Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Molecular Dynamics Assisted Mechanistic Insight of Val430-Ala Mutation of Rv1592c Protein in Isoniazid Resistant Mycobacterium Tuberculosis

Author(s): Arbind Kumar*, Pradeep K. Anand, Saahil Chandel, Anju Shrivatava and Jagdeep Kaur*

Volume 17, Issue 1, 2021

Published on: 15 January, 2020

Page: [95 - 106] Pages: 12

DOI: 10.2174/1573409916666200115120051

Price: $65

Abstract

Background: Multi drug-resistant tuberculosis is a major health threat to humans. Whole genome sequencing of several isoniazid (INH) resistant strains of M. tuberculosis revealed mutations in several genes. Rv1592c was demonstrated as lipolytic enzyme and its expression was up-regulated during isoniazid (INH) treatment. The valine at position 430 of Rv1592c was mutated to alanine frequently in the INH resistant strain of M. tuberculosis.

Methods: In this report, an array of computational approaches was used to understand the role of Val430-Ala mutation in Rv1592c in INH resistance. The impact of mutations on structural stability and degree of INH modification was demonstrated using the molecular dynamics method. The mutation in the Rv1592c gene at V430 position was created by the PCR primer walking method. Mutant and wild type gene was cloned into E. coli-mycobacteria shuttle vector (pVV-16) and expressed in Mycobacterium smegmatis system. The isoniazid susceptibility assay was performed by agar plate culture spot and CFUs count assay.

Results: This study demonstrated that the Val430 in Rv1592c makes the part of flap covering the substrate binding cavity. Mutation at Val430-Ala in Rv1592c caused the displacement of the flap region, resulting in uncovering a cavity, which allows accessibility of substrate to the active site cleft. The Val430-Ala mutation in Rv1592c created its structure energetically more stable. RMSD, RMSF and Rg simulation of mutant maintained overall stability throughout the simulation period while the native protein displayed comparatively more fluctuations. Moreover, docking studies showed that INH was bound into the active pocket of the mutant with considerable binding energy (−6.3 kcal/mol). In order to observe constant binding for INH, complexes were simulated for 50 ns. It was observed that after simulation, INH remained bound in the pocket with an increased molecular bonding network with the neighbor amino acid residues. In vitro studies clearly suggested that M. smegmatis expressing mutant has a better survival rate in isoniazid treatment as compared to wild type.

Conclusion: Overall, this study at the outset suggested that the mutation observed in drug resistant strain provides stability to the Rv1592c protein and increased affinity towards the INH due to flap displacement, leading to the possibility for its modification. In vitro results supported our in silico findings.

Keywords: Rv1592c, lipase, isoniazid resistance, mutation, M. tuberculosis, molecular dynamics.

Graphical Abstract

[1]
Forrellad, M.A.; Klepp, L.I.; Gioffré, A.; Sabio y García, J.; Morbidoni, H.R.; de la Paz Santangelo, M.; Cataldi, A.A.; Bigi, F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence, 2013, 4(1), 3-66.
[http://dx.doi.org/10.4161/viru.22329] [PMID: 23076359]
[2]
Deb, C.; Daniel, J.; Sirakova, T.D.; Abomoelak, B.; Dubey, V.S.; Kolattukudy, P.E. A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J. Biol. Chem., 2006, 281(7), 3866-3875.
[http://dx.doi.org/10.1074/jbc.M505556200] [PMID: 16354661]
[3]
Singh, G.; Kumar, A.; Maan, P.; Kaur, J. Cell wall associated factors of Mycobacterium tuberculosis as major virulence determinants: current perspectives in drugs discovery and design. Curr. Drug Targets, 2017, 18(16), 1904-1918.
[http://dx.doi.org/10.2174/1389450118666170711150034] [PMID: 28699515]
[4]
Daniel, J.; Maamar, H.; Deb, C.; Sirakova, T.D.; Kolattukudy, P.E. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog., 2011, 7(6)e1002093
[http://dx.doi.org/10.1371/journal.ppat.1002093] [PMID: 21731490]
[5]
Johnson, G. The α/β hydrolase fold proteins of Mycobacterium tuberculosis, with reference to their contribution to virulence. Curr. Protein Pept. Sci., 2017, 18(3), 190-210.
[http://dx.doi.org/10.2174/1389203717666160729093515] [PMID: 27480283]
[6]
Brust, B.; Lecoufle, M.; Tuaillon, E.; Dedieu, L.; Canaan, S.; Valverde, V.; Kremer, L. Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis. PLoS One, 2011, 6(9)e25078
[http://dx.doi.org/10.1371/journal.pone.0025078] [PMID: 21966416]
[7]
Singh, G.; Singh, G.; Jadeja, D.; Kaur, J. Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosis as a model system. Crit. Rev. Microbiol., 2010, 36(3), 259-269.
[http://dx.doi.org/10.3109/1040841X.2010.482923] [PMID: 20500016]
[8]
Rameshwaram, N.R.; Singh, P.; Ghosh, S.; Mukhopadhyay, S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol., 2018, 13, 1301-1328.
[http://dx.doi.org/10.2217/fmb-2018-0013] [PMID: 30256124]
[9]
Singh, P.; Rao, R.N.; Reddy, J.R.C.; Prasad, R.B.; Kotturu, S.K.; Ghosh, S.; Mukhopadhyay, S. PE11, a PE/PPE family protein of Mycobacterium tuberculosis is involved in cell wall remodeling and virulence. Sci. Rep., 2016, 6, 21624.
[http://dx.doi.org/10.1038/srep21624] [PMID: 26902658]
[10]
Kaur, J.; Kaur, J. Rv0518, a nutritive stress inducible GDSL lipase of Mycobacterium tuberculosis, enhanced intracellular survival of bacteria by cell wall modulation. Int. J. Biol. Macromol., 2019, 135, 180-195.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.121] [PMID: 31125644]
[11]
Andualema, B.; Gessesse, A. Microbial lipases and their industrial applications. Biotechnology, 2012, 11, 100-118.
[http://dx.doi.org/10.3923/biotech.2012.100.118]
[12]
Casali, N.; Broda, A.; Harris, S.R.; Parkhill, J.; Brown, T.; Drobniewski, F. Whole genome sequence analysis of a large isoniazid-resistant tuberculosis outbreak in london: a retrospective observational study. PLoS Med., 2016, 13(10)e1002137
[http://dx.doi.org/10.1371/journal.pmed.1002137] [PMID: 27701423]
[13]
Schönfeld, N.; Bergmann, T.; Vesenbeckh, S.; Mauch, H.; Bettermann, G.; Bauer, T.T.; Rüssmann, H. Minimal inhibitory concentrations of first-line drugs of multidrug-resistant tuberculosis isolates. Lung India, 2012, 29(4), 309-312.
[http://dx.doi.org/10.4103/0970-2113.102794] [PMID: 23243341]
[14]
Schroeder, E.K.; Basso, L.A.; Santos, D.S.; de Souza, O.N. Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. Biophys. J., 2005, 89(2), 876-884.
[http://dx.doi.org/10.1529/biophysj.104.053512] [PMID: 15908576]
[15]
Jena, L.; Nayak, T.; Deshmukh, S.; Wankhade, G.; Waghmare, P.; Harinath, B.C. Isoniazid with multiple mode of action on various mycobacterial enzymes resulting in drug resistance. J. Infect. Dis. Ther., 2016, 4, 1-8.
[http://dx.doi.org/10.4172/2332-0877.1000297]
[16]
Kumar, A.; Sharma, A.; Kaur, G.; Makkar, P.; Kaur, J. Functional characterization of hypothetical proteins of Mycobacterium tuberculosis with possible esterase/lipase signature: a cumulative in silico and in vitro approach. J. Biomol. Struct. Dyn., 2017, 35(6), 1226-1243.
[http://dx.doi.org/10.1080/07391102.2016.1174738] [PMID: 27050490]
[17]
Matsoso, L.G.; Kana, B.D.; Crellin, P.K.; Lea-Smith, D.J.; Pelosi, A.; Powell, D.; Dawes, S.S.; Rubin, H.; Coppel, R.L.; Mizrahi, V. Function of the cytochrome BC1-AA3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption. J. Bacteriol., 2005, 187(18), 6300-6308.
[http://dx.doi.org/10.1128/JB.187.18.6300-6308.2005] [PMID: 16159762]
[18]
Coker, O.O.; Chaiprasert, A.; Ngamphiw, C.; Tongsima, S.; Regmi, S.M.; Clark, T.G.; Ong, R.T.H.; Teo, Y-Y.; Prammananan, T.; Palittapongarnpim, P. Genetic signatures of Mycobacterium tuberculosis Nonthaburi genotype revealed by whole genome analysis of isolates from tuberculous meningitis patients in Thailand. PeerJ, 2016, 4e, 1905.
[http://dx.doi.org/10.7717/peerj.1905] [PMID: 27114869]
[19]
Ramaswamy, S.V.; Reich, R.; Dou, S-J.; Jasperse, L.; Pan, X.; Wanger, A.; Quitugua, T.; Graviss, E.A. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2003, 47(4), 1241-1250.
[http://dx.doi.org/10.1128/AAC.47.4.1241-1250.2003] [PMID: 12654653]
[20]
Costa, V.M.; De Souza, M.C.M.; Fechine, P.B.A.; Macedo, A.C.; Gonçalves, L.R.B. Nanobiocatalytic systems based on lipase-Fe3O4 and conventional systems for isoniazid synthesis: a comparative study. Braz. J. Chem. Eng., 2016, 33, 661-673.
[http://dx.doi.org/10.1590/0104-6632.20160333s20150137]
[21]
Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res., 2014, 42, W320-W324.
[http://dx.doi.org/10.1093/nar/gku316] [PMID: 24753421]
[22]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[23]
Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Comparative protein structure modeling using modeller. Curr. Protocols Bioinfrom., 2006, 15(1), 5.6.1-5.6.30..
[http://dx.doi.org/10.1002/0471250953.bi0506s15]
[24]
Binkowski, T.A.; Naghibzadeh, S.; Liang, J. CASTp: Computed atlas of surface topography of proteins. Nucleic Acids Res., 2003, 31(13), 3352-3355.
[http://dx.doi.org/10.1093/nar/gkg512] [PMID: 12824325]
[25]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: an open chemical toolbox. J. Cheminform., 2011, 3, 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[26]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[27]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[28]
Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, 29(7), 845-854.
[http://dx.doi.org/10.1093/bioinformatics/btt055] [PMID: 23407358]
[29]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[30]
Wilson, M.; DeRisi, J.; Kristensen, H.H.; Imboden, P.; Rane, S.; Brown, P.O.; Schoolnik, G.K. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA, 1999, 96(22), 12833-12838.
[http://dx.doi.org/10.1073/pnas.96.22.12833] [PMID: 10536008]
[31]
Sherman, D.R.; Voskuil, M.; Schnappinger, D.; Liao, R.; Harrell, M.I.; Schoolnik, G.K. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc. Natl. Acad. Sci. USA, 2001, 98(13), 7534-7539.
[http://dx.doi.org/10.1073/pnas.121172498] [PMID: 11416222]
[32]
Aier, I.; Varadwaj, P.K.; Raj, U. Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci. Rep., 2016, 6, 34984.
[http://dx.doi.org/10.1038/srep34984] [PMID: 27713574]
[33]
Kumar, A.; Maan, P.; Singh, G.; Kaur, J. In-silico characterization of a hypothetical protein, Rv1288 of Mycobacterium tuberculosis containing an esterase signature and an uncommon LytE domain. Curr. Comput. Aided. Drug Des., 2016, 13, 101-111.
[34]
Singh, A.; Singh, A.; Grover, S.; Pandey, B.; Kumari, A.; Grover, A. Wild-type catalase peroxidase vs G279D mutant type: molecular basis of isoniazid drug resistance in Mycobacterium tuberculosis. Gene, 2018, 641, 226-234.
[http://dx.doi.org/10.1016/j.gene.2017.10.047] [PMID: 29066301]
[35]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26, 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[36]
Derewenda, Z.S. Structure and function of lipases. Adv. Protein Chem., 1994, 45, 1-52.
[http://dx.doi.org/10.1016/S0065-3233(08)60637-3] [PMID: 8154368]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy