Abstract
Background: SO3H-functionalized zeolite-Y was prepared and used as a catalyst for the synthesis of 2-aryl-N-benzimidazole-4-thiazolidinones and tri-substituted imidazoles at ambient conditions.
Objective: The goals of this catalytic method include excellent yields and high purity, inexpensive procedure and ease of product isolation, the use of nontoxic and heterogeneous acid catalyst, shorter reaction times and milder conditions.
Materials and Methods: NMR spectra were recorded on Brucker spectrophotometer using Me4Si as internal standard. Mass spectra were recorded on an Agilent Technology 5975C VL MSD with tripe-axis detector. FTIR spectra were obtained with KBr disc on a galaxy series FT-IR 5000 spectrometer. The surface morphology of nanostructures was analyzed by FE-SEM (EVO LS 10, Zeiss, Carl Zeiss, Germany). BET analysis were measured at 196 °C by a Japan Belsorb II system after the samples were vacuum dried at 150°C overnight.
Results: The NSZ was characterized by FT-IR, FESEM, EDX, XRF, and BET. The catalytic activity of NSZ was investigated for synthesis of 1,3-tiazolidin-4-ones in H2O/Acetone at room temperature. Moreover, NSZ was used for synthesis of tri-substituted imidazoles at 60 °C via solvent-free condensation. Different kinds of aromatic aldehydes were converted to the corresponding of products with good to excellent yields.
Conclusion: Sulfonated zeolite-Y was as an efficient catalyst for the preparation of N-benzimidazole-2-aryl-1,3- thiazolidin-4-ones and 2,4,5-triaryl-1H-imidazoles. High reaction rates, elimination toxic solvent, simple experimental procedure and reusability of the catalyst are the important features of this protocol.
Keywords: Sulfonated zeolite, solid acid, heterogeneous nanocatalyst, 1, 3-thiazolidin-4-one, imidazole, aromatic aldehydes.
Graphical Abstract
[http://dx.doi.org/10.1007/s11144-017-1208-9]
(b) Kong, X.; Wu, S.; Liu, L.; Li, S.; Liu, J. Continuous synthesis of ethyl levulinate over Cerium exchanged phosphotungstic acid anchored on commercially silica gel pellets catalyst. Mol. Catal, 2017, 439, 180-185. Available at
[http://dx.doi.org/10.1016/j.mcat.2017.07.005]
(c) Kong, X.; Zhang, X.; Han, C.; Li, C.; Yu, L.; Liu, J. Ethanolysis of biomass based furfuryl alcohol to ethyl levulinate over Fe modified USY catalyst. Mol. Catal, 2017, 443, 186-192. Available at
[http://dx.doi.org/10.1016/j.mcat.2017.10.011]
(d) Kong, X.; Wu, S.; Li, X.; Liu, J. Efficient conversion of levulinic acid to ethyl levulinate over a silicotungstic-acid-modified commercially silica-gel sphere catalyst. Eng. Fuel, 2016, 30(8), 6500-6504. Available at
[http://dx.doi.org/10.1021/acs.energyfuels.6b01207]
[http://dx.doi.org/10.1016/S0040-4020(01)00960-7]
(b) Baghernejad, B. Silica sulfuric acid (SSA): An efficient and heterogeneous catalyst for organic transformations. Mini Rev. Org. Chem., 2011, 8(1), 91-102. Available at
[http://dx.doi.org/10.2174/157019311793979963]
(c) Zolfigol, M.A. Madrakian, E.; Ghaemi, E. Silica sulfuric acid/ NaNO2 as a novel heterogeneous system for the nitration of phenols under mild conditions. Molecules, 2002, 7(10), 734-742. Available at
[http://dx.doi.org/10.3390/71000734]
(d) Nakajima, K.; Hara, M. Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal., 2012, 2(7), 1296-1304. Available at
[http://dx.doi.org/10.1021/cs300103k]
[http://dx.doi.org/10.1016/j.molcata.2013.08.028]
[http://dx.doi.org/10.2174/1385272820666160805112208]
[http://dx.doi.org/10.1016/j.tetlet.2013.07.165]
[http://dx.doi.org/10.1155/2013/838374] [PMID: 23935435]
[http://dx.doi.org/10.1016/j.molcata.2012.04.002]
[http://dx.doi.org/10.1016/j.catcom.2007.09.017]
[http://dx.doi.org/10.1016/S0040-4039(03)00436-2]
[http://dx.doi.org/10.1007/s13738-013-0272-y]
(b) Dabiri, M.; Zolfigol, M.A.; Derakhshan-Panah, F.; Shiri, M.; Kruger, H.G. Synthesis of tetrahydropyridines by one-pot multicomponent reaction using nano-sphere silica sulfuric acid. J. Iran. Chem. Soc, 2015, 12(5), 855-861. Available at
[http://dx.doi.org/10.1007/s13738-014-0548-x]
[http://dx.doi.org/10.1016/j.clay.2012.01.014]
[http://dx.doi.org/10.1016/j.molstruc.2017.02.095]
[http://dx.doi.org/10.1061/(ASCE)EY.1943-7897.0000508]
(b) Kong, X.; Li, X.; Wu, S.; Zhang, X.; Liu, J. Efficient conversion of cotton stalks over a Fe modified HZSM-5 catalyst under microwave irradiation. RSC Advances, 2016, 6(34), 28532-28537. Available at
[http://dx.doi.org/10.1039/C5RA26918K]
(c) Kong, X.; Chen, L. Hydrogenation of aromatic aldehydes to aromatic hydrocarbons over Cu-HZSM-5 catalyst. Catal. Commun., 2014, 57, 45-49. Available at
[http://dx.doi.org/10.1016/j.catcom.2014.07.038]
(d) Du, X.; Kong, X.; Chen, L. Influence of binder on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone. Catal. Commun., 2014, 45, 109-113. [Available at ].
[http://dx.doi.org/10.1016/j.catcom.2013.10.042]
(e) Kong, X.; Lai, W.; Tian, J.; Li, Y.; Yan, X.; Chen, L. Efficient hydrodeoxygenation of aliphatic ketones over an alkali‐treated Ni/HZSM‐5 catalyst. ChemCatChem, 2013, 5(7), 2009-2014. [Available at ].
[http://dx.doi.org/10.1002/cctc.201200824]
(f) Kong, X.; Liu, J. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone. PLoS One, 2014, 9(7)e101744 Available at
[http://dx.doi.org/10.1371/journal.pone.0101744] [PMID: 25009974]
[http://dx.doi.org/10.1080/17518253.2018.1499968]
(b) Perot, G.; Guisnet, M. Advantages and disadvantages of zeolites as catalysts in organic chemistry. J. Mol. Catal., 1990, 61(2), 173-196. Available at
[http://dx.doi.org/10.1016/0304-5102(90)85154-A]
[http://dx.doi.org/10.3390/molecules22122206] [PMID: 29231861]
[http://dx.doi.org/10.1016/j.ijhydene.2012.06.050]
[http://dx.doi.org/10.1016/j.ssi.2018.02.019]
[http://dx.doi.org/10.1016/j.molcata.2010.11.013]
[http://dx.doi.org/10.2174/157019308786242232]
(b) Jain, A.K.; Vaidya, A.; Ravichandran, V.; Kashaw, S.K.; Agrawal, R.K. Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg. Med. Chem., 2012, 20(11), 3378-3395. Available at
[http://dx.doi.org/10.1016/j.bmc.2012.03.069] [PMID: 22546204]
[http://dx.doi.org/10.1016/S0960-894X(01)80325-5]
(b) Kaur Manjal, S.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem., 2017, 75, 406-423. Available at
[http://dx.doi.org/10.1016/j.bioorg.2017.10.014] [PMID: 29102723]
(c) Mobinikhaledi, A.; Foroughifar, N.; Kalhor, M.; Mirabolfathy, M. Synthesis and antifungal activity of novel 2‐benzimidazoly-limino‐5‐arylidene‐4‐thiazolidinones. J. Heterocycl. Chem., 2010, 47(1), 77-80.
(b) Dahiya, R. Synthesis, characterization and antimicrobial studies on some newer imidazole analogs. Sci. Pharm., 2008, 76(2), 217-239. Available at
[http://dx.doi.org/10.3797/scipharm.0803-04]
[http://dx.doi.org/10.1016/j.bmcl.2006.01.082] [PMID: 16483774]
(b) Yadav, M.R.; Puntambekar, D.S.; Sarathy, K.P.; Vengurlekar, S.; Giridhar, R. Quantitative structure activity relationship studies of diarylimidazoles as selective COX-2 inhibitors. Indian J. Chem., 2006, 45, 475-782. Available at
[http://dx.doi.org/10.1002/ddr.10432]
(c) Khabnadideh, S.; Rezaei, Z.; Khalafi-Nezhad, A.; Bahrinajafi, R.; Mohamadi, R.; Farrokhroz, A.A. Synthesis of N-alkylated derivatives of imidazole as antibacterial agents. Bioorg. Med. Chem. Lett., 2003, 13(17), 2863-2865. Available at
[http://dx.doi.org/10.1016/S0960-894X(03)00591-2] [PMID: 14611845]
[http://dx.doi.org/10.1016/j.tetlet.2010.04.026]
(b) Solankee, A.N.; Patel, K.P.; Patel, R.B. A facile synthesis and studies of some new 4-thiazolidinones and 5-arylidenes. Adv. Appl. Sci. Res, 2012, 3(1), 117-122.
[http://dx.doi.org/10.1007/s11164-016-2490-2]
[http://dx.doi.org/10.1016/S0040-4020(02)00866-9]
[http://dx.doi.org/10.1039/C6RA02064J]
[http://dx.doi.org/10.1016/j.cclet.2015.10.029]
[http://dx.doi.org/10.1016/j.molliq.2014.12.011]
[http://dx.doi.org/10.1016/j.cclet.2013.03.019]
[http://dx.doi.org/10.1016/j.tetlet.2014.03.007]
[http://dx.doi.org/10.1039/c3gc41218k]
[http://dx.doi.org/10.1016/S1872-2067(16)62536-6]
[http://dx.doi.org/10.1080/17415993.2016.1169533]
[http://dx.doi.org/10.1007/s11164-017-2974-8]
[http://dx.doi.org/10.1080/17415993.2016.1223298]
[http://dx.doi.org/10.1002/jlac.18581070209]
[http://dx.doi.org/10.1016/j.ultsonch.2012.10.004] [PMID: 23137656]
[http://dx.doi.org/10.1016/j.jscs.2013.01.005]
[http://dx.doi.org/10.1016/j.jfluchem.2012.06.013]
[http://dx.doi.org/10.1016/j.tetlet.2008.02.053]
[http://dx.doi.org/10.1016/j.arabjc.2013.10.022]
[http://dx.doi.org/10.1016/j.molliq.2011.02.012]
[http://dx.doi.org/10.1039/C9RA02910A]
[http://dx.doi.org/10.1080/00397911.2010.502994]
[http://dx.doi.org/10.1039/C4RA03176H]
[http://dx.doi.org/10.1016/j.jtusci.2014.12.007]
[http://dx.doi.org/10.1007/s12039-010-0051-6]
[http://dx.doi.org/10.1016/j.molstruc.2016.10.050]
[http://dx.doi.org/10.1016/j.tet.2005.01.116]
[http://dx.doi.org/10.1039/C5DT03488D] [PMID: 26671724]
[http://dx.doi.org/10.1007/s13738-017-1284-9]
[http://dx.doi.org/10.13005/ojc/340642]
[http://dx.doi.org/10.1002/jhet.3160]
[http://dx.doi.org/10.1039/C5NJ01273B]