Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Chemo-enzymatic Synthesis of 3′-azido/-amino-C-4′-spirooxetano-xylo nucleosides

Author(s): Manish Kumar, Rajesh Kumar, Neha Rana and Ashok K. Prasad*

Volume 7, Issue 1, 2020

Page: [120 - 127] Pages: 8

DOI: 10.2174/2213346107666200110092413

Abstract

Conformationally locked 3'-azido-C-4'-spirooxetano-xylonucleosides T, U, C and A have been synthesized by following chemo-enzymatic convergent route. One of the 3'-azido-C-4'- spirooxetano-xylonucleosides, i.e. T was converted into 3'-amino-C-4'-spirooxetano-xylothymidine by reduction of azide to amine with H2/Pd-C in ethyl acetate in quantitative yield. The crucial step in the synthesis of spirooxetano-xylonucleosides is the Lipozyme® TL IM-mediated exclusive diastereoselective acetylation of 4-C-hydroxymethyl group in dihydroxysugar derivative, 3-azido-3-deoxy-4-Chydroxymethyl- 1,2-O-isopropylidene-α-D-xylofuranose in quantitative yield. The diastereoselective monoacetylation of 4-C-hydroxymethyl in dihydroxysugar derivative was unambiguously confirmed by X-ray crystal study on the tosylated compound obtained by the tosylation of Lipozyme® TL IM - mediated monoacetylated sugar derivative. The broader substrate specificity and exclusive selective nature of Lipozyme® TL IM can be utilised for the development of environmentally friendly methodologies for the synthesis of different sugar-modified nucleosides of importance.

Keywords: C-4'-Spirooxetano-xylonucleosides, chemo-enzymatic synthesis, lipozyme® TL IM, diastereoselectivity, restricted nucleosides, hydantocidin.

Graphical Abstract

[1]
Sharma, V.K.; Sharma, R.K.; Singh, S.K. Antisense oligonucleotides: modifications and clinical trials. MedChemComm, 2014, 5, 1454-1471.
[http://dx.doi.org/10.1039/C4MD00184B]
[2]
(a) Klibanov, A.M. Asymmetric transformations catalyzed by enzymes in organic solvents. Acc. Chem. Res., 1990, 23, 114-120.
[http://dx.doi.org/10.1021/ar00172a004]
(b) Klibanov, A.M. Improving enzymes by using them in organic solvents. Nature, 2001, 409(6817), 241-246.
[http://dx.doi.org/10.1038/35051719] [PMID: 11196652]
[3]
Kapoor, M.; Gupta, M.N. Lipase promiscuity and its biochemical applications. Process Biochem., 2012, 47, 555-569.
[http://dx.doi.org/10.1016/j.procbio.2012.01.011]
[4]
(a) Ferrero, M.; Gotor, V. Biocatalytic selective modifications of conventional nucleosides, carbocyclic nucleosides, and C-nucleosides. Chem. Rev., 2000, 100(12), 4319-4348.
[http://dx.doi.org/10.1021/cr000446y] [PMID: 11749350]
(b) García-Urdiales, E.; Alfonso, I.; Gotor, V. Enantioselective enzymatic desymmetrizations in organic synthesis. Chem. Rev., 2005, 105(1), 313-354.
[http://dx.doi.org/10.1021/cr040640a] [PMID: 15720156]
(c) Sharma, V.K.; Kumar, M.; Olsen, C.E.; Prasad, A.K. Chemoenzymatic convergent synthesis of 2′-O,4′-C-methyleneribonucleosides. J. Org. Chem., 2014, 79(13), 6336-6341.
[http://dx.doi.org/10.1021/jo5008338] [PMID: 24901539]
(d) Kumar, M.; Sharma, V.K.; Olsen, C.E.; Prasad, A.K. Chemo-enzymatic synthesis of bicyclic 3′-azido- and 3′-amino-nucleosides†. RSC Advances, 2014, 4, 37231-37235.
[http://dx.doi.org/10.1039/C4RA06805J]
[5]
(a) Herdewijn, P. Liebigs Ann., 1996, 1337-1348.
(b) Wengel, J. Synthesis of 3‘-C- and 4‘-C-Branched oligodeoxynucleotides and the development of Locked Nucleic Acid (LNA). Acc. Chem. Res., 1999, 32, 301-310.
[http://dx.doi.org/10.1021/ar980051p]
(c) Meldgaard, M.; Wengel, J. Bicyclic nucleosides and conformational restriction of oligonucleotides. J. Chem. Soc., Perkin Trans. 1, 2000, 3539-3554.
[http://dx.doi.org/10.1039/b000114g]
(d) Prakash, T.P. An overview of sugar-modified oligonucleotides for antisense therapeutics. Chem. Biodivers., 2011, 8(9), 1616-1641.
[http://dx.doi.org/10.1002/cbdv.201100081] [PMID: 21922654]
(e) Soengas, R.G.; Silva, S. Spirocyclic nucleosides in medicinal chemistry: an overview. Mini Rev. Med. Chem., 2012, 12(14), 1485-1496.
[http://dx.doi.org/10.2174/138955712803832681] [PMID: 22827180]
(f) Sharma, V.K.; Rungta, P.; Prasad, A.K. Nucleic acid therapeutics: basic concepts and recent developments. RSC Adv., 2014, 4, 16618-16631.
[http://dx.doi.org/10.1039/c3ra47841f]
(g) Yamaguchi, T.; Horiba, M.; Obika, S. Synthesis and properties of 2′-O,4′-C-spirocyclopropylene bridged nucleic acid (scpBNA), an analogue of 2′,4′-BNA/LNA bearing a cyclopropane ring. Chem. Commun. (Camb.), 2015, 51(47), 9737-9740.
[http://dx.doi.org/10.1039/C5CC02024G ] [PMID: 25985928]
(h) Undheim, K. Stereoselective Reactions in Preparation of Chiral α-Hetera-spiro[m.n]alkanes, Synthesis, 2015, 47, 2497-2522.
[http://dx.doi.org/10.1055/s-0034-1378863]
[6]
(a) Nakajima, M.; Itoi, K.; Takamatsu, Y.; Kinoshita, T.; Okazaki, T.; Kawakubo, K.; Shindo, M.; Honma, T.; Tohjigamori, M.; Haneishi, T. Hydantocidin: a new compound with herbicidal activity from Streptomyces hygroscopicus. J. Antibiot. (Tokyo), 1991, 44(3), 293-300.
[http://dx.doi.org/10.7164/antibiotics.44.293] [PMID: 2026555]
(b) Haruyama, H.; Takayama, T.; Kinoshita, T.; Kondo, M.; Nakajima, M.; Haneishi, T. Structural elucidation and solution conformation of the novel herbicide hydantocidin. J. Chem. Soc., Perkin Trans. 1, 1991, 1637-1640
[http://dx.doi.org/10.1039/p19910001637]
[7]
(a) Siehl, D.L.; Subramanian, M.V.; Walters, E.W.; Lee, S.F.; Anderson, R.J.; Toschi, A.G. Adenylosuccinate synthetase: site of action of hydantocidin, a microbial phytotoxin. Plant Physiol., 1996, 110(3), 753-758.
[http://dx.doi.org/10.1104/pp.110.3.753] [PMID: 8819867]
(b) Gasch, C.; Merino-Montiel, P.; Lopez, O.; Fernandez-Bolanos, J.G.; Fuentes, J. Spiranic d-gluco-configured N-substituted thiohydantoins as potential enzymatic inhibitors. Tetrahedron, 2010, 66, 9964-9973.
[http://dx.doi.org/10.1016/j.tet.2010.09.109]
[8]
(a) Kittaka, A.; Tanaka, H.; Odanaka, Y.; Ohnuki, K.; Yamaguchi, K.; Miyasaka, T. Vinyl Radical-Based Cyclization of 6-Substituted 1-(2-Deoxy-D-erythro-pent-1-enofuranosyl)uracils: Synthesis of Anomeric Spiro Nucleosides. J. Org. Chem., 1994, 59, 3636-3641.
[http://dx.doi.org/10.1021/jo00092a024]
(b) Kittaka, A.; Tanaka, H.; Yamada, N.; Miyasaka, T. Nucleoside anomeric radicals via 1, 5-translocation: Facile access to anomeric spiro nucleosides. Tetrahedron Lett., 1996, 37(16), 2801-2804.
[http://dx.doi.org/10.1016/0040-4039(96)00433-9]
(c) Kittaka, A.; Asakura, T.; Kuze, T.; Tanaka, H.; Yamada, N.; Nakamura, K.T.; Miyasaka, T. Cyclization reactions of nucleoside anomeric radical with olefin tethered on base: Factors that induce anomeric stereochemistry. J. Org. Chem., 1999, 64, 7081-7093.
[http://dx.doi.org/10.1021/jo990611d]
[9]
(a) Du, J.; Chun, B-K.; Mosley, R.T.; Bansal, S.; Bao, H.; Espiritu, C.; Lam, A.M.; Murakami, E.; Niu, C.; Micolochick Steuer, H.M.; Furman, P.A.; Sofia, M.J. Use of 2′-spirocyclic ethers in HCV nucleoside design. J. Med. Chem., 2014, 57(5), 1826-1835.
[http://dx.doi.org/10.1021/jm401224y] [PMID: 24079820]
(b) Jonckers, T.H.M.; Vandyck, K.; Vandekerckhove, L.; Hu, L.; Tahri, A.; Hoof, S.V.; Lin, Tse-I; Vijgen, L.; Berke, J.M.; Lachau-Durand, S.; Stoops, B.; Leclercq, L.; Fanning, G.; Samuelsson, B.; Nilsson, M.; Rosenquist, Å.; Simmen, K.; Raboisson, P. Nucleotide prodrugs of 2′-deoxy-2′-spirooxetane ribonucleosides as novel inhibitors of the HCV NS5B polymerase. J. Med. Chem., 2014, 57, 1836-1844.
[http://dx.doi.org/10.1021/jm4015422] [PMID: 24345201]
[10]
(a)Balzarini, J.; Pérez-Pérez, M.J.; San-Félix, A.; Schols, D.; Perno, C.F.; Vandamme, A.M.; Camarasa, M.J.; De Clercq, E. 2′,5′-Bis-O-(tert-butyldimethylsilyl)-3′-spiro-5′'-(4′'-amino-1′',2′'- oxathiole-2′',2′-dioxide)pyrimidine (TSAO) nucleoside analogues: highlyselective inhibitors of human immunodeficiency virus type 1 that are targeted at the viral reverse transcriptase. Proc. Natl. Acad. Sci. USA, 1992, 89(10), 4392-4396.
[http://dx.doi.org/10.1073/pnas.89.10.4392] [PMID: 1374900]
(b)San-Félix, A.; Velázquez, S.; Pérez-Pérez, M.J.; Balzarini, J.; De Clercq, E.; Camarasa, M.J. Novel series of TSAO-T derivatives. Synthesis and anti-HIV-1 activity of 4-, 5-, and 6-substituted pyrimidine analogues. J. Med. Chem., 1994, 37(4), 453-460.
[http://dx.doi.org/10.1021/jm00030a004] [PMID: 7509877]
(c)de Castro, S.; Lobatón, E.; Pérez-Pérez, M.J.; San-Félix, A.; Cordeiro, A.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J.; Camarasa, M.J.; Velázquez, S. Novel [2′,5′-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]- 3′-spiro-5′'-(4′'-amino-1′',2′'-oxathiole-2′',2" -dioxide) derivatives with anti-HIV-1 and anti-human-cytomegalovirus activity. J. Med. Chem., 2005, 48(4), 1158-1168.
[http://dx.doi.org/10.1021/jm040868q] [PMID: 15715482]
[11]
(a)Sharma, V.K.; Kumar, M.; Sharma, D.; Olsen, C.E.; Prasad, A.K. Chemoenzymatic synthesis of C-4′-spiro-oxetanoribonucleosides. J. Org. Chem., 2014, 79(18), 8516-8521.
[http://dx.doi.org/10.1021/jo501655j] [PMID: 25184308]
(b)Kumar, M.; Sharma, V.K.; Kumar, R.; Prasad, A.K. Biocatalytic route to C-3′-azido/-hydroxy-C-4′-spiro-oxetanoribonucleosides. Carbo. Res., 2015, 417, 19-26.
[http://dx.doi.org/10.1016/j.carres.2015.08.015]
[12]
Paquette, L.A. Spirocyclic restriction of nucleosides. Aust. J. Chem., 2004, 57, 7-17.
[http://dx.doi.org/10.1071/CH03267]
[13]
Kumar, M.; Kumar, R.; Rana, N.; Prasad, A.K. Synthesis of 3′-azido/-amino-xylobicyclonucleosides†. RSC Advances, 2016, 6, 17713-17719.
[http://dx.doi.org/10.1039/C5RA25222A]
[14]
Lipase Novozyme®-435, Lipozyme® TL IM. 2016. CRL and PPL were purchased from Sigma-Aldrich chemical company, USA..
[15]
Vorbüggen, H.; Lagoja, I. M.; Herdewijn, P. Current protocols in nucleic acid chemistry 2007, 1.13.1-1.13.16.
[16]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. , 2008, A64, 112-122.
[http://dx.doi.org/10.1107/S0108767307043930]
[17]
Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst., 1999, 32, 837-838.
[http://dx.doi.org/10.1107/S0021889899006020]
[18]
Pennington, W.T. Diamond - visual crystal structure information system. J. Appl. Cryst., 1999, 32, 1028-1029.
[http://dx.doi.org/10.1107/S0021889899011486]
[19]
Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; Van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Cryst., 2006, 39, 453-457.
[http://dx.doi.org/10.1107/S002188980600731X]

© 2024 Bentham Science Publishers | Privacy Policy