Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

An Evaluation of the Effects of Pyridoxal Phosphate in Chlorpromazineinduced Parkinsonism using Mice

Author(s): Anthony T. Olofinnade, Tolulope M. Onaolapo, Samad Oladimeji, Adetunji M. Fatoki, Covenant I. Balogun, Adejoke Y. Onaolapo* and Olakunle J. Onaolapo

Volume 20, Issue 1, 2020

Page: [13 - 25] Pages: 13

DOI: 10.2174/1871524920666200120142508

Price: $65

Abstract

Background: Parkinsonism is a neurodegenerative disorder with a heavy disease burden, despite the discovery and application of drugs. Current research is beginning to suggest the possible crucial roles of micronutrients such as pyridoxal phosphate in the prevention or management of neurodegenerative disorders.

Objective: We investigated the possible protective effects of supplemental pyridoxal phosphate in Chlorpromazine (CPZ)-induced Parkinsonism-like changes in mice.

Methods: Mice were assigned to eight groups of 30 mice each. Groups included Vehicle control (fed standard diet (SD), and administered intraperitoneal {ip} injection of saline and saline per orem), levodopa-carbidopa (LD) group (SD, saline ip and LD per orem), two groups fed pyridoxal phosphate-supplemented diet (at 100 and 200 mg/kg of feed), and administered saline both ip and orally, CPZ group (SD, CPZ ip and saline per orem), CPZ/LD group (SD, CPZ ip and LD per orem) and finally two groups fed pyridoxal phosphate -supplemented diet (at 100 and 200 mg/kg of feed) and administered CPZ ip plus saline per orem. Treatments were administered daily for a period of 21 days to allow for the induction of Parkinsonism features. Body weight and food intake were measured weekly while neurobehavioural and biochemical tests were assessed at the end of the experimental period.

Results: Pyridoxal phosphate supplementation was associated with a reduction in CPZ-induced suppression of open-field horizontal locomotion and rearing; and a significant increase in grooming activity. Administration of pyridoxal phosphate-supplemented diet was also associated with improvements in working-memory in CPZ-treated mice; and there was reduction in the index of anxiety and catalepsy score.

Conclusion: Pyridoxal phosphate supplementation was associated with significant benefits in CPZ-induced Parkinsonism-like changes in mice.

Keywords: Dopamine, micronutrients, neurobehaviour, neurodegenerative disease, neurotransmitter, vitamins.

Graphical Abstract

[1]
GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol., 2017, 16(11), 877-897.
[http://dx.doi.org/10.1016/S1474-4422(17)30299-5] [PMID: 28931491]
[2]
Del Rey, N.L-G.; Quiroga-Varela, A.; Garbayo, E.; Carballo-Carbajal, I.; Fernández-Santiago, R. Advances in Parkinson’s disease: 200 years later. Front. Neuroanat., 2018, 12, 113.
[http://dx.doi.org/10.3389/fnana.2018.00113]
[3]
Guidelines, N.I.C.E. National Institute for Health and Care Excellence, 2017.Available from:. www.nice.org.uk/guidance/ng71
[4]
Elstner, M.; Morris, C.M.; Heim, K.; Lichtner, P.; Bender, A.; Mehta, D.; Schulte, C.; Sharma, M.; Hudson, G.; Goldwurm, S.; Giovanetti, A.; Zeviani, M.; Burn, D.J.; McKeith, I.G.; Perry, R.H.; Jaros, E.; Krüger, R.; Wichmann, H.E.; Schreiber, S.; Campbell, H.; Wilson, J.F.; Wright, A.F.; Dunlop, M.; Pistis, G.; Toniolo, D.; Chinnery, P.F.; Gasser, T.; Klopstock, T.; Meitinger, T.; Prokisch, H.; Turnbull, D.M. Single-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson’s disease gene. Ann. Neurol., 2009, 66(6), 792-798.
[http://dx.doi.org/10.1002/ana.21780] [PMID: 20035503]
[5]
M’Angale, P.G.; Staveley, B.E. A loss of Pdxk model of Parkinson disease in Drosophila can be suppressed by Buffy. BMC Res. Notes, 2017, 10(1), 205.
[http://dx.doi.org/10.1186/s13104-017-2526-8] [PMID: 28606139]
[6]
Tsagalioti, E.; Trifonos, C.; Morari, A.; Vadikolias, K.; Giaginis, C. Clinical value of nutritional status in neurodegenerative diseases: What is its impact and how it affects disease progression and management? Nutr. Neurosci., 2018, 21(3), 162-175.
[http://dx.doi.org/10.1080/1028415X.2016.1261529] [PMID: 27900872]
[7]
Sechi, G.; Sechi, E.; Fois, C.; Kumar, N. Advances in clinical determinants and neurological manifestations of B vitamin deficiency in adults. Nutr. Rev., 2016, 74(5), 281-300.
[http://dx.doi.org/10.1093/nutrit/nuv107] [PMID: 27034475]
[8]
di Salvo, M.L.; Safo, M.K.; Contestabile, R. Biomedical aspects of pyridoxal 5′-phosphate availability. Front. Biosci. (Elite Ed.), 2012, 4, 897-913.
[PMID: 22201923]
[9]
Percudani, R.; Peracchi, A. A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep., 2003, 4(9), 850-854.
[http://dx.doi.org/10.1038/sj.embor.embor914] [PMID: 12949584]
[10]
Jolliffe, N. Clinical aspects of vitamin deficiencies. Minn. Med., 1940, 23, 542-615.
[11]
Spies, T.D.; Hightower, D.P.; Hubbard, L.H. Some recent advances in vitamin therapy. JAMA, 1940, 115, 292.
[http://dx.doi.org/10.1001/jama.1940.72810300006008]
[12]
Shen, L. Associations between B Vitamins and Parkinson’s disease. Nutrients, 2015, 7(9), 7197-7208.
[http://dx.doi.org/10.3390/nu7095333] [PMID: 26343714]
[13]
Klawans, H.L.; Ringel, S.P.; Shenker, D.M. Failure of vitamin B6 to reverse the L-dopa effect in patients on a dopa decarboxylase inhibitor. J. Neurol. Neurosurg. Psychiatry, 1971, 34(6), 682-686.
[http://dx.doi.org/10.1136/jnnp.34.6.682] [PMID: 5158783]
[14]
Mars, H. Levodopa, carbidopa, and pyridoxine in Parkinson disease. Metabolic interactions. Arch. Neurol., 1974, 30(6), 444-447.
[http://dx.doi.org/10.1001/archneur.1974.00490360020005] [PMID: 4827061]
[15]
Hinz, M.; Stein, A.; Cole, T. The Parkinson’s disease death rate: Carbidopa and vitamin B6. Clin. Pharmacol., 2014, 6, 161-169.
[http://dx.doi.org/10.2147/CPAA.S70707] [PMID: 25364278]
[16]
Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 1993, 123(11), 1939-1951.
[http://dx.doi.org/10.1093/jn/123.11.1939] [PMID: 8229312]
[17]
Taş, S.; Sarandöl, E.; Dirican, M. Vitamin B6 supplementation improves oxidative stress and enhances serum paraoxonase/aryles-terase activities in streptozotocin-induced diabetic rats. ScientificWorldJournal, 2014, 2014351598
[http://dx.doi.org/10.1155/2014/351598] [PMID: 25431786]
[18]
Suidasari, S.; Hasegawa, T.; Yanaka, N.; Kato, N. Dietary supplemental vitamin B6 increases carnosine and anserine concentrations in the heart of rats. Springerplus, 2015, 4, 280.
[http://dx.doi.org/10.1186/s40064-015-1074-8] [PMID: 26101732]
[19]
Abdin, A.A.; Hamouda, H.E. Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism. Neuropharmacology, 2008, 55(8), 1340-1346.
[http://dx.doi.org/10.1016/j.neuropharm.2008.08.033] [PMID: 18817789]
[20]
Khatoon, H.; Najam, R.; Mirza, T.; Sikandar, B. Beneficial anti-Parkinson effects of camel milk in Chlorpromazineinduced animal model: Behavioural and histopathological study. Pak. J. Pharm. Sci., 2016, 29(5), 1525-1529.
[PMID: 27731807]
[21]
Onaolapo, A.Y.; Onaolapo, O.J.; Nwoha, P.U. Methyl aspartylphenylalanine, the pons and cerebellum in mice: An evaluation of motor, morphological, biochemical, immunohistochemical and apoptotic effects. J. Chem. Neuroanat., 2017, 86, 67-77.
[http://dx.doi.org/10.1016/j.jchemneu.2017.09.001] [PMID: 28890110]
[22]
Onaolapo, O.J.; Ayanwale, T.; Agoi, O.; Adetimehin, C.; Onaolapo, A.Y. Zinc tempers Haloperidol-induced behavioural changes in healthy mice. Int. J. Neurosci. Behav. Sci., 2016, 4, 21-31.
[http://dx.doi.org/www.hrpub.org/journals/article_info.php?aid=5111]
[23]
Onaolapo, O.J.; Onaolapo, A.Y.; Akanmu, M.A.; Olayiwola, G. Caffeine/sleep-deprivation interaction in mice produces complex memory effects. Ann. Neurosci., 2015, 22(3), 139-149.
[http://dx.doi.org/10.5214/ans.0972.7531.220304] [PMID: 26130922]
[24]
Onaolapo, O.J.; Onaolapo, A.Y.; Akanmu, M.A.; Olayiwola, G. Changes in spontaneous working-memory, memory-recall and approach-avoidance following “low dose” monosodium glutamate in mice. AIMS Neurosci., 2016, 3, 317-337.
[http://dx.doi.org/10.3934/Neuroscience.2016.3.317]
[25]
Onaolapo, A.Y.; Odetunde, I.; Akintola, A.S.; Ogundeji, M.O.; Ajao, A.; Obelawo, A.Y.; Onaolapo, O.J. Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice. Biomed. Pharmacother., 2019, 109, 417-428.
[http://dx.doi.org/10.1016/j.biopha.2018.10.172] [PMID: 30399577]
[26]
Onaolapo, O.J.; Aremu, O.S.; Onaolapo, A.Y. Monosodium glutamate-associated alterations in open field, anxiety-related and conditioned place preference behaviours in mice. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(7), 677-689.
[http://dx.doi.org/10.1007/s00210-017-1371-6] [PMID: 28357464]
[27]
Onaolapo, O.J.; Adekola, M.A.; Azeez, T.O.; Salami, K.; Onaolapo, A.Y. l-Methionine and silymarin: A comparison of prophylactic protective capabilities in acetaminophen-induced injuries of the liver, kidney and cerebral cortex. Biomed. Pharmacother., 2017, 85, 323-333.
[http://dx.doi.org/10.1016/j.biopha.2016.11.033] [PMID: 27889232]
[28]
Fink-Jensen, A.; Schmidt, L.S.; Dencker, D.; Schülein, C.; Wess, J.; Wörtwein, G.; Woldbye, D.P. Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor. Eur. J. Pharmacol., 2011, 656(1-3), 39-44.
[http://dx.doi.org/10.1016/j.ejphar.2011.01.018] [PMID: 21269601]
[29]
Onaolapo, A.Y.; Ayeni, O.J.; Ogundeji, M.O.; Ajao, A.; Onaolapo, O.J.; Owolabi, A.R. Subchronic ketamine alters behaviour, metabolic indices and brain morphology in adolescent rats: Involvement of oxidative stress, glutamate toxicity and caspase-3-mediated apoptosis. J. Chem. Neuroanat., 2019, 96, 22-33.
[http://dx.doi.org/10.1016/j.jchemneu.2018.12.002] [PMID: 30529750]
[30]
Onaolapo, A.Y.; Onaolapo, O.J. Nevirapine mitigates monosodium glutamate induced neurotoxicity and oxidative stress changes in prepubertal mice. Ann. Med. Res., 2018, 25, 518-524.
[http://dx.doi.org/10.5455/annalsmedres.2018.06.118]
[31]
Combs, G.F. The Vitamins: Fundamental Aspects in Nutrition and Health; Elsevier Academic Press: San Diego, 2007, pp. 320-324.
[32]
Onaolapo, O.J.; Odeniyi, A.O.; Jonathan, S.O.; Samuel, M.O.; Amadiegwu, D.; Olawale, A.; Tiamiyu, A.; Ojo, F.O.; Yahaya, H.A.; Ayeni, O.J.; Onaolapo, A.Y. An investigation of the anti-Parkinsonism potential of co-enzymeQ10 and co-enzymeQ10/levodopa-carbidopa combination in mice. Curr. Aging Sci., 2019. [Epub ahead of print [https://www.ncbi.nlm.nih.gov/pubmed/31702498
[33]
Duty, S.; Jenner, P. Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol., 2011, 164(4), 1357-1391.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01426.x] [PMID: 21486284]
[34]
Jeanclos, E.; Albersen, M.; Ramos, R.J.J.; Raab, A.; Wilhelm, C.; Hommers, L.; Lesch, K.P.; Verhoeven-Duif, N.M.; Gohla, A. Improved cognition, mild anxiety-like behavior and decreased motor performance in pyridoxal phosphatase-deficient mice. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(1), 193-205.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.018] [PMID: 30327125]
[35]
Barros, H.M.; Tannhauser, S.L.; Tannhauser, M.A.; Tannhauser, M. The effects of GABAergic drugs on grooming behaviour in the open field. Pharmacol. Toxicol., 1994, 74(6), 339-344.
[http://dx.doi.org/10.1111/j.1600-0773.1994.tb01370.x] [PMID: 7937567]
[36]
Clayton, P.T. B6-responsive disorders: A model of vitamin dependency. J. Inherit. Metab. Dis., 2006, 29(2-3), 317-326.
[http://dx.doi.org/10.1007/s10545-005-0243-2] [PMID: 16763894]
[37]
Nassiri-Asl, M.; Sarookhani, M-R.; Abbasi, E.; Zangivand, A-A.; Shakiba, E.; Sedighi, A.; Rahbari, M. The effects of pre-treatment with vitamin B6 on memory retrieval in rats. Food Chem., 2012, 132, 1046-1048.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.095]
[38]
Terry, A.V., Jr; Warner, S.E.; Vandenhuerk, L.; Pillai, A.; Mahadik, S.P.; Zhang, G.; Bartlett, M.G. Negative effects of chronic oral chlorpromazine and olanzapine treatment on the performance of tasks designed to assess spatial learning and working memory in rats. Neuroscience, 2008, 156(4), 1005-1016.
[http://dx.doi.org/10.1016/j.neuroscience.2008.08.030] [PMID: 18801413]
[39]
Fernández-Ruiz, J.; Doudet, D.; Aigner, T.G. Spatial memory improvement by levodopa in parkinsonian MPTP-treated monkeys. Psychopharmacology (Berl.), 1999, 147(1), 104-107.
[http://dx.doi.org/10.1007/s002130051148] [PMID: 10591875]
[40]
Floel, A.; Garraux, G.; Xu, B.; Breitenstein, C.; Knecht, S.; Herscovitch, P.; Cohen, L.G. Levodopa increases memory encoding and dopamine release in the striatum in the elderly. Neurobiol. Aging, 2008, 29(2), 267-279.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.10.009] [PMID: 17098331]
[41]
Ambrée, O.; Richter, H.; Sachser, N.; Lewejohann, L.; Dere, E.; de Souza Silva, M.A.; Herring, A.; Keyvani, K.; Paulus, W.; Schäbitz, W.R. Levodopa ameliorates learning and memory deficits in a murine model of Alzheimer’s disease. Neurobiol. Aging, 2009, 30(8), 1192-1204.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.11.010] [PMID: 18079024]
[42]
Richard, I.H.; Frank, S.; McDermott, M.P.; Wang, H.; Justus, A.W.; LaDonna, K.A.; Kurlan, R. The ups and downs of Parkinson disease: A prospective study of mood and anxiety fluctuations. Cogn. Behav. Neurol., 2004, 17(4), 201-207.
[PMID: 15622015]
[43]
Mesripour, A.; Hajhashemi, V.; Kuchak, A. Effect of concomitant administration of three different antidepressants with vitamin B6 on depression and obsessive compulsive disorder in mice models. Res. Pharm. Sci., 2017, 12(1), 46-52.
[http://dx.doi.org/10.4103/1735-5362.199046] [PMID: 28255313]
[44]
Mahfouz, M.M.; Kummerow, F.A. Vitamin C or Vitamin B6 supplementation prevent the oxidative stress and decrease of prostacyclin generation in homocysteinemic rats. Int. J. Biochem. Cell Biol., 2004, 36(10), 1919-1932.
[http://dx.doi.org/10.1016/j.biocel.2004.01.028] [PMID: 15203107]
[45]
Hsu, C.C.; Cheng, C.H.; Hsu, C.L.; Lee, W.J.; Huang, S.C.; Huang, Y.C. Role of vitamin B6 status on antioxidant defenses, glutathione, and related enzyme activities in mice with homocysteine-induced oxidative stress. Food Nutr. Res., 2015, 59, 25702.
[http://dx.doi.org/10.3402/fnr.v59.25702] [PMID: 25933612]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy