Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Identification and Molecular Docking Studies of Bioactive Principles from Alphonsea madraspatana Bedd. against Uropathogens

Author(s): Amita Sahu, Goutam Ghosh and Goutam Rath*

Volume 21, Issue 7, 2020

Page: [613 - 625] Pages: 13

DOI: 10.2174/1389201021666200107114846

Price: $65

Abstract

Aims: The present study aims to determine the antimicrobial efficacy of Alphonsea madraspatana leaves extract against selected uropathogens.

Background: The plant Alphonsea madraspatana is an endangered species, reported to exhibit high antimicrobial activity due to the presence of phenolic compounds. Prevalence of high UTI infection and increased cases of bacterial resistance directed for alternative approach to meet the challenge of drug resistance.

Objective: Our objective is to determine antimicrobial efficacy of Alphonsea madraspatana leaves extract against selected uropathogens and subsequent in-silico analysis to predict the underlying mechanism.

Methods: Phytochemicals extraction from the dried leaves of Alphonsea madraspatana was performed using solvent gradient technique. All the extracts were subjected to preliminary phytochemical screening using liquid chromatography-mass spectrometry. Antimicrobial activity of the prepared extract was determined against the selected uropathogens using agar diffusion method. Finally, molecular docking study of the selected bio-actives was performed against a representative bacterial resistance enzyme ‘‘DNA Gyrase”.

Results: Methanolic extract exhibits relatively higher antimicrobial activity against the selected strains with Minimum Inhibitory Concentration (MIC) and minimum bactericidal concentration (MBC) of 1.56 ± 1 ug/mL and 6.25 ± 2 ug/mL, respectively. Phytochemical screening showed the presence of 3 flavonoids compounds such as Luteolin-7-O-glucoside, Kaempferol-3-O- rotinoside-7-O-rhamnoside and Genestein-7-O-glucoside. The results of molecular docking shows Luteolin-7-O-glucoside has best docking scores of −8.5 kcal/mol than other ligand molecules. Experimental simulation in presence of DNA Gyrase inhibitors showed lowest MIC and MBC value for E. Coli, which was found to be 1.56 ±1 ug/mL and 6.25±2 ug/mL respectively, support the docking outcomes.

Conclusion: Outcomes of this study suggested that the methanolic extract of this plant shows good anti-microbial potential against resistant uropathogens.

Keywords: Alphonsea madraspatana, uropathogens, molecular docking, DNA-gyrase, antibacterial activity, methanolic extract.

Graphical Abstract

[1]
Kumar, S.G.; Adithan, C.; Harish, B.N.; Sujatha, S.; Roy, G.; Malini, A. Antimicrobial resistance in India: A review. J. Nat. Sci. Biol. Med., 2013, 4(2), 286-291.
[http://dx.doi.org/10.4103/0976-9668.116970] [PMID: 24082718]
[2]
Bansal, S.; Sinha, D.; Singh, M.; Cheng, B.; Tse-Dinh, Y.C.; Tandon, V. 3,4-dimethoxyphenyl bis-benzimidazole, a novel DNA topoisomerase inhibitor that preferentially targets Escherichia coli topoisomerase I. J. Antimicrob. Chemother., 2012, 67(12), 2882-2891.
[http://dx.doi.org/10.1093/jac/dks322] [PMID: 22945915]
[3]
Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[4]
Boakye, Y.D.; Osafo, N.; Danquah, C.A.; Adu, F.; Agyare, C. Antimicrobial agents: Antibacterial agents, anti-biofilm agents, antibacterial natural compounds, and antibacterial chemicals. In: Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods; Sahra Kırmusaoğlu, Ed.; IntechOpen: 2019.
[5]
Reddy, C.S.; Brahmam, M.; Raju, V.S. Conservation prioritization of endemic plants of Eastern Ghats, India. J. Econ. Taxon. Bot., 2006, 30, 755-772.
[6]
Bakri, Y.M.; Talip, M.A.; Azziz, S.S.S.A. A mini review on Alphonsea sp. Annonaceae: Traditional uses. Biological activities and phytochemistry. J. Appl. Pharm, 2017, 7, 200-203.
[7]
Batugal, P.A.; Kanniah, J.; Sy, L.; Oliver, J.T. Medicinal Plants Research in Asia-Volume I: The Framework and Project Workplans; Bioversity International, 2004.
[8]
Zemlicka, L.; Fodran, P.; Lukes, V.; Vaganek, A.; Slovakova, M.; Stasko, A.; Dubaj, T.; Liptaj, T.; Karabın, M.; Birosova, L.; Rapta, P. Physicochemical and biological properties of luteolin-7-O-b-Dglucoside (cynaroside) isolated from Anthriscus sylvestris (L.) Hoffm. Monatsh. Chem., 2014, 145, 1307-1318.
[http://dx.doi.org/10.1007/s00706-014-1228-3]
[9]
Basile, A.; Giordano, S.; López-Sáez, J.A.; Cobianchi, R.C. Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry, 1999, 52(8), 1479-1482.
[http://dx.doi.org/10.1016/S0031-9422(99)00286-1] [PMID: 10647220]
[10]
Lv, P.C.; Li, H.Q.; Xue, J.Y.; Shi, L.; Zhu, H.L. Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents. Eur. J. Med. Chem., 2009, 44(2), 908-914.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.013] [PMID: 18313801]
[11]
Sato, Y.; Suzaki, S.; Nishikawa, T.; Kihara, M.; Shibata, H.; Higuti, T. Phytochemical flavones isolated from Scutellaria barbata and antibacterial activity against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 2000, 72(3), 483-488.
[http://dx.doi.org/10.1016/S0378-8741(00)00265-8] [PMID: 10996290]
[12]
Sousa, A.; Ferreira, I.C.; Calhelha, R.; Andrade, P.B.; Valentão, P.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolics and antimicrobial activity of traditional stoned table olives ‘alcaparra’. Bioorg. Med. Chem., 2006, 14(24), 8533-8538.
[http://dx.doi.org/10.1016/j.bmc.2006.08.027] [PMID: 16971127]
[13]
Xu, H.X.; Lee, S.F. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother. Res., 2001, 15(1), 39-43.
[http://dx.doi.org/10.1002/1099-1573(200102)15:1<39:AID-PTR684>3.0.CO;2-R] [PMID: 11180521]
[14]
Zhu, X.; Zhang, H.; Lo, R. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J. Agric. Food Chem., 2004, 52(24), 7272-7278.
[http://dx.doi.org/10.1021/jf0490192] [PMID: 15563206]
[15]
Borchers, A.T.; Keen, C.L.; Gershwin, M.E. Mushrooms, tumors, and immunity: an update. Exp. Biol. Med. (Maywood), 2004, 229(5), 393-406.
[http://dx.doi.org/10.1177/153537020422900507] [PMID: 15096651]
[16]
Nadendla, R.R. Molecular modeling: A powerful tool for drug design and molecular docking. Resonance, 2004, 9, 51-60.
[http://dx.doi.org/10.1007/BF02834015]
[17]
Gross, C.H.; Parsons, J.D.; Grossman, T.H.; Charifson, P.S.; Bellon, S.; Jernee, J.; Dwyer, M.; Chambers, S.P.; Markland, W.; Botfield, M.; Raybuck, S.A. Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance. Antimicrob. Agents Chemother., 2003, 47(3), 1037-1046.
[http://dx.doi.org/10.1128/AAC.47.3.1037-1046.2003] [PMID: 12604539]
[18]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[19]
Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev., 2019, 18, 241-272.
[http://dx.doi.org/10.1007/s11101-018-9591-z]
[20]
Joshi, S.D.S.D.; Venkata, R.G.; Satya, P.M.; Kishore, B.M.; Surya, N.S.; Krishna, S. Phytochemical screening and evaluation of antioxidant, antibacterial and antifungal activity of medicinal plant Alphonsea sclerocarpa Thaw. J. Pharmacogn Phytochem, 2017, 6, 1280-1286.
[21]
Khan, M.R.; Kihara, M.; Omoloso, A.D. Antimicrobial activity of Michelia champaca. Fitoterapia, 2002, 73(7-8), 744-748.
[http://dx.doi.org/10.1016/S0367-326X(02)00248-4] [PMID: 12490248]
[22]
Shenagari, M.; Bakhtiari, M.; Mojtahedi, A.; Atrkar Roushan, Z. High frequency of mutations in gyrA gene associated with quinolones resistance in uropathogenic Escherichiacoli isolates from the north of Iran. Iran. J. Basic Med. Sci., 2018, 21(12), 1226-1231.
[PMID: 30627365]
[24]
RCSB Protein Data Bank. https://www.rcsb.org/
[25]
Cosconati, S.; Forli, S.; Perryman, A.L.; Harris, R.; Goodsell, D.S.; Olson, A.J. Virtual screening with autodock: Theory and practice. Expert Opin. Drug Discov., 2010, 5(6), 597-607.
[http://dx.doi.org/10.1517/17460441.2010.484460] [PMID: 21532931]
[26]
Auto Dock Tools (version 1.5.6 rc2), Stefano Forte Molecular Graphics Laboratory, http://mgltools.scripps.edu
[27]
Ndukwe, I.G.; Amupitan, J.O.; Isah, Y.; Adegoke, K.S. Phytochemical and antimicrobial screening of the crude extracts from the root, stem bark and leaves of Vitellaria paradoxa (GAERTN. F). Afr. J. Biotechnol., 2007, 6, 1905-1909.
[http://dx.doi.org/10.5897/AJB2007.000-2287]
[28]
Ndukwe, K.C.; Okeke, I.N.; Lamikanra, A.; Adesina, S.K.; Aboderin, O. Antibacterial activity of aqueous extracts of selected chewing sticks. J. Contemp. Dent. Pract., 2005, 6(3), 86-94.
[http://dx.doi.org/10.5005/jcdp-6-3-86] [PMID: 16127476]
[29]
Beloy, F.B.; Masilungan, V.A.; Cruz, R.M.; Ramos, E.V. Investigation of some Philippine plants for antimicrobial substances. Philipp. J. Sci., 1976, •••, 105.
[30]
Proestos, C.; Chorianopoulos, N.; Nychas, G.J.; Komaitis, M. RP-HPLC analysis of the phenolic compounds of plant extracts. investigation of their antioxidant capacity and antimicrobial activity. J. Agric. Food Chem., 2005, 53(4), 1190-1195.
[http://dx.doi.org/10.1021/jf040083t] [PMID: 15713039]
[31]
Pereira, J.A.; Pereira, A.P.; Ferreira, I.C.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A. Table olives from Portugal: phenolic compounds, antioxidant potential, and antimicrobial activity. J. Agric. Food Chem., 2006, 54(22), 8425-8431.
[http://dx.doi.org/10.1021/jf061769j] [PMID: 17061816]
[32]
Báidez, A.G.; Gómez, P.; Del Río, J.A.; Ortuño, A. Dysfunctionality of the xylem in Olea europaea L. Plants associated with the infection process by Verticillium dahliae Kleb. Role of phenolic compounds in plant defense mechanism. J. Agric. Food Chem., 2007, 55(9), 3373-3377.
[http://dx.doi.org/10.1021/jf063166d] [PMID: 17394331]
[33]
Santos, D.Y.; Salatino, M.L. Foliar flavonoids of Annonaceae from Brazil: taxonomic significance. Phytochemistry, 2000, 55(6), 567-573.
[http://dx.doi.org/10.1016/S0031-9422(00)00227-2] [PMID: 11130666]
[34]
Martins, N.; Barros, L.; Santos-Buelga, C.; Silva, S.; Henriques, M.; Ferreira, I.C. Decoction, infusion and hydroalcoholic extract of cultivated thyme: antioxidant and antibacterial activities, and phenolic characterisation. Food Chem., 2015, 167, 131-137.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.094] [PMID: 25148969]
[35]
Plazonić, A.; Bucar, F.; Maleš, Z.; Mornar, A.; Nigović, B.; Kujundzić, N. Identification and quantification of flavonoids and phenolic acids in burr parsley (Caucalis platycarpos L.), using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Molecules, 2009, 14(7), 2466-2490.
[http://dx.doi.org/10.3390/molecules14072466] [PMID: 19633617]
[36]
Rahman, M.M.; Lopa, S.S.; Sadik, G.; Harun-Or-Rashid, I.R.; Khondkar, P.; Alam, A.H.; Rashid, M.A. Antibacterial and cytotoxic compounds from the bark of Cananga odorata. Fitoterapia, 2005, 76(7-8), 758-761.
[http://dx.doi.org/10.1016/j.fitote.2005.08.011] [PMID: 16242266]
[37]
Rashid, H.R.; Shah, A.A.; Amarah, S.; Noordin, S. Clinical study hip fracture surgery: Does type of anesthesia matter? BioMed Res. Int., 2013, 2013
[http://dx.doi.org/10.1155/2013/252356]
[38]
Lin, L.C.; Pai, Y.F.; Tsai, T.H. Isolation of luteolin and Luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and their pharmacokinetics in rats. J. Agric. Food Chem., 2015, 63(35), 7700-7706.
[http://dx.doi.org/10.1021/jf505848z] [PMID: 25625345]
[39]
Patrick, G.L. An Introduction to Medicinal Chemistry; Department of Chemistry: Paisley University Press, 2003, pp. 379-435.
[40]
Ali Khan, M.; Kedhari Sundaram, M.; Hamza, A.; Quraishi, U.; Gunasekera, D.; Ramesh, L.; Goala, P.; Al Alami, U.; Ansari, M.Z.; Rizvi, T.A.; Sharma, C.; Hussain, A. Sulforaphane reverses the expression of various tumor suppressor genes by targeting DNMT3B and HDAC1 in human cervical cancer cells. Evid. Based Complement. Alternat. Med., 2015, 2015412149
[http://dx.doi.org/10.1155/2015/412149] [PMID: 26161119]
[41]
Collin, F.; Karkare, S.; Maxwell, A. Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Appl. Microbiol. Biot., 2011, 92, 479-497.
[http://dx.doi.org/10.1007/s00253-011-3557-z]
[42]
Emran, T.B.; Rahman, M.A.; Uddin, M.M.N.; Dash, R.; Hossen, M.F.; Mohiuddin, M.; Alam, M.R. Molecular docking and inhibition studies on the interactions of Bacopa monnieri’s potent phytochemicals against pathogenic Staphylococcus aureus. Daru, 2015, 23, 26.
[http://dx.doi.org/10.1186/s40199-015-0106-9] [PMID: 25884228]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy