Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Role of Prostaglandins in Multiple Sclerosis

Author(s): Surendra Gulla, Dakshayani Lomada, Anusha Lade, Reddanna Pallu and Madhava C. Reddy*

Volume 26, Issue 7, 2020

Page: [730 - 742] Pages: 13

DOI: 10.2174/1381612826666200107141328

Price: $65

Abstract

Multiple sclerosis (MS) is an autoimmune demyelinating disorder with chronic inflammation in the central nervous system, manifested by both physical and cognitive disability. Neuroinflammation and neurodegeneration are the phenomena that appear in the central nervous system associated with various neurodegenerative disorders, including MS, Alzheimer’s diseases, amyotrophic lateral sclerosis and Parkinson’s disease. Prostaglandins are one of the major mediators of inflammation that exhibit an important function in enhancing neuroinflammatory and neurodegenerative processes. These mediators would help understand the pathophysiology of MS as the combination of antagonists or agonists of prostaglandins receptors could be beneficial during the treatment of MS. The present review focuses on the role played by different prostaglandins and the enzymes which produced them in the etiopathogenesis of MS.

Keywords: Multiple sclerosis, prostaglandins, cyclooxygenase, central nervous system, inflammation, prostaglandins.

[1]
Singhal BS, Advani H. Multiple sclerosis in India: an overview. Ann Indian Acad Neurol 2015; 18(Suppl. 1): S2-5.
[http://dx.doi.org/10.4103/0972-2327.164812] [PMID: 26538844]
[2]
Wingerchuk DM. Environmental factors in multiple sclerosis: Epstein-Barr virus, vitamin D, and cigarette smoking. Mt Sinai J Med 2011; 78(2): 221-30.
[http://dx.doi.org/10.1002/msj.20240] [PMID: 21425266]
[3]
Correale J, Gaitán MI. Multiple sclerosis and environmental factors: the role of vitamin D, parasites, and Epstein-Barr virus infection. Acta Neurol Scand 2015; 132(199): 46-55.
[http://dx.doi.org/10.1111/ane.12431] [PMID: 26046559]
[4]
Oksenberg JR, Baranzini SE. Multiple sclerosis genetics-is the glass half full, or half empty? Nat Rev Neurol 2010; 6(8): 429-37.
[http://dx.doi.org/10.1038/nrneurol.2010.91] [PMID: 20625377]
[5]
Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. Lancet 2017; 389(10076): 1336-46.
[http://dx.doi.org/10.1016/S0140-6736(16)30959-X] [PMID: 27889190]
[6]
Mishra MK, Yong VW. Myeloid cells - targets of medication in multiple sclerosis. Nat Rev Neurol 2016; 12(9): 539-51.
[http://dx.doi.org/10.1038/nrneurol.2016.110] [PMID: 27514287]
[7]
Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23: 683-747.
[http://dx.doi.org/10.1146/annurev.immunol.23.021704.115707] [PMID: 15771584]
[8]
Aloisi F. Immune function of microglia. Glia 2001; 36(2): 165-79.
[http://dx.doi.org/10.1002/glia.1106] [PMID: 11596125]
[9]
Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201(2): 233-40.
[http://dx.doi.org/10.1084/jem.20041257] [PMID: 15657292]
[10]
Brucklacher-Waldert V, Stuerner K, Kolster M, Wolthausen J, Tolosa E. Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain 2009; 132(Pt 12): 3329-41.
[http://dx.doi.org/10.1093/brain/awp289] [PMID: 19933767]
[11]
Friese MA, Fugger L. Pathogenic CD8(+) T cells in multiple sclerosis. Ann Neurol 2009; 66(2): 132-41.
[http://dx.doi.org/10.1002/ana.21744] [PMID: 19743458]
[12]
Jacobsen M, Cepok S, Quak E, et al. Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 2002; 125(Pt 3): 538-50.
[http://dx.doi.org/10.1093/brain/awf059] [PMID: 11872611]
[13]
McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 2005; 175(5): 3025-32.
[http://dx.doi.org/10.4049/jimmunol.175.5.3025] [PMID: 16116190]
[14]
Obermeier B, Lovato L, Mentele R, et al. Related B cell clones that populate the CSF and CNS of patients with multiple sclerosis produce CSF immunoglobulin. J Neuroimmunol 2011; 233(1-2): 245-8.
[http://dx.doi.org/10.1016/j.jneuroim.2011.01.010] [PMID: 21353315]
[15]
Bishop M, Rumrill PD. Multiple sclerosis: etiology, symptoms, incidence and prevalence, and implications for community living and employment. Work 2015; 52(4): 725-34.
[http://dx.doi.org/10.3233/WOR-152200] [PMID: 26639011]
[16]
Ghasemi N, Razavi S, Nikzad E. Multiple sclerosis: pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J 2017; 19(1): 1-10.
[PMID: 28367411]
[17]
Sato F, Omura S, Martinez NE, Tsunoda I. Animal models of multiple sclerosis. Neuroinflammation 2011; pp. 55-79.
[http://dx.doi.org/10.1016/B978-0-12-811709-5.00003-X]
[18]
Kapoor R, Huang Y-S. Gamma linolenic acid: an antiinflammatory omega-6 fatty acid. Curr Pharm Biotechnol 2006; 7(6): 531-4.
[http://dx.doi.org/10.2174/138920106779116874] [PMID: 17168669]
[19]
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Brain Res Rev 2006; 52(2): 201-43.
[http://dx.doi.org/10.1016/j.brainresrev.2006.02.002] [PMID: 16647138]
[20]
Narumiya S, FitzGerald GA. Genetic and pharmacological analysis of prostanoid receptor function. J Clin Invest 2001; 108(1): 25-30.
[http://dx.doi.org/10.1172/JCI200113455] [PMID: 11435452]
[21]
Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 2001; 41(1): 661-90.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.661] [PMID: 11264472]
[22]
Kokotou MG, Limnios D, Nikolaou A, Psarra A, Kokotos G. Inhibitors of phospholipase A2 and their therapeutic potential: an update on patents (2012-2016). Expert Opin Ther Pat 2017; 27(2): 217-25.
[http://dx.doi.org/10.1080/13543776.2017.1246540] [PMID: 27718763]
[23]
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111(10): 6130-85.
[http://dx.doi.org/10.1021/cr200085w] [PMID: 21910409]
[24]
Misslin C, et al. Phospholipase A2 is involved in galactosylsphingosine-induced astrocyte toxicity, neuronal damage and demyelination 2017; 12(11) e0187217
[http://dx.doi.org/10.1371/journal.pone.0187217]
[25]
Marusic S, Leach MW, Pelker JW, et al. Cytosolic phospholipase A2 α-deficient mice are resistant to experimental autoimmune encephalomyelitis. J Exp Med 2005; 202(6): 841-51.
[http://dx.doi.org/10.1084/jem.20050665] [PMID: 16172261]
[26]
Baek H, et al. Comparison of administration routes on the protective effects of bee venom phospholipase a2 in a mouse model of Parkinson’s disease. J Neuroimmunol 2018; 233(1-2): 245-8.
[http://dx.doi.org/10.3389/fnagi.2018.00179]
[27]
Marusic S, Thakker P, Pelker JW, et al. Blockade of cytosolic phospholipase A2 α prevents experimental autoimmune encephalomyelitis and diminishes development of Th1 and Th17 responses. J Neuroimmunol 2008; 204(1-2): 29-37.
[http://dx.doi.org/10.1016/j.jneuroim.2008.08.012] [PMID: 18829119]
[28]
Topbas C, et al. Measurement of lipoprotein-associated phospholipase A2 by use of 3 different methods: exploration of discordance between ELISA and activity Assays. Clin Chem 2018; 64(4): 697-704.
[29]
Thakker P, Marusic S, Stedman NL, et al. Cytosolic phospholipase A2α blockade abrogates disease during the tissue-damage effector phase of experimental autoimmune encephalomyelitis by its action on APCs. J Immunol 2011; 187(4): 1986-97.
[http://dx.doi.org/10.4049/jimmunol.1002789] [PMID: 21746963]
[30]
Vana AC, Li S, Ribeiro R, Tchantchou F, Zhang Y. Arachidonyl trifluoromethyl ketone ameliorates experimental autoimmune encephalomyelitis via blocking peroxynitrite formation in mouse spinal cord white matter. Exp Neurol 2011; 231(1): 45-55.
[http://dx.doi.org/10.1016/j.expneurol.2011.05.014] [PMID: 21683698]
[31]
Wu H, Liu H, Zuo F, Zhang L. Adenoviruses-mediated RNA interference targeting cytosolic phospholipase A2α attenuates focal ischemic brain damage in mice. Mol Med Rep 2018; 17(4): 5601-10.
[http://dx.doi.org/10.3892/mmr.2018.8610] [PMID: 29484397]
[32]
Yang D, Ji H-F, Zhang X-M, et al. Protective effect of cytosolic phospholipase A2 inhibition against inflammation and degeneration by promoting regulatory T cells in rats with experimental autoimmune encephalomyelitis. Mediators of Inflamm 2014; 2014 890139
[http://dx.doi.org/10.1155/2014/890139]
[33]
Ye M, Chung HS, Lee C, et al. Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer’s disease. J Neuroinflammation 2016; 13(1): 10.
[http://dx.doi.org/10.1186/s12974-016-0476-z] [PMID: 26772975]
[34]
Kalyvas A, Baskakis C, Magrioti V, et al. Differing roles for members of the phospholipase A2 superfamily in experimental autoimmune encephalomyelitis. Brain 2009; 132(Pt 5): 1221-35.
[http://dx.doi.org/10.1093/brain/awp002] [PMID: 19218359]
[35]
Chung ES, Lee G, Lee C, et al. Bee venom phospholipase A2, a novel Foxp3+ regulatory T cell inducer protects dopaminergic neurons by modulating neuroinflammatory responses in a mouse model of Parkinson’s disease. J Immunol 2015; 195(10): 4853-60.
[36]
Xiang Y, Chen L, Liu H, et al. Inhibition of sPLA2-IIA prevents LPS-induced neuroinflammation by suppressing ERK1/2-cPLA2α pathway in mice cerebral cortex. PLoS One 2013; 8(10) e77909
[37]
Shaftel SS, Olschowka JA, Hurley SD, Moore AH, O’Banion MK. COX-3: a splice variant of cyclooxygenase-1 in mouse neural tissue and cells. Brain Res Mol Brain Res 2003; 119(2): 213-5.
[http://dx.doi.org/10.1016/j.molbrainres.2003.09.006] [PMID: 14625089]
[38]
Rose JW, Hill KE, Watt HE, Carlson NG. Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion. J Neuroimmunol 2004; 149(1-2): 40-9.
[http://dx.doi.org/10.1016/j.jneuroim.2003.12.021] [PMID: 15020063]
[39]
Morgan AJ, et al. Detection of cyclooxygenase-2-derived oxygenation products of the endogenous cannabinoid 2-arachidonoyl-glycerol in mouse brain. ACS Chem Neurosci 2018; 9(7): 1552-9.
[40]
Kang X, Qiu J, Li Q, et al. Cyclooxygenase-2 contributes to oxidopamine-mediated neuronal inflammation and injury via the prostaglandin E2 receptor EP2 subtype. Sci Rep 2017; 7(1): 9459.
[http://dx.doi.org/10.1038/s41598-017-09528-z] [PMID: 28842681]
[41]
Jafarnezhad-Ansariha F, Yekaninejad MS, Jamshidi AR, et al. The effects of β-D-mannuronic acid (M2000), as a novel NSAID, on COX1 and COX2 activities and gene expression in ankylosing spondylitis patients and the murine monocyte/macrophage, J774 cell line. Inflammopharmacology 2018; 26(2): 375-84.
[http://dx.doi.org/10.1007/s10787-017-0386-4] [PMID: 28819782]
[42]
Carlson NG, Hill KE, Tsunoda I, Fujinami RS, Rose JW. The pathologic role for COX-2 in apoptotic oligodendrocytes in virus induced demyelinating disease: implications for multiple sclerosis. J Neuroimmunol 2006; 174(1-2): 21-31.
[http://dx.doi.org/10.1016/j.jneuroim.2006.01.008] [PMID: 16516308]
[43]
Carlson NG, Rojas MA, Redd JW, et al. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death. J Neuroinflammation 2010; 7(1): 25.
[http://dx.doi.org/10.1186/1742-2094-7-25] [PMID: 20388219]
[44]
Kelley KA, Ho L, Winger D, et al. Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am J Pathol 1999; 155(3): 995-1004.
[http://dx.doi.org/10.1016/S0002-9440(10)65199-1] [PMID: 10487857]
[45]
Hewett SJ, Uliasz TF, Vidwans AS, Hewett JA. Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture. J Pharmacol Exp Ther 2000; 293(2): 417-25.
[PMID: 10773011]
[46]
Skarke C, Schuss C, Kirchhof A, Doehring A, Geisslinger G, Lötsch J. Pyrosequencing™ of polymorphisms in the COX-2 gene (PTGS2) with reported clinical relevance. Pharmacogenomics 2007; 8(12): 1643-60.
[47]
Ahmad SF, Ansari MA, Nadeem A, Alzahrani MZ, Bakheet SA, Attia SM. Resveratrol improves neuroimmune dysregulation through the inhibition of neuronal toll-like receptors and COX-2 signaling in BTBR T+ Itpr3tf/J mice. Neuromolecular Med 2018; 20(1): 133-46.
[http://dx.doi.org/10.1007/s12017-018-8483-0] [PMID: 29468499]
[48]
Tanaka M, Moran S, Wen J, et al. WWL70 attenuates PGE2 production derived from 2-arachidonoylglycerol in microglia by ABHD6-independent mechanism. J Neuroinflammation 2017; 14(1): 7.
[http://dx.doi.org/10.1186/s12974-016-0783-4] [PMID: 28086912]
[49]
Munschauer FE III, Kinkel RP. Managing side effects of interferon-beta in patients with relapsing-remitting multiple sclerosis. Clin Ther 1997; 19(5): 883-93.
[http://dx.doi.org/10.1016/S0149-2918(97)80042-2] [PMID: 9385477]
[50]
Reess J, J Haas, K Gabriel, A Fuhlrott, M Fiola. Both paracetamol and ibuprofen are equally effective in managing flu-like symptoms in relapsing-remitting multiple sclerosis patients during interferon beta-la (AVONEX®) therapy. Mult Scler J 2002; 8(1)(Suppl.): 15-8.
[51]
Brandes DW, Bigley K, Hornstein W, Cohen H, Au W, Shubin R. Alleviating flu-like symptoms with dose titration and analgesics in MS patients on intramuscular interferon beta-1a therapy: a pilot study. Curr Med Res Opin 2007; 23(7): 1667-72.
[http://dx.doi.org/10.1185/030079907X210741] [PMID: 17588298]
[52]
Klegeris A, McGeer PL. Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr Alzheimer Res 2005; 2(3): 355-65.
[http://dx.doi.org/10.2174/1567205054367883] [PMID: 15974901]
[53]
Mirshafiey A, Mortazavi-Jahromi SS, Taeb M, Cuzzocrea S, Esposito E. Evaluation of the effect of α-L-guluronic acid (G2013) on COX-1, COX-2 activity and gene expression for introducing this drug as a novel NSAID with immunomodulatory property. Recent Pat Inflamm Allergy Drug Discov 2018; 12(2): 162-8.
[http://dx.doi.org/10.2174/1872213X12666180607121809] [PMID: 29879894]
[54]
Palumbo S, Bosetti F. Alterations of brain eicosanoid synthetic pathway in multiple sclerosis and in animal models of demyelination: role of cyclooxygenase-2. Prostaglandins Leukot Essent Fatty Acids 2013; 89(5): 273-8.
[http://dx.doi.org/10.1016/j.plefa.2013.08.008] [PMID: 24095587]
[55]
Kihara Y, Matsushita T, Kita Y, et al. Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis. Proc Natl Acad Sci USA 2009; 106(51): 21807-12.
[http://dx.doi.org/10.1073/pnas.0906891106] [PMID: 19995978]
[56]
Takeuchi C, Matsumoto Y, Kohyama K, et al. Microsomal prostaglandin E synthase-1 aggravates inflammation and demyelination in a mouse model of multiple sclerosis. Neurochem Int 2013; 62(3): 271-80.
[http://dx.doi.org/10.1016/j.neuint.2012.12.007] [PMID: 23266396]
[57]
Bahia MS, Katare YK, Silakari O, Vyas B, Silakari P. Inhibitors of microsomal prostaglandin E2 synthase-1 enzyme as emerging anti-inflammatory candidates. Med Res Rev 2014; 34(4): 825-55.
[http://dx.doi.org/10.1002/med.21306] [PMID: 25019142]
[58]
Norberg JK, Sells E, Chang HH, Alla SR, Zhang S, Meuillet EJ. Targeting inflammation: multiple innovative ways to reduce prostaglandin E2. Pharm Pat Anal 2013; 2(2): 265-88.
[http://dx.doi.org/10.4155/ppa.12.90] [PMID: 24237030]
[59]
Takemiya T, Takeuchi C, Kawakami M. Microsomal prostaglandin e synthase-1 facilitates an intercellular interaction between CD4+ T cells through IL-1β autocrine function in experimental autoimmune encephalomyelitis. Int J Mol Sci 2017; 18(12): 2758.
[60]
Yang H, Sun J, Wang F, Li Y, Bi J, Qu T. Umbilical cord-derived mesenchymal stem cells reversed the suppressive deficiency of T regulatory cells from peripheral blood of patients with multiple sclerosis in a co-culture - a preliminary study. Oncotarget 2016; 7(45): 72537-45.
[http://dx.doi.org/10.18632/oncotarget.12345] [PMID: 27705922]
[61]
Koeberle A, Werz O. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochem Pharmacol 2015; 98(1): 1-15.
[http://dx.doi.org/10.1016/j.bcp.2015.06.022] [PMID: 26123522]
[62]
Chien K, M Yang, S Lee, et al. MAPKs-NF-kappaB pathway plays a crucial role in the antiinflammatory effects of amentoflavone in lipopolysaccharide-treated BV2 microglia. Indian J Pharm Sci 2018; 80(1): 204-10.
[63]
Lauro G, Manfra M, Pedatella S, et al. Identification of novel microsomal prostaglandin E2 synthase-1 (mPGES-1) lead inhibitors from Fragment Virtual Screening. Eur J Med Chem 2017; 125: 278-87.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.042] [PMID: 27688183]
[64]
Yao C, Sakata D, Esaki Y, et al. Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med 2009; 15(6): 633-40.
[http://dx.doi.org/10.1038/nm.1968] [PMID: 19465928]
[65]
Shi J, Johansson J, Nathaniel S, et al. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity. J Immunol 2010; 184(12): 7202-18.
[http://dx.doi.org/10.4049/jimmunol.0903487]
[66]
Bonfill-Teixidor E, Otxoa-de-Amezaga A, Font-Nieves M, Sans-Fons MG, Planas AM. Differential expression of E-type prostanoid receptors 2 and 4 in microglia stimulated with lipopolysaccharide. J Neuroinflammation 2017; 14(1): 3.
[http://dx.doi.org/10.1186/s12974-016-0780-7] [PMID: 28086956]
[67]
Schiffmann S, Weigert A, Männich J, et al. PGE2/EP4 signaling in peripheral immune cells promotes development of experimental autoimmune encephalomyelitis. Biochem Pharmacol 2014; 87(4): 625-35.
[http://dx.doi.org/10.1016/j.bcp.2013.12.006] [PMID: 24355567]
[68]
Imler TJ Jr, Petro TM. Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17+IL-10+ T cells, CD4(-) IFN-γ+ cells, and decreased macrophage IL-6 expression. Int Immunopharmacol 2009; 9(1): 134-43.
[http://dx.doi.org/10.1016/j.intimp.2008.10.015] [PMID: 19022403]
[69]
Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST. Differential effects of prostaglandin derived from ω-6 and ω-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA 2003; 100(4): 1751-6.
[http://dx.doi.org/10.1073/pnas.0334211100] [PMID: 12578976]
[70]
Nagano T, Kimura SH, Takemura M. Prostaglandin E2 induces apoptosis in cultured rat microglia. Brain Res 2014; 1568: 1-9.
[http://dx.doi.org/10.1016/j.brainres.2014.05.011] [PMID: 24845544]
[71]
Chu C-H, Chen SH, Wang Q, et al. PGE2 inhibits IL-10 production via EP2-mediated β-arrestin signaling in neuroinflammatory condition. Mol Neurobiol 2015; 52(1): 587-600.
[http://dx.doi.org/10.1007/s12035-014-8889-0] [PMID: 25218510]
[72]
Liu M, Xiao L, Liu S, et al. Immunoregulation of myelin-specific CD4+ T cell response by neural stem/progenitor cells: role of prostaglandin E2. J Neuroimmunol 2013; 255(1-2): 32-8.
[http://dx.doi.org/10.1016/j.jneuroim.2012.10.013] [PMID: 23200567]
[73]
Zafranskaya M, Nizheharodava D, Yurkevich M, et al. PGE2 contributes to in vitro MSC-mediated inhibition of non-specific and antigen-specific T cell proliferation in MS patients. Scand J Immunol 2013; 78(5): 455-62.
[http://dx.doi.org/10.1111/sji.12102] [PMID: 23944654]
[74]
Xu J, Guo S, Jia Z, Ma S, Li Z, Xue R. Additive effect of prostaglandin E2 and adenosine in mouse experimental autoimmune encephalomyelitis. Prostaglandins Other Lipid Mediat 2013; 100-101: 30-5.
[http://dx.doi.org/10.1016/j.prostaglandins.2012.11.004] [PMID: 23237743]
[75]
Esaki Y, Li Y, Sakata D, et al. Dual roles of PGE2-EP4 signaling in mouse experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2010; 107(27): 12233-8.
[http://dx.doi.org/10.1073/pnas.0915112107] [PMID: 20566843]
[76]
Palumbo S, Toscano CD, Parente L, Weigert R, Bosetti F. The cyclooxygenase-2 pathway via the PGE2 EP2 receptor contributes to oligodendrocytes apoptosis in cuprizone-induced demyelination. J Neurochem 2012; 121(3): 418-27.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07363.x] [PMID: 21699540]
[77]
Rai-Bhogal R, Wong C, Kissoondoyal A, Davidson J, Li H, Crawford DA. Maternal exposure to prostaglandin E2 modifies expression of Wnt genes in mouse brain - An autism connection. Biochem Biophys Rep 2018; 14: 43-53.
[http://dx.doi.org/10.1016/j.bbrep.2018.03.012] [PMID: 29872733]
[78]
Carlson NG, Bellamkonda S, Schmidt L, et al. The role of the prostaglandin E2 receptors in vulnerability of oligodendrocyte precursor cells to death. J Neuroinflammation 2015; 12(1): 101.
[http://dx.doi.org/10.1186/s12974-015-0323-7] [PMID: 25997851]
[79]
Laan LC, Williams AR, Stavenhagen K, et al. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells. FASEB J 2017; 31(2): 719-31.
[http://dx.doi.org/10.1096/fj.201600841R] [PMID: 27806992]
[80]
Urade Y, Hayaishi O. Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta 2000; 1482(1-2): 259-71.
[http://dx.doi.org/10.1016/S0167-4838(00)00161-8] [PMID: 11058767]
[81]
Urade Y, Hayaishi O. Prostaglandin D synthase: structure and function. Vitam Horm 2010; 58: 89-120.
[http://dx.doi.org/10.1016/S0083-6729(00)58022-4]
[82]
Yamashima T, Sakuda K, Tohma Y, et al. Prostaglandin D synthase (β-trace) in human arachnoid and meningioma cells: roles as a cell marker or in cerebrospinal fluid absorption, tumorigenesis, and calcification process. J Neurosci 1997; 17(7): 2376-82.
[http://dx.doi.org/10.1523/JNEUROSCI.17-07-02376.1997] [PMID: 9065498]
[83]
Urade Y, Kitahama K, Ohishi H, Kaneko T, Mizuno N, Hayaishi O. Dominant expression of mRNA for prostaglandin D synthase in leptomeninges, choroid plexus, and oligodendrocytes of the adult rat brain. Proc Natl Acad Sci USA 1993; 90(19): 9070-4.
[http://dx.doi.org/10.1073/pnas.90.19.9070] [PMID: 8415655]
[84]
Chabas D, Baranzini SE, Mitchell D, et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 2001; 294(5547): 1731-5.
[http://dx.doi.org/10.1126/science.1062960] [PMID: 11721059]
[85]
Sekeroglu A, et al. Effect of PGD2 on middle meningeal artery and mRNA expression profile of L-PGD2 synthase and DP receptors in trigeminovascular system and other pain processing structures in rat brain 2017; 69(1): 50-6.
[http://dx.doi.org/10.1016/j.pharep.2016.09.015]
[86]
Kagitani-Shimono K, Mohri I, Oda H, et al. Lipocalin-type prostaglandin D synthase (β-trace) is upregulated in the alphaB-crystallin-positive oligodendrocytes and astrocytes in the chronic multiple sclerosis. Neuropathol Appl Neurobiol 2006; 32(1): 64-73.
[http://dx.doi.org/10.1111/j.1365-2990.2005.00690.x] [PMID: 16409554]
[87]
Taniike M, Mohri I, Eguchi N, Beuckmann CT, Suzuki K, Urade Y. Perineuronal oligodendrocytes protect against neuronal apoptosis through the production of lipocalin-type prostaglandin D synthase in a genetic demyelinating model. J Neurosci 2002; 22(12): 4885-96.
[http://dx.doi.org/10.1523/JNEUROSCI.22-12-04885.2002] [PMID: 12077186]
[88]
Lee S, et al. Lipocalin-type prostaglandin D2 synthase regulates glial cell migration and morphology through marcks: prostaglandin D2-independent effects. J Biol Chem 2012; 287(12): 9414-28.
[89]
Fukuhara A, Yamada M, Fujimori K, et al. Lipocalin-type prostaglandin D synthase protects against oxidative stress-induced neuronal cell death. Biochem J 2012; 443(1): 75-84.
[http://dx.doi.org/10.1042/BJ20111889] [PMID: 22248185]
[90]
Zhang L, Ma J, Jin X, Jia G, Jiang Y, Li C. L-PGDS mediates vagus nerve stimulation-induced neuroprotection in a rat model of ischemic stroke by suppressing the apoptotic response. Neurochem Res 2017; 42(2): 644-55.
[http://dx.doi.org/10.1007/s11064-016-2121-8] [PMID: 27900597]
[91]
Onaka Y, Shintani N, Nakazawa T, et al. CRTH2, a prostaglandin D2 receptor, mediates depression-related behavior in mice. Behav Brain Res 2015; 284: 131-7.
[http://dx.doi.org/10.1016/j.bbr.2015.02.013] [PMID: 25698598]
[92]
Shan LN, Chai WS, Lu SJ, et al. The significant effect of chronic intermittent hypoxia on prostaglandin D2 biosynthesis in rat brain. Biochem Biophys Res Commun 2017; 483(1): 283-7.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.151] [PMID: 28025147]
[93]
Shibata T, Kondo M, Osawa T, Shibata N, Kobayashi M, Uchida K. 15-deoxy-delta 12,14-prostaglandin J2. A prostaglandin D2 metabolite generated during inflammatory processes. J Biol Chem 2002; 277(12): 10459-66.
[http://dx.doi.org/10.1074/jbc.M110314200] [PMID: 11786541]
[94]
Surh Y-J, Na HK, Park JM, et al. 15-Deoxy-Δ12,14-prostaglandin J2, an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling. Biochem Pharmacol 2011; 82(10): 1335-51.
[http://dx.doi.org/10.1016/j.bcp.2011.07.100] [PMID: 21843512]
[95]
Storer PD, Xu J, Chavis J, Drew PD. Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 2005; 161(1-2): 113-22.
[http://dx.doi.org/10.1016/j.jneuroim.2004.12.015] [PMID: 15748950]
[96]
Drew PD, Chavis JA. The cyclopentone prostaglandin 15-deoxy-Δ12,14 prostaglandin J2 represses nitric oxide, TNF-α, and IL-12 production by microglial cells. J Neuroimmunol 2001; 115(1-2): 28-35.
[http://dx.doi.org/10.1016/S0165-5728(01)00267-3] [PMID: 11282151]
[97]
Harris SG, Phipps RP. The nuclear receptor PPAR gamma is expressed by mouse T lymphocytes and PPAR gamma agonists induce apoptosis. Eur J Immunol 2001; 31(4): 1098-105.
[http://dx.doi.org/10.1002/1521-4141(200104)31:4<1098:AID-IMMU1098>3.0.CO;2-I] [PMID: 11298334]
[98]
Padilla J, Kaur K, Cao HJ, Smith TJ, Phipps RP. Peroxisome proliferator activator receptor-γ agonists and 15-deoxy-Δ(12,14)(12,14)-PGJ(2) induce apoptosis in normal and malignant B-lineage cells. J Immunol 2000; 165(12): 6941-8.
[http://dx.doi.org/10.4049/jimmunol.165.12.6941] [PMID: 11120820]
[99]
Shu H, Wong B, Zhou G, et al. Activation of PPARalpha or γ reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells. Biochem Biophys Res Commun 2000; 267(1): 345-9.
[http://dx.doi.org/10.1006/bbrc.1999.1968] [PMID: 10623622]
[100]
Koma H, Yamamoto Y, Nishii A, Yagami T. 15-Deoxy-Δ12,14-prostaglandin J2 induced neurotoxicity via suppressing phosphoinositide 3-kinase. Neuropharmacology 2017; 113(Pt A): 416-25.
[http://dx.doi.org/10.1016/j.neuropharm.2016.10.017] [PMID: 27771378]
[101]
Bernardo A, Bianchi D, Magnaghi V, Minghetti L. Peroxisome proliferator-activated receptor-γ agonists promote differentiation and antioxidant defenses of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol 2009; 68(7): 797-808.
[http://dx.doi.org/10.1097/NEN.0b013e3181aba2c1] [PMID: 19535992]
[102]
De Nuccio C, Bernardo A, De Simone R, et al. Peroxisome proliferator-activated receptor γ agonists accelerate oligodendrocyte maturation and influence mitochondrial functions and oscillatory Ca(2+) waves. J Neuropathol Exp Neurol 2011; 70(10): 900-12.
[http://dx.doi.org/10.1097/NEN.0b013e3182309ab1] [PMID: 21937914]
[103]
Xiang Z, Lin T, Reeves SA. 15d-PGJ2 induces apoptosis of mouse oligodendrocyte precursor cells. J Neuroinflammation 2007; 4(1): 18.
[http://dx.doi.org/10.1186/1742-2094-4-18] [PMID: 17634127]
[104]
Kanakasabai S, Pestereva E, Chearwae W, Gupta SK, Ansari S, Bright JJ. PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS One 2012; 7(11) e50500
[http://dx.doi.org/10.1371/journal.pone.0050500] [PMID: 23185633]
[105]
Wu J-S, Tsai HD, Huang CY, Chen JJ, Lin TN. 15-Deoxy-∆12,14-PGJ 2, by activating peroxisome proliferator-activated receptor-gamma, suppresses p22phox transcription to protect brain endothelial cells against hypoxia-induced apoptosis. Mol Neurobiol 2014; 50(1): 221-38.
[http://dx.doi.org/10.1007/s12035-013-8600-x] [PMID: 24352801]
[106]
Wada K, Nakajima A, Katayama K, et al. Peroxisome proliferator-activated receptor γ-mediated regulation of neural stem cell proliferation and differentiation. J Biol Chem 2006; 281(18): 12673-81.
[http://dx.doi.org/10.1074/jbc.M513786200] [PMID: 16524877 ]
[107]
Morales-Garcia JA, Luna-Medina R, Alfaro-Cervello C, et al. Peroxisome proliferator-activated receptor γ ligands regulate neural stem cell proliferation and differentiation in vitro and in vivo. Glia 2011; 59(2): 293-307.
[http://dx.doi.org/10.1002/glia.21101] [PMID: 21125653]
[108]
Katura T, Moriya T, Nakahata N. 15-Deoxy-Δ12, 14-prostaglandin J2 biphasically regulates the proliferation of mouse hippocampal neural progenitor cells by modulating the redox state. Mol Pharmacol 2010; 77(4): 601-11.
[109]
Yamamoto Y, Yamamoto T, Koma H, Nishii A, Yagami T. Synergistic effects of 15-deoxy Δ12,14-prostaglandin J2 on the anti-tumor activity of doxorubicin in renal cell carcinoma. Biochem Biophys Rep 2016; 9: 61-6.
[http://dx.doi.org/10.1016/j.bbrep.2016.11.004] [PMID: 28955990]
[110]
Zhuang H, Kim YS, Namiranian K, Doré S. Prostaglandins of J series control heme oxygenase expression: potential significance in modulating neuroinflammation. Ann N Y Acad Sci 2003; 993(1): 208-16.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07531.x] [PMID: 12853315]
[111]
Qin H, Tan W, Zhang Z, et al. 15d-prostaglandin J2 protects cortical neurons against oxygen-glucose deprivation/reoxygenation injury: involvement of inhibiting autophagy through upregulation of Bcl-2. Cell Mol Neurobiol 2015; 35(3): 303-12.
[http://dx.doi.org/10.1007/s10571-014-0125-y] [PMID: 25349027]
[112]
Chearwae W, Bright JJ. 15-deoxy-Δ(12,14)-prostaglandin J(2) and curcumin modulate the expression of toll-like receptors 4 and 9 in autoimmune T lymphocyte. J Clin Immunol 2008; 28(5): 558-70.
[http://dx.doi.org/10.1007/s10875-008-9202-7] [PMID: 18463970]
[113]
Boie Y, Rushmore TH, Darmon-Goodwin A, et al. Cloning and expression of a cDNA for the human prostanoid IP receptor. J Biol Chem 1994; 269(16): 12173-8.
[PMID: 7512962]
[114]
Nakagawa O, Tanaka I, Usui T, et al. Molecular cloning of human prostacyclin receptor cDNA and its gene expression in the cardiovascular system. Circulation 1994; 90(4): 1643-7.
[http://dx.doi.org/10.1161/01.CIR.90.4.1643] [PMID: 7923647]
[115]
Takahashi C, Muramatsu R, Fujimura H, Mochizuki H, Yamashita T. Prostacyclin promotes oligodendrocyte precursor recruitment and remyelination after spinal cord demyelination. Cell Death Dis 2013; 4(9) e795
[http://dx.doi.org/10.1038/cddis.2013.335] [PMID: 24030147]
[116]
Kanda H, Kobayashi K, Yamanaka H, Okubo M, Noguchi K. Microglial TNFα induces COX2 and PGI2 synthase expression in spinal endothelial cells during neuropathic pain. eNeuro 2017; 4(2) ENEURO.0064-17.2017.
[http://dx.doi.org/10.1523/ENEURO.0064-17.2017] [PMID: 28451639]
[117]
Zhou W, Hashimoto K, Goleniewska K, et al. Prostaglandin I2 analogs inhibit proinflammatory cytokine production and T cell stimulatory function of dendritic cells. J Immunol 2007; 178(2): 702-10.
[http://dx.doi.org/10.4049/jimmunol.178.2.702] [PMID: 17202330]
[118]
Norlander AE, Bloodworth MH, Peebles RS. Prostaglandin I2 promotes Treg function in vitro. J Immunol 2018; 200(1 Supp) 47.18
[119]
Yeh C-H, Kuo CH, Yang SN, et al. Prostaglandin I2 analogs suppress tumor necrosis factor α production and the maturation of human monocyte-derived dendritic cells. J Investig Med 2011; 59(7): 1109-15.
[http://dx.doi.org/10.2310/JIM.0b013e3182281f62] [PMID: 21716128]
[120]
Müller T, Dürk T, Blumenthal B, et al. Iloprost has potent anti-inflammatory properties on human monocyte-derived dendritic cells. Clin Exp Allergy 2010; 40(8): 1214-21.
[http://dx.doi.org/10.1111/j.1365-2222.2010.03558.x] [PMID: 20649610]
[121]
Zhou W, Dowell DR, Huckabee MM, et al. Prostaglandin I2 signaling drives Th17 differentiation and exacerbates experimental autoimmune encephalomyelitis. PLoS One 2012; 7(5) e33518
[http://dx.doi.org/10.1371/journal.pone.0033518] [PMID: 22590492]
[122]
Zhou W, Blackwell TS, Goleniewska K, et al. Prostaglandin I2 analogs inhibit Th1 and Th2 effector cytokine production by CD4 T cells. J Leukoc Biol 2007; 81(3): 809-17.
[http://dx.doi.org/10.1189/jlb.0606375] [PMID: 17135575]
[123]
Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6(11): 1123-32.
[http://dx.doi.org/10.1038/ni1254] [PMID: 16200070]
[124]
Newcomb DC, Zhou W, Moore ML, et al. A functional IL-13 receptor is expressed on polarized murine CD4+ Th17 cells and IL-13 signaling attenuates Th17 cytokine production. J Immunol 2009; 182(9): 5317-21.
[http://dx.doi.org/10.4049/jimmunol.0803868] [PMID: 19380778]
[125]
Jung S, Donhauser T, Toyka KV, Hartung HP. Propentofylline and iloprost suppress the production of TNF-α by macrophages but fail to ameliorate experimental autoimmune encephalomyelitis in Lewis rats. J Autoimmun 1997; 10(6): 519-29.
[http://dx.doi.org/10.1006/jaut.1997.0159] [PMID: 9451591]
[126]
Liu W, Li H, Zhang X, et al. Prostaglandin I2-IP signalling regulates human Th17 and Treg cell differentiation. Prostaglandins Leukot Essent Fatty Acids 2013; 89(5): 335-44.
[http://dx.doi.org/10.1016/j.plefa.2013.08.006] [PMID: 24035274]
[127]
Muramatsu R, Takahashi C, Miyake S, Fujimura H, Mochizuki H, Yamashita T. Angiogenesis induced by CNS inflammation promotes neuronal remodeling through vessel-derived prostacyclin. Nat Med 2012; 18(11): 1658-64.
[http://dx.doi.org/10.1038/nm.2943] [PMID: 23042236]
[128]
Wang P, Guan PP, Guo JW, et al. Prostaglandin I2 upregulates the expression of anterior pharynx-defective-1α and anterior pharynx-defective-1β in amyloid precursor protein/presenilin 1 transgenic mice. Aging Cell 2016; 15(5): 861-71.
[http://dx.doi.org/10.1111/acel.12495] [PMID: 27240539]
[129]
Watanabe K. Prostaglandin F synthase. Prostaglandins Other Lipid Mediat 2002; 68-69: 401-7.
[http://dx.doi.org/10.1016/S0090-6980(02)00044-8] [PMID: 12432932]
[130]
Watanabe K, Yoshida R, Shimizu T, Hayaishi O. Enzymatic formation of prostaglandin F2 alpha from prostaglandin H2 and D2. Purification and properties of prostaglandin F synthetase from bovine lung. J Biol Chem 1985; 260(11): 7035-41.
[PMID: 3858278]
[131]
Suzuki T, Fujii Y, Miyano M, Chen LY, Takahashi T, Watanabe K. cDNA cloning, expression, and mutagenesis study of liver-type prostaglandin F synthase. J Biol Chem 1999; 274(1): 241-8.
[http://dx.doi.org/10.1074/jbc.274.1.241] [PMID: 9867836]
[132]
Moriuchi H, et al. Molecular characterization of a novel type of prostamide/prostaglandin F synthase, belonging to the thioredoxin-like superfamily. J Biol Chem 2008; 283(2): 792-801.
[PMID: 18006499]
[133]
Yoshikawa K, Takei S, Hasegawa-Ishii S, et al. Preferential localization of prostamide/prostaglandin F synthase in myelin sheaths of the central nervous system. Brain Res 2011; 1367: 22-32.
[http://dx.doi.org/10.1016/j.brainres.2010.10.019] [PMID: 20950588]
[134]
Iwasa K, Yamamoto S, Takahashi M, et al. Prostaglandin F2α FP receptor inhibitor reduces demyelination and motor dysfunction in a cuprizone-induced multiple sclerosis mouse model. Prostaglandins Leukot Essent Fatty Acids 2014; 91(5): 175-82.
[http://dx.doi.org/10.1016/j.plefa.2014.08.004] [PMID: 25224839]
[135]
Greco A, Minghetti L, Sette G, Fieschi C, Levi G. Cerebrospinal fluid isoprostane shows oxidative stress in patients with multiple sclerosis. Neurology 1999; 53(8): 1876-9.
[http://dx.doi.org/10.1212/WNL.53.8.1876] [PMID: 10563647]
[136]
Sbardella E, Greco A, Stromillo ML, et al. Isoprostanes in clinically isolated syndrome and early multiple sclerosis as biomarkers of tissue damage and predictors of clinical course. Mult Scler 2013; 19(4): 411-7.
[http://dx.doi.org/10.1177/1352458512457721] [PMID: 22917691]
[137]
Lam MA, Maghzal GJ, Khademi M, et al. Absence of systemic oxidative stress and increased CSF prostaglandin F2α in progressive MS. Neurol Neuroimmunol Neuroinflamm 2016; 3(4) e256
[http://dx.doi.org/10.1212/NXI.0000000000000256] [PMID: 27386506]
[138]
Teunissen CE, Sombekke M, van Winsen L, et al. Increased plasma 8,12-iso-iPF2alpha- VI levels in relapsing multiple sclerosis patients are not predictive of disease progression. Mult Scler 2012; 18(8): 1092-8.
[http://dx.doi.org/10.1177/1352458511433306] [PMID: 22695538]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy