-based nanomicelles: preliminary studies. J. Drug Deliv. Sci. Technol., 2016, 36, 95-98.
[http://dx.doi.org/10.1016/j.jddst.2016.09.011]
[97]
Kenmotsu, H.; Yasunaga, M.; Goto, K.; Nagano, T.; Kuroda, J.; Koga, Y.; Takahashi, A.; Nishiwaki, Y.; Matsumura, Y. The antitumor activity of NK012, an SN-38-incorporating micelle, in combination with bevacizumab against lung cancer xenografts. Cancer, 2010, 116(19), 4597-4604.
[http://dx.doi.org/10.1002/cncr.25233] [PMID: 20572031]
[98]
Singh, G. Pharmaceutical medicine and translational clinical research; Elsevier Inc: Amsterdam, 2018, Vol. 22, pp. 355-367.
[99]
Atzeni, F.; Barilaro, G.; Sarzi-puttini, P. Biologics and biosimilar.In: Mosaic of Autoimmunity; Elsevier Inc: Amsterdam, 2019, Vol. 58, pp. 625-628.
[100]
Food and Drug Administration. Biosimilar and Interchangeable Products.Available at:, https://www.fda.gov/drugs/biosimilars/biosimilar-and-interchangeable-products#top(Accessed Date: Feb 02,2019.
[113]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761074s000lbl.pdf(Accessed Date: Feb 252019.
[114]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761091s000lbl.pdf(Accessed Date: Feb 252019.
[115]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761088s000lbl.pdf(Accessed Date: Feb 252019.
[116]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761081s000lbl.pdf(Accessed Date: Feb 252019.
[117]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761100s000lbl.pdf(Accessed Date: Feb 252019.
[118]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761103s000lbl.pdf(Accessed Date: Feb 25, 2019.
[119]
Food and Drug Administration. Approved Biosimilar Products., https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761099s000lbl.pdf (Accessed Date: Feb 25,2019.
[121]
Deloitte. Global Life Sciences Outlook Thriving in Today's Uncertain Market, 2017. Available at: . https://www2. deloitte.com/content/dam/Deloitte/global/Documents/Life-Sciences-Health-Care/gx-lshc-2017-life-sciences-outlook.pdf(Accessed Date: Feb 19,2019.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy