Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

New Spectrophotometric Method for the Assessment of Catalase Enzyme Activity in Biological Tissues

Author(s): Thulfeqar A. Hamza and Mahmoud H. Hadwan*

Volume 16, Issue 8, 2020

Page: [1054 - 1062] Pages: 9

DOI: 10.2174/1573411016666200116091238

Price: $65

Abstract

Background: Catalase is a vital antioxidant enzyme that dismutates H2O2 into water and molecular oxygen. Many protocols have been developed to measure catalase enzyme activity. Spectrophotometric methods are the most common assays that used to assess catalase enzyme activity.

Methods: Because the rate-limiting step during catalase enzyme activity depends upon the dissociation of hydrogen peroxide, the developed assay measures the reaction between a hydroquinone/ anilinium sulfate/ammonium molybdate reagent and Unreacted Hydrogen Peroxide, which results in the production of a purple, disubstituted quinone compound with a maximum absorbance value at 550 nm.

Results: To clarify the precision of the developed method, the coefficients of variation were determined to be 2.6% and 4.7% within run measurements and between run measurements, respectively. This method returned results that correlated well (r = 0.9982) with the results returned using the peroxovanadate method to assess catalase enzyme activity. Additionally, we examined the use of the newly developed hydroquinone assay to measure catalase enzyme activity in liver and bacterial homogenate samples.

Conclusion: These results demonstrated that this assay can be used for scientific research and routine health applications because it is inexpensive, simple, accurate, and rapid. This method is suitable for use in clinical pathology laboratories because it is simple and produces precise and reproducible results.

Keywords: Ammonium molybdate, anilinium sulfate, catalase activity, enzymatic assessment, hydrogen peroxide, hydroquinone.

Graphical Abstract

[1]
Glorieux, C.; Zamocky, M.; Sandoval, J.M.; Verrax, J.; Calderon, P.B. Regulation of catalase expression in healthy and cancerous cells Free Radic. Biol. Med., 2015, 87 , 84-97.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.017] [PMID: 26117330]
[2]
Rahman, I.; Biswas, S.K.; Kode, A. Oxidant and antioxidant balance in the airways and airway diseases. Eur. J. Pharmacol., 2006, 533(1-3), 222-239.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.087 ] [PMID: 16500642]
[3]
Zaidi, S.K.; Ansari, S.A.; Tabrez, S.; Naseer, M.I.; Shahwan, M.J.; Banu, N.; Al-Qahtani, M.H. Al-Qahtani, M.H. Antioxidant potential of Solanum nigrum aqueous leaves extract in modulating restraint stress-induced changes in rat’s liver. J. Pharm. Bioallied Sci., 2019, 11(1), 60-68.
[http://dx.doi.org/10.4103/JPBS.JPBS_58_18 ] [PMID: 30906141]
[4]
Yao, X.H.; Min, H.; Lü, Z.H.; Yuan, H.P. Influence of acetamiprid on soil enzymatic activities and respiration. Eur. J. Soil Biol. , 2006, 42(2), 120-126.
[http://dx.doi.org/10.1016/j.ejsobi.2005.12.001]
[5]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3 ] [PMID: 6727660]
[6]
Mueller, S.; Riedel, H.D.; Stremmel, W. Determination of catalase activity at physiological hydrogen peroxide concentrations. Anal. Biochem., 1997, 245(1), 55-60.
[http://dx.doi.org/10.1006/abio.1996.9939 ] [PMID: 9025968]
[7]
Ou, P.; Wolff, S.P. A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. J. Biochem. Biophys. Methods, 1996, 31(1-2), 59-67.
[http://dx.doi.org/10.1016/0165-022X(95)00039-T ] [PMID: 8926339]
[8]
Hadwan, M.H. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem., 2018, 19(1), 7.
[http://dx.doi.org/10.1186/s12858-018-0097-5 ] [PMID: 30075706]
[9]
Masuoka, N.; Wakimoto, M.; Ubuka, T.; Nakano, T. Spectrophotometric determination of hydrogen peroxide: Catalase activity and rates of hydrogen peroxide removal by erythrocytes. Clin. Chim. Acta, 1996, 254(2), 101-112.
[http://dx.doi.org/10.1016/0009-8981(96)06374-7 ] [PMID: 8896899]
[10]
Hadwan, M.H.; Ali, S.K. New spectrophotometric assay for assessments of catalase activity in biological samples. Anal. Biochem., 2018, 542, 29-33.
[http://dx.doi.org/10.1016/j.ab.2017.11.013 ] [PMID: 29175424]
[11]
Shivakumar, A.; Nagaraja, P.; Chamaraja, N.A.; Krishna, H.; Avinash, K. Determination of catalase activity using chromogenic probe involving iso-nicotinicacidhydrazide and pyrocatechol. J. Biotechnol., 2011, 155(4), 406-411.
[http://dx.doi.org/10.1016/j.jbiotec.2011.07.035 ] [PMID: 21839122]
[12]
Posch, H.E.; Wolfbeis, O.S. Optical sensor for hydrogen peroxide. Mikrochim. Acta, , 1989, 97(1-2), 41-50.
[http://dx.doi.org/10.1007/BF01197282]
[13]
Cohen, C.B.; Weber, S.G. Photoelectrochemical sensor for catalase activity based on the in situ generation and detection of substrate. Anal. Chem., 1993, 65(2), 169-175.
[http://dx.doi.org/10.1021/ac00050a014]
[14]
Bekdeşer, B.; Özyürek, M.; Güçlü, K.; Alkan, F.Ü.; Apak, R. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 132, 485-490.
[http://dx.doi.org/10.1016/j.saa.2014.04.178 ] [PMID: 24887508]
[15]
Siqueira, A.J.; Remião, J.O.; Azevedo, A.M.; Azambuja, C.R. A gasometric method to determine erythrocyte catalase activity. Braz. J. Med. Biol. Res., 1999, 32(9), 1089-1094.
[http://dx.doi.org/10.1590/S0100-879X1999000900006] [PMID: 10464384]
[16]
Kroll, R.G.; Frears, E.R.; Bayliss, A. An oxygen electrode‐based assay of catalase activity as a rapid method for estimating the bacterial content of foods. J. Appl. Bacteriol.,, 1989, 66(3), 209-217.
[http://dx.doi.org/10.1111/j.1365-2672.1989.tb02471.x]
[17]
Slaughter, M.R.; O’Brien, P.J. Fully-automated spectrophotometric method for measurement of antioxidant activity of catalase. Clin. Biochem. , 2000, 33(7), 525-534.
[http://dx.doi.org/10.1016/S0009-9120(00)00158-2] [PMID: 11124337]
[18]
Abderrahim, M.; Arribas, S.M.; Condezo-Hoyos, L. A novel pyrogallol red-based assay to assess catalase activity: Optimization by response surface methodology. Talanta, 2017, 166, 349-356.
[http://dx.doi.org/10.1016/j.talanta.2017.01.059 ] [PMID: 28213244]
[19]
Huang, X.M.; Zhu, M.; Shen, H.X.N. N-diethylaniline as hydrogen donor for determination of hydrogen peroxide catalyzed by metalloporphyrins as enzyme mimetic of peroxidase. Mikrochim. Acta,, 1998, 128(1-2), 87-91.
[http://dx.doi.org/10.1007/BF01242195]
[20]
Ci, Y.X.; Wang, F. Spectrofluorimetric determination of hydrogen peroxide based on the catalytic effect of peroxidase-like manganese tetrakis (sulphophenyl) porphyrin on the oxidation of homovanillic acid. Anal. Chim. Acta , 1990, 233, 299-302.
[http://dx.doi.org/10.1016/S0003-2670(00)83492-3]
[21]
Hadwan, M.H.; Abed, H.N. Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief, 2015, 6, 194-199.
[http://dx.doi.org/10.1016/j.dib.2015.12.012 ] [PMID: 26862558]
[22]
Rim, J.; Jang, C.H. Detection of catalase activity with aldehyde-doped liquid crystals confined in microcapillaries. Anal. Biochem., 2018, 560, 19-23.
[http://dx.doi.org/10.1016/j.ab.2018.08.010 ] [PMID: 30172745]
[23]
Zhao, X.E.; Zuo, Y.N.; Qu, X.; Sun, J.; Liu, L.; Zhu, S. Colorimetric determination of the activities of tyrosinase and catalase via substrate-triggered decomposition of MnO2 nanosheets. Mikrochim. Acta, 2019, 186(12), 848.
[http://dx.doi.org/10.1007/s00604-019-3995-3 ] [PMID: 31776798]
[24]
Elnemma, E.M. Spectrophotometric determination of hydrogen peroxide by a hydroquinone-aniline system catalyzed by molybdate. Bull. Korean Chem. Soc., , 2004, 25(1), 127 -129.
[http://dx.doi.org/10.5012/bkcs.2004.25.1.127]
[25]
Nardello, V.; Bouttemy, S.; Aubry, J.M. Olefin oxidation by the system H2O2MoO2− 4: competition between epoxidation and peroxidation. J. Mol. Catal. Chem.,, 1997, 117(1-3), 439-447.
[http://dx.doi.org/10.1016/S1381-1169(96)00357-3]
[26]
Wahlen, J.; De Vos, D.E.; Groothaert, M.H.; Nardello, V.; Aubry, J.M.; Alsters, P.L.; Jacobs, P.A. Synergism between molybdenum and lanthanum in the disproportionation of hydrogen peroxide into singlet oxygen. J. Am. Chem. Soc., 2005, 127(49), 17166-17167.
[http://dx.doi.org/10.1021/ja0547026 ] [PMID: 16332047]
[27]
Shin, S.K.; Cho, H.W.; Song, S.E.; Bae, J.H.; Im, S.S.; Hwang, I.; Ha, H.; Song, D.K. Ablation of catalase promotes non-alcoholic fatty liver via oxidative stress and mitochondrial dysfunction in diet-induced obese mice. Pflugers Arch., 2019, 471(6), 829-843.
[http://dx.doi.org/10.1007/s00424-018-02250-3 ] [PMID: 30617744]
[28]
Adisa, R.A.; Kolawole, N.; Sulaimon, L.A.; Brai, B.; Ijaola, A. Alterations of antioxidant status and mitochondrial succinate dehydrogenase activity in the liver of wistar strain albino rats treated with by Ethanol Extracts of Annona senegalensis Pers (Annonaceae). Stem Bark. Toxicol. Res., 2019, 35(1), 13-24.
[http://dx.doi.org/10.5487/TR.2019.35.1.013 ] [PMID: 30766654]
[29]
Aldulaimi, A.M.; Husain, F.F. Effect of aqueous extract cyperus rotundus tubers as antioxidant on liver and kidney functions in albino males rats exposed to cadmium chloride toxic. Baghdad Sc. J., 2019, 16(2), 315-322.
[http://dx.doi.org/10.21123/bsj.16.2.0315]
[30]
Qadri, S.S.; Biswas, A.; Mir, N.A.; Mandal, A.B. Biswas. Physico biochemical and microbial characteristics of broiler chicken meat fed diet incorporated with Kappaphycus alvarezii. J. Appl. Phycol., 2019, 1, 1-7.
[31]
Baradaran, A.; Samadi, F.; Ramezanpour, S.S.; Yousefdoust, S. Hepatoprotective effects of silymarin on CCl4-induced hepatic damage in broiler chickens model. Toxicol. Rep., 2019, 6, 788-794.
[http://dx.doi.org/10.1016/j.toxrep.2019.07.011 ] [PMID: 31440455]
[32]
Khanian, M.; Karimi-Torshizi, M.A.; Allameh, A. Alleviation of aflatoxin-related oxidative damage to liver and improvement of growth performance in broiler chickens consumed Lactobacillus plantarum 299v for entire growth period. Toxicon, 2019, 158, 57-62.
[http://dx.doi.org/10.1016/j.toxicon.2018.11.431 ] [PMID: 30529382]
[33]
Hassan, F.A.M.; Roushdy, E.M.; Kishawy, A.T.Y.; Zaglool, A.W.; Tukur, H.A.; Saadeldin, I.M. Growth performance, antioxidant capacity, lipid-related transcript expression and the economics of broiler chickens fed different levels of rutin. Animals (Basel), 2018, 9(1), 7.
[http://dx.doi.org/10.3390/ani9010007 ] [PMID: 30583506]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy