Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Functionalized Carbon Nanotubes: Emerging Applications in the Diverse Biomedical Arena

Author(s): Nidhi Jain Singhai and Suman Ramteke*

Volume 16, Issue 2, 2020

Page: [170 - 186] Pages: 17

DOI: 10.2174/1573413716666200107145528

Price: $65

Abstract

Background: In recent times, CNTs have been much explored, and a topic of interest in science and technology and not limited to any specific field. The diverse application area included field emission, energy storage, atomic electronics, nuclear force microscopy, and imaging. In biology, CNTs engaged in developing novel tools for the delivery of biologically important molecules as well as in diverse biomedical arenas. However, despite their promise, studies of the interaction of CNTs with biological systems most often resulted in cytotoxicity at an early stage, and problems relevant to the safety and biological compatibility of CNTs are of greatest importance. The toxic effects of carbon nanotubes (CNTs) are required to be either evaded, diminished, or decreased up-to clinical acceptance level. However, rich surface chemistry that CNTs possess can be employed to functionalize them as per the specific biomedical requirements which may be useful to overcome toxicity issues.

Objective: To explore the recent reports on the functionalized CNTs for a variety of biomedical applications such as biosensing, electrochemical detection of drug, bone tissue engineering, and vitamin detection.

Results: Most of the cited articles reveal that the functionalization of CNTs may reduce its toxicity and enhance its utilization in different biological applications.

Conclusion: The review successfully frames to provide novel applications of functionalized CNTs in the biomedical arena including detection of vitamins, bone tissue engineering, electrochemical determination of drugs, and development of biosensors along with a discussion on current patent and clinical trial status of functionalized CNTs.

Keywords: Carbon nanotubes, functionalization, surface modification, toxicity, biomedical applications, patents, clinical trails.

Graphical Abstract

[1]
Maheshwari, R.; Raval, N.; Tekade, R.K. Surface Modification of Biomedically Essential Nanoparticles Employing Polymer Coating. In: Weissig, V.; Elbayoumi, T. (Eds.). Pharmaceutical Nanotechnology, Springer: Switzerland AG 2019; pp. 191-201.
[http://dx.doi.org/10.1007/978-1-4939-9516-5_13]
[2]
Kuche, K.; Maheshwari, R.; Tambe, V.; Mak, K.K.; Jogi, H.; Raval, N.; Pichika, M.R.; Kumar Tekade, R. Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential. Nanoscale, 2018, 10(19), 8911-8937.
[http://dx.doi.org/10.1039/C8NR01383G]
[3]
Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm., 2018, 548(1), 540-558.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.027] [PMID: 29997043]
[4]
Singh, I.; Rehni, A.K.; Kumar, P.; Kumar, M.; Aboul‐Enein, H.Y. Carbon nanotubes: synthesis, properties and pharmaceutical applications. Fuller. Nanotub. Car. N, 2009, 17(4), 361-377.
[http://dx.doi.org/10.1080/15363830903008018]
[5]
Begum, S.; Kausar, A.; Ullah, H.; Siddiq, M. Exploitation of carbon nanotubes in high performance polyvinylidene fluoride matrix composite: A review. Polym. Plast. Technol. Eng., 2016, 55(2), 199-222.
[http://dx.doi.org/10.1080/03602559.2015.1055505]
[6]
Jackson, P.; Jacobsen, N.R.; Baun, A.; Birkedal, R.; Kuhnel, D.; Jensen, K.A.; Vogel, U.; Wallin, H. Bioaccumulation and ecotoxicity of carbon nanotubes. Chem. Cent. J., 2013, 7(1), 154.
[http://dx.doi.org/10.1186/1752-153X-7-154] [PMID: 24034413]
[7]
Kuempel, E.D.; Jaurand, M.C.; Moller, P.; Morimoto, Y.; Kobayashi, N.; Pinkerton, K.E.; Sargent, L.M.; Vermeulen, R.C.; Fubini, B.; Kane, A.B. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit. Rev. Toxicol., 2017, 47(1), 1-58.
[http://dx.doi.org/10.1080/10408444.2016.1206061] [PMID: 27537422]
[8]
Parmee, R.J.; Collins, C.M.; Milne, W.I.; Cole, M.T. X-ray generation using carbon nanotubes. Nano Converg., 2015, 2(1), 1.
[http://dx.doi.org/10.1186/s40580-014-0034-2]
[9]
Kim, K.Y. Nanotechnology Platforms and Physiological Challenges for Cancer Therapeutics. In: Balogh, L.P. (Ed.) In: Nanomedicine in Cancer; Pan Stanford: Temasek Boulevard, 2017; pp. 1-20.
[10]
SreeHarsha. N.; Maheshwari, R.; Al-Dhubiab, B.E.; Tekade, M.; Sharma, M.C.; Venugopala, K.N.; Tekade, R.K.; Alzahrani, A.M. Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy. Int. J. Nanomedicine, 2019, 14, 7419-7429.
[11]
Akram, Z.; Kausar, A.; Siddiq, M. Review on polymer/carbon nanotube composite focusing polystyrene microsphere and polystyrene microsphere/modified CNT composite: Preparation, properties, and significance. Polym. Plast. Technol. Eng., 2016, 55(6), 582-603.
[http://dx.doi.org/10.1080/03602559.2015.1098696]
[12]
Dinadayalane, T.C.; Leszczynski, J. Fundamental structural, electronic, and chemical properties of carbon nanostructures: graphene, fullerenes, carbon nanotubes, and their derivatives. In: Leszczynski, J.; Kaczmarek-Kedziera, A.; Puzyn, T.; Papadopoulos, M.G.; Reis, H.; Shukla, M.K. (Eds.).Handbook of Computational Chemistry; Springer: Switzerland AG, 2016, p. 1175-1258.
[13]
Ould Moussa, N.; Blanc, C.; Zamora Ledezma, C.; Lavrentovich, O.D.; Smalyukh, I.I.; Islam, M.F.; Yodh, A.; Maugey, M.; Poulin, P.; Anglaret, E. Dispersion and orientation of single-walled carbon nanotubes in a chromonic liquid crystal. Liq. Cryst., 2013, 40(12), 1628-1635.
[http://dx.doi.org/10.1080/02678292.2013.772254]
[14]
Kaushik, B.K.; Majumder, M.K. Carbon nanotube: Properties and applications. In: Kaushik, B.K.; Majumder, M.K. (Eds.). In: Carbon Nanotube Based VLSI Interconnects; Springer: Switzerland AG, 2015; pp. 17-37.
[15]
Howlader, A.H.; Islam, M.S.; Tanaka, S.; Makino, T.; Hashimoto, A. Vacancy and curvature effects on the phonon properties of single wall carbon nanotube. Jpn. J. Appl. Phys, 2018, 57(2S2), 02CB08.
[http://dx.doi.org/10.7567/JJAP.57.02CB08]
[16]
Arunkumar, T.; Karthikeyan, R.; Ram Subramani, R.; Viswanathan, K.; Anish, M. Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs). Int. J. Ambient Energy, 2018.
[http://dx.doi.org/10.1080/01430750.2018.1472657]
[17]
Dwivedi, P.; Vijayakumar, R. Synthesis of UMCNOs from MWCNTs and analysis of its structure and properties for wastewater treatment applications. Appl. Nanosci., 2018, 8(8), 1989-2000.
[http://dx.doi.org/10.1007/s13204-018-0868-8]
[18]
Teoh, W.C.; Yeoh, W.M.; Mohamed, A.R. Evaluation of different oxidizing agents on effective covalent functionalization of multiwalled carbon nanotubes. Fuller. Nanotub. Car. N., 2018, 26, 846-850.
[19]
Karimi, M.; Solati, N.; Ghasemi, A.; Estiar, M.A.; Hashemkhani, M.; Kiani, P.; Mohamed, E.; Saeidi, A.; Taheri, M.; Avci, P.; Aref, A.R.; Amiri, M.; Baniasadi, F.; Hamblin, M.R. Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin. Drug Deliv., 2015, 12(7), 1089-1105.
[http://dx.doi.org/10.1517/17425247.2015.1004309] [PMID: 25613837]
[20]
Rastogi, V.; Yadav, P.; Bhattacharya, S.S.; Mishra, A.K.; Verma, N.; Verma, A.; Pandit, J.K. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J. Drug Deliv., 2014, 2014670815
[http://dx.doi.org/10.1155/2014/670815] [PMID: 24872894]
[21]
Al Qattan, M.N.; Deb, P.K.; Tekade, R.K. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discov. Today, 2018, 23(2), 235-250.
[http://dx.doi.org/10.1016/j.drudis.2017.10.002] [PMID: 29031623]
[22]
Samadishadlou, M.; Farshbaf, M.; Annabi, N.; Kavetskyy, T.; Khalilov, R.; Saghfi, S.; Akbarzadeh, A.; Mousavi, S. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. Artif. Cells Nanomed. Biotechnol., 2018, 46(7), 1314-1330.
[http://dx.doi.org/10.1080/21691401.2017.1389746] [PMID: 29043857]
[23]
Kasai, T.; Umeda, Y.; Ohnishi, M.; Kondo, H.; Takeuchi, T.; Aiso, S.; Nishizawa, T.; Matsumoto, M.; Fukushima, S. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology, 2015, 9(4), 413-422.
[http://dx.doi.org/10.3109/17435390.2014.933903] [PMID: 25030099]
[24]
Jain, A.K.; Kumar Mehra, N.; Lodhi, N.; Dubey, V.; Mishra, D.K.; Jain, P.K.; Jain, N.K. Carbon nanotubes and their toxicity. Nanotoxicology, 2007, 1(3), 167-197.
[http://dx.doi.org/10.1080/17435390701639688]
[25]
Zhao, F.; Meng, H.; Yan, L.; Wang, B.; Zhao, Y. Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Sci. Bull. (Beijing), 2015, 60(1), 3-20.
[http://dx.doi.org/10.1007/s11434-014-0700-0]
[26]
Sireesha, M.; Jagadeesh Babu, V.; Kranthi Kiran, A.S.; Ramakrishna, S. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites, 2018, 4(2), 36-57.
[http://dx.doi.org/10.1080/20550324.2018.1478765]
[27]
Mallakpour, S.; Abdolmaleki, A.; Rostami, M. Morphology and thermal properties of environmental friendly nanocomposites using biodegradable poly (amide–imide) based on N-trimellitylimido-S-valine matrix reinforced by fructose-functionalized multi-walled carbon nanotubes. Colloid Polym. Sci., 2015, 293(2), 545-553.
[http://dx.doi.org/10.1007/s00396-014-3442-2]
[28]
Mehra, N.K.; Jain, N.K. Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting. J. Drug Target., 2016, 24(4), 294-308.
[http://dx.doi.org/10.3109/1061186X.2015.1055571] [PMID: 26147085]
[29]
Mousa, M.H.; Dong, Y.; Davies, I.J. Recent advances in bionanocomposites: Preparation, properties, and applications. Int. J. Polym. Mater. Po, 2016, 6(5), 225-254.
[http://dx.doi.org/10.1080/00914037.2015.1103240]
[30]
Bianco, A. Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin. Drug Deliv., 2004, 1(1), 57-65.
[http://dx.doi.org/10.1517/17425247.1.1.57] [PMID: 16296720]
[31]
Huczko, A.; Lange, H.; Calko, E.; Grubek Jaworska, H.; Droszcz, P. Physiological testing of carbon nanotubes: are they asbestos-like? Fullerene Sci. Technol., 2001, 9(2), 251-254.
[http://dx.doi.org/10.1081/FST-100102973]
[32]
Al-Rashed, A.A.; Kalidasan, K.; Kolsi, L.; Velkennedy, R.; Aydi, A.; Hussein, A.K.; Malekshah, E.H. Mixed convection and entropy generation in a nanofluid filled cubical open cavity with a central isothermal block. Int. J. Mech. Sci., 2018, 135, 362-375.
[http://dx.doi.org/10.1016/j.ijmecsci.2017.11.033]
[33]
Ahmed, S.E.; Mansour, M.; Hussein, A.K.; Sivasankaran, S. Mixed convection from a discrete heat source in enclosures with two adjacent moving walls and filled with micropolar nanofluids. Eng. Sci. Technol. Int J., 2016, 19(1), 364-376.
[http://dx.doi.org/10.1016/j.jestch.2015.08.005]
[34]
Hussein, A.K.; Ahmed, S.E.; Mohammed, H.; Khan, W.A. Mixed convection of water-based nanofluids in a rectangular inclined lid-driven cavity partially heated from its left side wall. J. Comput. Theor. Nanosci., 2013, 10(9), 2222-2233.
[http://dx.doi.org/10.1166/jctn.2013.3191]
[35]
Mohammed, H.; Al-Aswadi, A.; Abu-Mulaweh, H.; Hussein, A.K.; Kanna, P.R. Mixed convection over a backward-facing step in a vertical duct using nanofluids-buoyancy opposing case. J. Comput. Theor. Nanosci., 2014, 11(3), 860-872.
[http://dx.doi.org/10.1166/jctn.2014.3339]
[36]
Chand, R.; Rana, G.; Hussein, A. On the onsetof thermal instability in a low Prandtl number nanofluid layer in a porous medium. J. Appl. Fluid Mech., 2015, 8(2), 265-272.
[http://dx.doi.org/10.18869/acadpub.jafm.67.221.22830]
[37]
Mehra, N.K.; Jain, N.K. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J. Drug Target., 2013, 21(8), 745-758.
[http://dx.doi.org/10.3109/1061186X.2013.813028] [PMID: 23822734]
[38]
Khan, M.U.; Reddy, K.R.; Snguanwongchai, T.; Haque, E.; Gomes, V.G. Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym. Sci., 2016, 294(10), 1599-1610.
[http://dx.doi.org/10.1007/s00396-016-3922-7]
[39]
Fatemi, S.M.; Foroutan, M. Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J. Nanostructure Chem, 2016, 6(1), 29-40.
[http://dx.doi.org/10.1007/s40097-015-0175-9]
[40]
Smalley, R.; Hauge, R.; Kittrell, W.; Sivarajan, R.; Strano, M.; Bachilo, S.; Weisman, R. Single-wall carbon nanotubes of precisely defined type and use thereof. US20040038251A1, February, 2004.
[41]
Karimi, M.; Solati, N.; Amiri, M.; Mirshekari, H.; Mohamed, E.; Taheri, M.; Hashemkhani, M.; Saeidi, A.; Estiar, M.A.; Kiani, P.; Ghasemi, A.; Basri, S.M.; Aref, A.R.; Hamblin, M.R. Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle. Expert Opin. Drug Deliv., 2015, 12(7), 1071-1087.
[http://dx.doi.org/10.1517/17425247.2015.1003806] [PMID: 25601356]
[42]
Gupta, V.; Moradi, O.; Tyagi, I.; Agarwal, S.; Sadegh, H.; Shahryari Ghoshekandi, R.; Makhlouf, A.; Goodarzi, M.; Garshasbi, A. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification: A review. Crit. Rev. Environ. Sci. Technol., 2016, 46(2), 93-118.
[http://dx.doi.org/10.1080/10643389.2015.1061874]
[43]
Flores Guerrero, M.; Elizalde, L.E.; Elias Zuniga, A.; Ledezma, R.; de los Santos, G.; Avila Orta, C. Surface modification of single-walled carbon nanotubes and their use in the polymerization of acrylic monomers. Des. Monomers Polym., 2014, 17(5), 416-424.
[http://dx.doi.org/10.1080/15685551.2013.867564]
[44]
Kumar, S.; Ahlawat, W.; Kumar, R.; Dilbaghi, N. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens. Bioelectron., 2015, 70, 498-503.
[http://dx.doi.org/10.1016/j.bios.2015.03.062] [PMID: 25899923]
[45]
Pyatkov, F.; Futterling, V.; Khasminskaya, S.; Flavel, B.S.; Hennrich, F.; Kappes, M.M.; Krupke, R.; Pernice, W.H. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat. Photonics, 2016, 10(6), 420.
[http://dx.doi.org/10.1038/nphoton.2016.70]
[46]
Herrero, M.A.; Prato, M. Recent advances in the covalent functionalization of carbon nanotubes. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2008, 483(1), 21-32.
[http://dx.doi.org/10.1080/15421400801898033]
[47]
Lagally, C.; Reynolds, C.; Grieshop, A.; Kandlikar, M.; Rogak, S. Carbon nanotube and fullerene emissions from spark-ignited engines. Aerosol Sci. Technol., 2012, 46(2), 156-164.
[http://dx.doi.org/10.1080/02786826.2011.617399]
[48]
Kharisov, B.I.; Kharissova, O.V. Coordination and organometallic compounds in the functionalization of carbon nanotubes. J. Coord. Chem., 2014, 67(23-24), 3769-3808.
[http://dx.doi.org/10.1080/00958972.2014.888063]
[49]
Jafer, A.C.; Veetil, V.T.; Prabhavathi, G.; Yamuna, R. Covalent functionalization and characterization of multi-walled carbon nanotubes using 5, 10, 15, 20-tetra (4-aminophenyl) porphyrinatonickel (II). fullerenes. Fuller. Nanotub. Car. N., 2018, 26(11), 739-745.
[http://dx.doi.org/10.1080/1536383X.2018.1492558]
[50]
Gumpu, M.B.; Krishnan, U.M.; Rayappan, J.B.B. Design and development of amperometric biosensor for the detection of lead and mercury ions in water matrix-a permeability approach. Anal. Bioanal. Chem., 2017, 409(17), 4257-4266.
[http://dx.doi.org/10.1007/s00216-017-0376-9] [PMID: 28527002]
[51]
Janas, D.; Boncel, S.; Koziol, K.K. Electrothermal halogenation of carbon nanotube films. Carbon, 2014, 73, 259-266.
[http://dx.doi.org/10.1016/j.carbon.2014.02.062]
[52]
Moradi, L.; Etesami, I. New route for bromination of multiwalled carbon nanotubes under mild and efficient conditions. Fuller. Nanotub. Car. N., 2016, 24(3), 213-218.
[http://dx.doi.org/10.1080/1536383X.2015.1136820]
[53]
Yu, J.G.; Chen, N.; Jiao, F.P.; Liu, Q.; Jiang, X.Y.; Jiang, J-H.; Chen, X.Q. Chemical attachment of hydrogen iodide to carbon nanotubes. Sci. Adv. Mater., 2015, 7(6), 1021-1027.
[http://dx.doi.org/10.1166/sam.2015.2172]
[54]
Qidwai, A.; Shukla, S.K.; Kumar, R.; Pandey, A.; Dikshit, A. Introduction of Nanotechnology in the Field of Biofuel Production. In: Srivastava, N.; Srivastava, M.; Pandey, H.; Mishra, P.K.; Ramteke, P.W. (Eds.).Green Nanotechnology for Biofuel Production; Springer: Switzerland AG, 2018, p. 29-38.
[http://dx.doi.org/10.1007/978-3-319-75052-1_3]
[55]
Mallakpour, S.; Soltanian, S. Surface functionalization of carbon nanotubes: Fabrication and applications. RSC Advances, 2016, 6(111), 109916-109935.
[http://dx.doi.org/10.1039/C6RA24522F]
[56]
Hughes, G.A. Nanostructure-mediated drug delivery. In: Balogh, L.P. (Ed.).Nanomedicine in Cancer; Pan Stanford: Temasek Boulevard, 2017, p. 21-46.
[http://dx.doi.org/10.1201/b22358-2]
[57]
Le Goff, A.; Holzinger, M.; Cosnier, S. Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells. Cell. Mol. Life Sci., 2015, 72(5), 941-952.
[http://dx.doi.org/10.1007/s00018-014-1828-4] [PMID: 25577279]
[58]
Ge, C.; Tian, J.; Zhao, Y.; Chen, C.; Zhou, R.; Chai, Z. Towards understanding of nanoparticle-protein corona. Arch. Toxicol., 2015, 89(4), 519-539.
[http://dx.doi.org/10.1007/s00204-015-1458-0] [PMID: 25637415]
[59]
Zhang, Y.; Li, M.; Gao, L.; Duan, K.; Wang, J.; Weng, J.; Feng, B. Effect of dexamethasone, β-glycerophosphate, OGP and BMP2 in TiO2 nanotubes on differentiation of MSCs. Mater. Technol., 2016, 31(10), 603-612.
[http://dx.doi.org/10.1080/10667857.2016.1152655]
[60]
Jeuken, L.J. Structure and Modification of Electrode Materials for Protein Electrochemistry. In: Jeuken, L.J.C. (Ed.)Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics; Springer: Switzerland AG, 2016, p. 43-73.
[http://dx.doi.org/10.1007/10_2015_5011]
[61]
Jambhrunkar, M.; Yu, M.; Zhang, H.; Abbaraju, P.; Meka, A.K.; Cavallaro, A.; Lu, Y.; Mitter, N.; Yu, C. Pristine mesoporous carbon hollow spheres as safe adjuvants induce excellent Th2-biased immune response. Nano Res., 2018, 11(1), 370-382.
[http://dx.doi.org/10.1007/s12274-017-1640-1]
[62]
Yang, W.; Ratinac, K.R.; Ringer, S.P.; Thordarson, P.; Gooding, J.J.; Braet, F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene. Angew. Chem. Int. Ed. Engl., 2010, 49(12), 2114-2138.
[http://dx.doi.org/10.1002/anie.200903463] [PMID: 20187048]
[63]
Lawal, A.T. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater. Res. Bull., 2016, 73, 308-350.
[http://dx.doi.org/10.1016/j.materresbull.2015.08.037]
[64]
Dong, X.; Wei, C.; Liang, J.; Liu, T.; Kong, D.; Lv, F. Thermosensitive hydrogel loaded with chitosan-carbon nanotubes for near infrared light triggered drug delivery. Colloids Surf. B Biointerfaces, 2017, 154, 253-262.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.036] [PMID: 28347947]
[65]
Qiu, P.; Wang, L.; Mao, C.B. TEM Characterization of Biological and Inorganic Nanocomposites. In: Kumar, C.S.S.R. (Ed.)Transmission Electron Microscopy Characterization of Nanomaterials; Springer: Switzerland AG, 2014, p. 1-41.
[http://dx.doi.org/10.1007/978-3-642-38934-41]
[66]
Moradian, H.; Fasehee, H.; Keshvari, H.; Faghihi, S. Poly(ethyleneimine) functionalized carbon nanotubes as efficient nano-vector for transfecting mesenchymal stem cells. Colloids Surf. B Biointerfaces, 2014, 122, 115-125.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.056] [PMID: 25033431]
[67]
Hossein Panahi, F.; Peighambardoust, S.J.; Davaran, S.; Salehi, R. Development and characterization of PLA-mPEG copolymer containing iron nanoparticle-coated carbon nanotubes for controlled delivery of Docetaxel. Polymer (Guildf.), 2017, 117, 117-131.
[http://dx.doi.org/10.1016/j.polymer.2017.03.084]
[68]
Huo, L.; Wang, D.; Liu, H.; Jia, P.; Gao, J. Cytoxicity, dynamic and thermal properties of bio-based rosin-epoxy resin/castor oil polyurethane/carbon nanotubes bio-nanocomposites. J. Biomater. Sci. Polym. Ed., 2016, 27(11), 1100-1114.
[http://dx.doi.org/10.1080/09205063.2016.1183332] [PMID: 27117086]
[69]
Qi, X.; Rui, Y.; Fan, Y.; Chen, H.; Ma, N.; Wu, Z. Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor-targeted delivery of doxorubicin in vivo. Colloids Surf. B Biointerfaces, 2015, 133, 314-322.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.003] [PMID: 26123852]
[70]
Ghanghoria, R.; Tekade, R.K.; Mishra, A.K.; Chuttani, K.; Jain, N.K. Luteinizing hormone-releasing hormone peptide tethered nanoparticulate system for enhanced antitumoral efficacy of paclitaxel. Nanomedicine (Lond.), 2016, 11(7), 797-816.
[http://dx.doi.org/10.2217/nnm.16.19] [PMID: 26980704]
[71]
Yang, G.Z. Implantable Sensors and Systems. From Theory to Practice, 2018, 1-17.
[72]
Puangjan, A.; Chaiyasith, S.; Taweeporngitgul, W.; Keawtep, J. Application of functionalized multi-walled carbon nanotubes supporting cuprous oxide and silver oxide composite catalyst on copper substrate for simultaneous detection of vitamin B2, vitamin B6 and ascorbic acid. Mater. Sci. Eng. C, 2017, 76, 383-397.
[http://dx.doi.org/10.1016/j.msec.2017.03.040] [PMID: 28482542]
[73]
Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin. Cell. Mol. Life Sci., 2017, 74(21), 3897-3911.
[http://dx.doi.org/10.1007/s00018-017-2619-5] [PMID: 28785806]
[74]
Hameed, S.; Munawar, A.; Khan, W.S.; Mujahid, A.; Ihsan, A.; Rehman, A.; Ahmed, I.; Bajwa, S.Z. Assessing manganese nanostructures based carbon nanotubes composite for the highly sensitive determination of vitamin C in pharmaceutical formulation. Biosens. Bioelectron., 2017, 89(Pt 2), 822-828.
[http://dx.doi.org/10.1016/j.bios.2016.10.005] [PMID: 27816593]
[75]
Ensafi, A.A.; Heydari, E. Detection of Riboflavin Using DNAModified Electrochemically Treated Carbon Nanotubes-Pencil Graphite Electrode, International Conference on Enabling Science and Nanotechnology, 2012; 5-7 Jan. 2012.
[http://dx.doi.org/10.1109/ESciNano.2012.6149637]
[76]
Gholizadeh, S.; Moztarzadeh, F.; Haghighipour, N.; Ghazizadeh, L.; Baghbani, F.; Shokrgozar, M.A.; Allahyari, Z. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering. Int. J. Biol. Macromol., 2017, 97, 365-372.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.086] [PMID: 28064056]
[77]
Gutierrez Hernandez, J.M.; Escobar Garcia, D.M.; Escalante, A.; Flores, H.; Gonzalez, F.J.; Gatenholm, P.; Toriz, G. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Mater. Sci. Eng. C, 2017, 75, 445-453.
[http://dx.doi.org/10.1016/j.msec.2017.02.074] [PMID: 28415484]
[78]
Silva, E.; Vasconcellos, L.M.R.; Rodrigues, B.V.M.; Dos Santos, D.M.; Campana Filho, S.P.; Marciano, F.R.; Webster, T.J.; Lobo, A.O. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Mater. Sci. Eng. C, 2017, 73, 31-39.
[http://dx.doi.org/10.1016/j.msec.2016.11.075] [PMID: 28183613]
[79]
Karadas, N.; Bozal Palabiyik, B.; Uslu, B.; Ozkan, S.A. Functionalized carbon nanotubes With silver nanoparticles to fabricate a sensor for the determination of zolmitriptan in its dosage forms and biological samples. Sens. Actuators B Chem., 2013, 186, 486-494.
[http://dx.doi.org/10.1016/j.snb.2013.06.055]
[80]
Mazloum Ardakani, M.; Ahmadi, S.H.; Safaei Mahmoudabadi, Z.; Khoshroo, A. Nano composite system based on fullerene functionalized carbon nanotubes for simultaneous determination of levodopa and acetaminophen. Measurement, 2016, 91, 162-167.
[http://dx.doi.org/10.1016/j.measurement.2016.05.035]
[81]
Yola, M.L.; Eren, T.; Atar, N. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron., 2014, 60, 277-285.
[http://dx.doi.org/10.1016/j.bios.2014.04.045] [PMID: 24832202]
[82]
Harvey, J.D.; Jena, P.V.; Baker, H.A.; Zerze, G.H.; Williams, R.M.; Galassi, T.V.; Roxbury, D.; Mittal, J.; Heller, D.A. A carbon nanotube reporter of microRNA hybridization events in vivo. Nat. Biomed. Eng, 2017, 1, 0041.
[83]
Eguilaz, M.; Gutierrez, F.; Gonzalez Dominguez, J.M.; Martinez, M.T.; Rivas, G. Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors. Biosens. Bioelectron., 2016, 86, 308-314.
[http://dx.doi.org/10.1016/j.bios.2016.06.003] [PMID: 27387261]
[84]
Mazloum Ardakani, M.; Hosseinzadeh, L.; Khoshroo, A. Label-free electrochemical immunosensor for detection of tumor necrosis factor α based on fullerene-functionalized carbon nanotubes/ionic liquid. J. Electroanal. Chem. (Lausanne Switz.), 2015, 757, 58-64.
[http://dx.doi.org/10.1016/j.jelechem.2015.09.006]
[85]
Shrestha, B.K.; Ahmad, R.; Mousa, H.M.; Kim, I.G.; Kim, J.I.; Neupane, M.P.; Park, C.H.; Kim, C.S. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film. J. Colloid Interface Sci., 2016, 482, 39-47.
[http://dx.doi.org/10.1016/j.jcis.2016.07.067] [PMID: 27485503]
[86]
Wasik, D.; Mulchandani, A.; Yates, M.V. A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus. Biosens. Bioelectron., 2017, 91, 811-816.
[http://dx.doi.org/10.1016/j.bios.2017.01.017] [PMID: 28152487]
[87]
Vamvakaki, V.; Fouskaki, M.; Chaniotakis, N. Electrochemical biosensing systems based on carbon nanotubes and carbon nanofibers. Anal. Lett., 2007, 40(12), 2271-2287.
[http://dx.doi.org/10.1080/00032710701575520]
[88]
Yang, Y.J.; Li, W. Self-assembly of gold nanoparticles and multiwalled carbon nanotubes on graphene oxide nanosheets for electrochemical sensing applications. Fuller. Nanotub. Car. N., 2018, 26(12), 837-845.
[http://dx.doi.org/10.1080/1536383X.2018.1508132]
[89]
Wolf, A.; Buchman, A.; Eitan, A.; Fine, T.; Nevo, Y.; Heyman, A.; Shoseyov, O. Improved adhesives containing CNT/SP1 nano fillers. J. Adhes., 2012, 88(4-6), 435-451.
[http://dx.doi.org/10.1080/00218464.2012.660398]
[90]
Bari, S.; Chu, P.P.Y.; Lim, A.; Fan, X.; Gay, F.P.H.; Bunte, R.M.; Lim, T.K.H.; Li, S.; Chiu, G.N.C.; Hwang, W.Y.K. Protective role of functionalized single walled carbon nanotubes enhance ex vivo expansion of hematopoietic stem and progenitor cells in human umbilical cord blood. Nanomedicine (Lond.), 2013, 9(8), 1304-1316.
[http://dx.doi.org/10.1016/j.nano.2013.05.009] [PMID: 23732300]
[91]
Gautam, U.K.; Costa, P.M.; Bando, Y.; Fang, X.; Li, L.; Imura, M.; Golberg, D. Recent developments in inorganically filled carbon nanotubes: successes and challenges. Sci. Technol. Adv. Mater., 2010, 11(5)054501
[http://dx.doi.org/10.1088/1468-6996/11/5/054501] [PMID: 27877358]
[92]
Chen, S.; Hu, S.; Smith, E.F.; Ruenraroengsak, P.; Thorley, A.J.; Menzel, R.; Goode, A.E.; Ryan, M.P.; Tetley, T.D.; Porter, A.E.; Shaffer, M.S.P. Aqueous cationic, anionic and non-ionic multi-walled carbon nanotubes, functionalised with minimal framework damage, for biomedical application. Biomaterials, 2014, 35(17), 4729-4738.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.002] [PMID: 24631251]
[93]
Ohta, T.; Hashida, Y.; Yamashita, F.; Hashida, M. Development of novel drug and gene delivery carriers composed of single-walled carbon nanotubes and designed peptides with PEGylation. J. Pharm. Sci., 2016, 105(9), 2815-2824.
[http://dx.doi.org/10.1016/j.xphs.2016.03.031] [PMID: 27179670]
[94]
Rajavel, K.; Gomathi, R.; Manian, S.; Rajendra Kumar, R.T. Characterization of tannic acid- and gallic acid-functionalized single- and multiwalled carbon nanotubes and an in vitro evaluation of their antioxidant properties. J. Taibah Univ. Med. Sci., 2016, 11(5), 469-477.
[http://dx.doi.org/10.1016/j.jtumed.2016.07.006]
[95]
Liang, X.; Shang, W.; Chi, C.; Zeng, C.; Wang, K.; Fang, C.; Chen, Q.; Liu, H.; Fan, Y.; Tian, J. Dye-conjugated single-walled carbon nanotubes induce photothermal therapy under the guidance of near-infrared imaging. Cancer Lett., 2016, 383(2), 243-249.
[http://dx.doi.org/10.1016/j.canlet.2016.09.006] [PMID: 27693557]
[96]
Taghavi, S.; Nia, A.H.; Abnous, K.; Ramezani, M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int. J. Pharm., 2017, 516(1-2), 301-312.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.027] [PMID: 27840158]
[97]
Liu, J.; Yi, L. Preparations and Characterizations of Functional Liquid Metal Materials. In: Liu, J.; Yi L. (Eds.).Liquid Metal Biomaterials; Springer: Switzerland AG, 2018, p. 95-115.
[http://dx.doi.org/10.1007/978-981-10-5607-9_5]
[98]
Dai, H.; Xiao, D.; He, H.; Li, H.; Yuan, D.; Zhang, C. Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: A review. Mikrochim. Acta, 2015, 182(5-6), 893-908.
[http://dx.doi.org/10.1007/s00604-014-1376-5]
[99]
Adewunmi, A.A.; Ismail, S.; Sultan, A.S. Carbon nanotubes (CNTs) nanocomposite hydrogels developed for various applications: A critical review. J. Inorg. Organomet. Polym. Mater., 2016, 26(4), 717-737.
[http://dx.doi.org/10.1007/s10904-016-0379-6]
[100]
Hong, S.Y.; Tobias, G.; Al-Jamal, K.T.; Ballesteros, B.; Ali-Boucetta, H.; Lozano-Perez, S.; Nellist, P.D.; Sim, R.B.; Finucane, C.; Mather, S.J.; Green, M.L.; Kostarelos, K.; Davis, B.G. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater., 2010, 9(6), 485-490.
[http://dx.doi.org/10.1038/nmat2766] [PMID: 20473287]
[101]
Kamil Reza, K.; Srivastava, S.; Yadav, S.K.; Biradar, A.M. Biofunctionalized carbon nanotubes platform for biomedical applications. Mater. Lett., 2014, 126, 126-130.
[http://dx.doi.org/10.1016/j.matlet.2014.04.017]
[102]
Robinson, J.T.; Welsher, K.; Tabakman, S.M.; Sherlock, S.P.; Wang, H.; Luong, R.; Dai, H. High performance in vivo near-IR (> 1 um) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res., 2010, 3(11), 779-793.
[http://dx.doi.org/10.1007/s12274-010-0045-1] [PMID: 21804931]
[103]
Hinds, B. Carbon Nanotube Membranes as an Idealized Platform For Protein Channel Mimetic Pumps. InResponsive Membranes and Materials; Bhattacharyya, D.; Schafer, T.; Wickramasinghe, S.R.; Daunert, S., Eds.; John Wiley Sons, Ltd., 2013, pp. 51-71.
[104]
Lin, X.; Yang, Q.; Yan, F.; Zhang, B.; Su, B. Gated molecular transport in highly ordered heterogeneous nanochannel array electrode. ACS Appl. Mater. Interfaces, 2016, 8(48), 33343-33349.
[http://dx.doi.org/10.1021/acsami.6b13772] [PMID: 27934137]
[105]
Bianco, A.; Kostarelos, K.; Partidos, C.D.; Prato, M. Biomedical applications of functionalised carbon nanotubes. Chem. Commun. (Camb.), 2005, 5(5), 571-577.
[http://dx.doi.org/10.1039/b410943k] [PMID: 15672140]
[106]
Amenta, V.; Aschberger, K. Carbon nanotubes: potential medical applications and safety concerns. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(3), 371-386.
[http://dx.doi.org/10.1002/wnan.1317] [PMID: 25429905]
[107]
Franco, A.A. Polymer Electrolyte Fuel Cells: Science, Applications, and Challenges. Pan Stanford: Temasek Boulevard, 2016; Vol. 2, pp. 233-245.
[108]
Sahoo, S.K.; Misra, R.; Parveen, S. Nanoparticles: A Boon to Drug Delivery, Therapeutics, Diagnostics and Imaging. In: Balogh, L.P. (Ed.).Nanomedicine in Cancer; Pan Stanford: Temasek Boulevard, 2017, p. 47-98.
[109]
Bianco, A.; Pantarotto, D.; Prato, M. Functionalized carbon nanotubes, a process for preparing the same and their use in medicinal chemistry. WO2004089819A1, October 2004.
[110]
McCall, M.; Moghaddam, M. Methods for the chemical and physical modification of nanotubes, methods for linking the nanotubes, methods for the directed positioning of nanotubes, and uses thereof. WO2004020450, March, 2006
[111]
Harnack, O.; Raible, I.; Yasuda, A.; Vossmeyer, T. Method for patterning organic materials or combinations of organic and inorganic materials. WO2013074622A1, May, 2005.
[112]
Awano, Y.; Yamaguchi, Y.; Arinaga, K.; Fujita, S. Carbon nanotubes, process for their production, and catalyst for production of carbon nanotubes. US20050042162A1, February, 2005.
[113]
Robeson, L. M.; Rothrock, G. D. Nanostructured surfaces for biomedical/ biomaterial applications and processes thereof. US9314548B2, April, 2019.
[114]
Afazali-Ardakani, A.; Hannon, J.B.; Kagan, C.R.; Tulevski, G.S. Methods for separating carbon nanotubes by enhancing the density differential. US7727505B2, June, 2010.
[115]
Resasco, D.E.; Kitiyanan, B.; Harwell, J.H.; Alvarez, W. Carbon nanotube product comprising single-walled carbon nanotubes. US6994907B2, February, 2006.
[116]
Harutyunyan, A.; Mora, E.; Tokune, T. Methods for growing long carbon single-walled nanotubes. JP5102633B2, December, 2011.
[117]
Clarke, M.S.F. Spatial localization of dispersed single walled carbon nanotubes into useful structures. US20030012723A1, January, 2003.
[118]
Moravsky, A.P.; Loutfy, R.O. Double-walled carbon nanotubes and methods for production and application. US8404209B2, March, 2013.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy