Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Telomere-related Markers for Cancer

Author(s): Xiaotian Yuan*, Mingkai Dai and Dawei Xu*

Volume 20, Issue 6, 2020

Page: [410 - 432] Pages: 23

DOI: 10.2174/1568026620666200106145340

open access plus

Abstract

Telomeres are structurally nucleoprotein complexes at termini of linear chromosomes and essential to chromosome stability/integrity. In normal human cells, telomere length erodes progressively with each round of cell divisions, which serves as an important barrier to uncontrolled proliferation and malignant transformation. In sharp contrast, telomere maintenance is a key feature of human malignant cells and required for their infinite proliferation and maintenance of other cancer hallmarks as well. Thus, a telomere-based anti-cancer strategy has long been suggested. However, clinically efficient and specific drugs targeting cancer telomere-maintenance have still been in their infancy thus far. To achieve this goal, it is highly necessary to elucidate how exactly cancer cells maintain functional telomeres. In the last two decades, numerous studies have provided profound mechanistic insights, and the identified mechanisms include the aberrant activation of telomerase or the alternative lengthening of telomere pathway responsible for telomere elongation, dysregulation and mutation of telomereassociated factors, and other telomere homeostasis-related signaling nodes. In the present review, these various strategies employed by malignant cells to regulate their telomere length, structure and function have been summarized, and potential implications of these findings in the rational development of telomere- based cancer therapy and other clinical applications for precision oncology have been discussed.

Keywords: Cancer therapy, Gene transcription, TERC, TERRA, TERT, TERT promoter mutation, Telomerase, Telomere.

Graphical Abstract

[1]
Shay, J.W.; Wright, W.E. Telomeres and telomerase: three decades of progress. Nat. Rev. Genet., 2019, 20(5), 299-309.
[http://dx.doi.org/10.1038/s41576-019-0099-1] [PMID: 30760854]
[2]
Veverka, P.; Janovič, T.; Hofr, C. Quantitative biology of human shelterin and telomerase: searching for the weakest point. Int. J. Mol. Sci., 2019, 20(13), E3186
[http://dx.doi.org/10.3390/ijms20133186] [PMID: 31261825]
[3]
Azzalin, C.M.; Lingner, J. Telomere functions grounding on TERRA firma. Trends Cell Biol., 2015, 25(1), 29-36.
[http://dx.doi.org/10.1016/j.tcb.2014.08.007] [PMID: 25257515]
[4]
Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res., 1961, 25, 585-621.
[http://dx.doi.org/10.1016/0014-4827(61)90192-6] [PMID: 13905658]
[5]
Harley, C.B. Telomerase and cancer therapeutics. Nat. Rev. Cancer, 2008, 8(3), 167-179.
[http://dx.doi.org/10.1038/nrc2275] [PMID: 18256617]
[6]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[7]
Barthel, F.P.; Wei, W.; Tang, M.; Martinez-Ledesma, E.; Hu, X.; Amin, S.B.; Akdemir, K.C.; Seth, S.; Song, X.; Wang, Q.; Lichtenberg, T.; Hu, J.; Zhang, J.; Zheng, S.; Verhaak, R.G. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat. Genet., 2017, 49(3), 349-357.
[http://dx.doi.org/10.1038/ng.3781] [PMID: 28135248]
[8]
Yuan, X.; Larsson, C.; Xu, D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene, 2019, 38(34), 6172-6183.
[http://dx.doi.org/10.1038/s41388-019-0872-9] [PMID: 31285550]
[9]
Pickett, H.A.; Reddel, R.R. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat. Struct. Mol. Biol., 2015, 22(11), 875-880.
[http://dx.doi.org/10.1038/nsmb.3106] [PMID: 26581522]
[10]
Cairney, C.J.; Keith, W.N. Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie, 2008, 90(1), 13-23.
[http://dx.doi.org/10.1016/j.biochi.2007.07.025] [PMID: 17854971]
[11]
Ding, D.; Xi, P.; Zhou, J.; Wang, M.; Cong, Y.S. Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-κB-dependent transcription. FASEB J., 2013, 27(11), 4375-4383.
[http://dx.doi.org/10.1096/fj.13-230904] [PMID: 23884427]
[12]
Luo, Z.; Wang, W.; Li, F.; Songyang, Z.; Feng, X.; Xin, C.; Dai, Z.; Xiong, Y. Pan-cancer analysis identifies telomerase-associated signatures and cancer subtypes. Mol. Cancer, 2019, 18(1), 106.
[http://dx.doi.org/10.1186/s12943-019-1035-x] [PMID: 31179925]
[13]
Im, E.; Yoon, J.B.; Lee, H.W.; Chung, K.C. Human Telomerase reverse transcriptase (hTERT) positively regulates 26S proteasome activity. J. Cell. Physiol., 2017, 232(8), 2083-2093.
[http://dx.doi.org/10.1002/jcp.25607] [PMID: 27648923]
[14]
Park, J.I.; Venteicher, A.S.; Hong, J.Y.; Choi, J.; Jun, S.; Shkreli, M.; Chang, W.; Meng, Z.; Cheung, P.; Ji, H.; McLaughlin, M.; Veenstra, T.D.; Nusse, R.; McCrea, P.D.; Artandi, S.E. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature, 2009, 460(7251), 66-72.
[http://dx.doi.org/10.1038/nature08137] [PMID: 19571879]
[15]
Saretzki, G. Extra-telomeric functions of human telomerase: cancer, mitochondria and oxidative stress. Curr. Pharm. Des., 2014, 20(41), 6386-6403.
[http://dx.doi.org/10.2174/1381612820666140630095606] [PMID: 24975608]
[16]
Liu, Z.; Li, Q.; Li, K.; Chen, L.; Li, W.; Hou, M.; Liu, T.; Yang, J.; Lindvall, C.; Björkholm, M.; Jia, J.; Xu, D. Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene, 2013, 32(36), 4203-4213.
[http://dx.doi.org/10.1038/onc.2012.441] [PMID: 23045275]
[17]
Masutomi, K.; Possemato, R.; Wong, J.M.; Currier, J.L.; Tothova, Z.; Manola, J.B.; Ganesan, S.; Lansdorp, P.M.; Collins, K.; Hahn, W.C. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8222-8227.
[http://dx.doi.org/10.1073/pnas.0503095102] [PMID: 15928077]
[18]
Yu, J.; Yuan, X.; Sjöholm, L.; Liu, T.; Kong, F.; Ekström, T.J.; Björkholm, M.; Xu, D. Telomerase reverse transcriptase regulates DNMT3B expression/aberrant DNA methylation phenotype and AKT activation in hepatocellular carcinoma. Cancer Lett., 2018, 434, 33-41.
[http://dx.doi.org/10.1016/j.canlet.2018.07.013] [PMID: 30017965]
[19]
Yuan, X.; Xu, D. Telomerase reverse transcriptase (TERT) in action: Cross-talking with epigenetics. Int. J. Mol. Sci., 2019, 20(13), E3338
[http://dx.doi.org/10.3390/ijms20133338] [PMID: 31284662]
[20]
Zhang, K.; Guo, Y.; Wang, X.; Zhao, H.; Ji, Z.; Cheng, C.; Li, L.; Fang, Y.; Xu, D.; Zhu, H.H.; Gao, W.Q. WNT/β-catenin directs self-renewal symmetric cell division of hTERThigh prostate cancer stem cells. Cancer Res., 2017, 77(9), 2534-2547.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1887] [PMID: 28209613]
[21]
Zhang, X.; Li, B.; Yu, J.; Dahlström, J.; Tran, A.N.; Björkholm, M.; Xu, D. MYC-dependent downregulation of telomerase by FLT3 inhibitors is required for their therapeutic efficacy on acute myeloid leukemia. Ann. Hematol., 2018, 97(1), 63-72.
[http://dx.doi.org/10.1007/s00277-017-3158-8] [PMID: 29080039]
[22]
van Steensel, B.; Smogorzewska, A.; de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell, 1998, 92(3), 401-413.
[http://dx.doi.org/10.1016/S0092-8674(00)80932-0] [PMID: 9476899]
[23]
Bejarano, L.; Schuhmacher, A.J. Mendez, M Inhibition of TRF1 telomere protein impairs tumor initiation and progression in glioblastoma mouse models and patient-derived xenografts. Cancer Cell, 2017, 32, 590-607.
[http://dx.doi.org/10.1016/j.ccell.2017.10.006]
[24]
Kim, H.; Yoo, J.E.; Cho, J.Y.; Oh, B.K.; Yoon, Y.S.; Han, H.S.; Lee, H.S.; Jang, J.J.; Jeong, S.H.; Kim, J.W.; Park, Y.N. Telomere length, TERT and shelterin complex proteins in hepatocellular carcinomas expressing “stemness”-related markers. J. Hepatol., 2013, 59(4), 746-752.
[http://dx.doi.org/10.1016/j.jhep.2013.05.011] [PMID: 23685049]
[25]
Ramsay, A.J.; Quesada, V.; Foronda, M.; Conde, L.; Martínez-Trillos, A.; Villamor, N.; Rodríguez, D.; Kwarciak, A.; Garabaya, C.; Gallardo, M.; López-Guerra, M.; López-Guillermo, A.; Puente, X.S.; Blasco, M.A.; Campo, E.; López-Otín, C. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat. Genet., 2013, 45(5), 526-530.
[http://dx.doi.org/10.1038/ng.2584] [PMID: 23502782]
[26]
Yuan, X.; Kronström, M.; Hellenius, M.L.; Cederholm, T.; Xu, D.; Sjögren, P. Longitudinal changes in leukocyte telomere length and mortality in elderly Swedish men. Aging (Albany NY), 2018, 10(10), 3005-3016.
[http://dx.doi.org/10.18632/aging.101611] [PMID: 30375983]
[27]
Zhang, A.; Wang, J.; Zheng, B.; Fang, X.; Angström, T.; Liu, C.; Li, X.; Erlandsson, F.; Björkholm, M.; Nordenskjörd, M.; Gruber, A.; Wallin, K.L.; Xu, D. Telomere attrition predominantly occurs in precursor lesions during in vivo carcinogenic process of the uterine cervix. Oncogene, 2004, 23(44), 7441-7447.
[http://dx.doi.org/10.1038/sj.onc.1207527] [PMID: 15318175]
[28]
Augereau, A.; T’kint de Roodenbeke, C.; Simonet, T.; Bauwens, S.; Horard, B.; Callanan, M.; Leroux, D.; Jallades, L.; Salles, G.; Gilson, E.; Poncet, D. Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation. Blood, 2011, 118(5), 1316-1322.
[http://dx.doi.org/10.1182/blood-2010-07-295774] [PMID: 21355086]
[29]
Kong, F.; Zheng, C.; Xu, D. Telomerase as a “stemness” enzyme. Sci. China Life Sci., 2014, 57(6), 564-570.
[http://dx.doi.org/10.1007/s11427-014-4666-6] [PMID: 24829107]
[30]
Wang, J.; Xie, L.Y.; Allan, S.; Beach, D.; Hannon, G.J. Myc activates telomerase. Genes Dev., 1998, 12(12), 1769-1774.
[http://dx.doi.org/10.1101/gad.12.12.1769] [PMID: 9637678]
[31]
Ge, Z.; Liu, C.; Björkholm, M.; Gruber, A.; Xu, D. Mitogen-activated protein kinase cascade-mediated histone H3 phosphorylation is critical for telomerase reverse transcriptase expression/telomerase activation induced by proliferation. Mol. Cell. Biol., 2006, 26(1), 230-237.
[http://dx.doi.org/10.1128/MCB.26.1.230-237.2006] [PMID: 16354694]
[32]
Hoffmeyer, K.; Raggioli, A.; Rudloff, S.; Anton, R.; Hierholzer, A.; Del Valle, I.; Hein, K.; Vogt, R.; Kemler, R. Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science, 2012, 336(6088), 1549-1554.
[http://dx.doi.org/10.1126/science.1218370] [PMID: 22723415]
[33]
Zhang, Y.; Toh, L.; Lau, P.; Wang, X. Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer. J. Biol. Chem., 2012, 287(39), 32494-32511.
[http://dx.doi.org/10.1074/jbc.M112.368282] [PMID: 22854964]
[34]
Lin, S.Y.; Elledge, S.J. Multiple tumor suppressor pathways negatively regulate telomerase. Cell, 2003, 113(7), 881-889.
[http://dx.doi.org/10.1016/S0092-8674(03)00430-6] [PMID: 12837246]
[35]
Grasselli, A.; Nanni, S.; Colussi, C.; Aiello, A.; Benvenuti, V.; Ragone, G.; Moretti, F.; Sacchi, A.; Bacchetti, S.; Gaetano, C.; Capogrossi, M.C.; Pontecorvi, A.; Farsetti, A. Estrogen receptor-alpha and endothelial nitric oxide synthase nuclear complex regulates transcription of human telomerase. Circ. Res., 2008, 103(1), 34-42.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.169037] [PMID: 18519947]
[36]
Kyo, S.; Takakura, M.; Kanaya, T.; Zhuo, W.; Fujimoto, K.; Nishio, Y.; Orimo, A.; Inoue, M. Estrogen activates telomerase. Cancer Res., 1999, 59(23), 5917-5921.
[PMID: 10606235]
[37]
Willing, C.; Peich, M.; Danescu, A.; Kehlen, A.; Fowler, P.A.; Hombach-Klonisch, S. Estrogen-independent actions of environmentally relevant AhR-agonists in human endometrial epithelial cells. Mol. Hum. Reprod., 2011, 17(2), 115-126.
[http://dx.doi.org/10.1093/molehr/gaq081] [PMID: 20876610]
[38]
Benko, A.L.; Olsen, N.J.; Kovacs, W.J. Estrogen and telomerase in human peripheral blood mononuclear cells. Mol. Cell. Endocrinol., 2012, 364(1-2), 83-88.
[http://dx.doi.org/10.1016/j.mce.2012.08.012] [PMID: 22954679]
[39]
Zhang, A.; Zheng, C.; Hou, M.; Lindvall, C.; Li, K.J.; Erlandsson, F.; Björkholm, M.; Gruber, A.; Blennow, E.; Xu, D. Deletion of the telomerase reverse transcriptase gene and haploinsufficiency of telomere maintenance in Cri du chat syndrome. Am. J. Hum. Genet., 2003, 72(4), 940-948.
[http://dx.doi.org/10.1086/374565] [PMID: 12629597]
[40]
Takakura, M.; Kyo, S.; Kanaya, T.; Hirano, H.; Takeda, J.; Yutsudo, M.; Inoue, M. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res., 1999, 59(3), 551-557.
[PMID: 9973199]
[41]
Cong, Y.S.; Wen, J.; Bacchetti, S. The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum. Mol. Genet., 1999, 8(1), 137-142.
[http://dx.doi.org/10.1093/hmg/8.1.137] [PMID: 9887342]
[42]
Xu, D.; Popov, N.; Hou, M.; Wang, Q.; Björkholm, M.; Gruber, A.; Menkel, A.R.; Henriksson, M. Switch from Myc/Max to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells. Proc. Natl. Acad. Sci. USA, 2001, 98(7), 3826-3831.
[http://dx.doi.org/10.1073/pnas.071043198] [PMID: 11274400]
[43]
Casillas, M.A.; Brotherton, S.L.; Andrews, L.G.; Ruppert, J.M.; Tollefsbol, T.O. Induction of endogenous telomerase (hTERT) by c-Myc in WI-38 fibroblasts transformed with specific genetic elements. Gene, 2003, 316, 57-65.
[http://dx.doi.org/10.1016/S0378-1119(03)00739-X] [PMID: 14563552]
[44]
Gewin, L.; Myers, H.; Kiyono, T.; Galloway, D.A. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev., 2004, 18(18), 2269-2282.
[http://dx.doi.org/10.1101/gad.1214704] [PMID: 15371341]
[45]
Koshiji, M.; Kageyama, Y.; Pete, E.A.; Horikawa, I.; Barrett, J.C.; Huang, L.E. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J., 2004, 23(9), 1949-1956.
[http://dx.doi.org/10.1038/sj.emboj.7600196] [PMID: 15071503]
[46]
Li, Y.; Liu, L.; Tollefsbol, T.O. Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J., 2010, 24(5), 1442-1453.
[http://dx.doi.org/10.1096/fj.09-149328] [PMID: 20019239]
[47]
Xu, D.; Dwyer, J.; Li, H.; Duan, W.; Liu, J.P. Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J. Biol. Chem., 2008, 283(35), 23567-23580.
[http://dx.doi.org/10.1074/jbc.M800790200] [PMID: 18586674]
[48]
Chou, W.C.; Hawkins, A.L.; Barrett, J.F.; Griffin, C.A.; Dang, C.V. Arsenic inhibition of telomerase transcription leads to genetic instability. J. Clin. Invest., 2001, 108(10), 1541-1547.
[http://dx.doi.org/10.1172/JCI14064] [PMID: 11714746]
[49]
Liu, L.; Liu, C.; Lou, F.; Zhang, G.; Wang, X.; Fan, Y.; Yan, K.; Wang, K.; Xu, Z.; Hu, S.; Björkholm, M.; Xu, D. Activation of telomerase by seminal plasma in malignant and normal cervical epithelial cells. J. Pathol., 2011, 225(2), 203-211.
[http://dx.doi.org/10.1002/path.2914] [PMID: 21590772]
[50]
Sitaram, R.T.; Cairney, C.J.; Grabowski, P.; Keith, W.N.; Hallberg, B.; Ljungberg, B.; Roos, G. The PTEN regulator DJ-1 is associated with hTERT expression in clear cell renal cell carcinoma. Int. J. Cancer, 2009, 125(4), 783-790.
[http://dx.doi.org/10.1002/ijc.24335] [PMID: 19384955]
[51]
Xu, D.; Wang, Q.; Gruber, A.; Björkholm, M.; Chen, Z.; Zaid, A.; Selivanova, G.; Peterson, C.; Wiman, K.G.; Pisa, P. Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene, 2000, 19(45), 5123-5133.
[http://dx.doi.org/10.1038/sj.onc.1203890] [PMID: 11064449]
[52]
Mitchell, T.J.; Turajlic, S.; Rowan, A. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal. Cell, 2018, 173, 611-623.
[53]
Chen, X.; Kost, J.; Sulovari, A.; Wong, N.; Liang, W.S.; Cao, J.; Li, D. A virome-wide clonal integration analysis platform for discovering cancer viral etiology. Genome Res., 2019, 29(5), 819-830.
[http://dx.doi.org/10.1101/gr.242529.118] [PMID: 30872350]
[54]
Strååt, K.; Liu, C.; Rahbar, A.; Zhu, Q.; Liu, L.; Wolmer-Solberg, N.; Lou, F.; Liu, Z.; Shen, J.; Jia, J.; Kyo, S.; Björkholm, M.; Sjöberg, J.; Söderberg-Nauclér, C.; Xu, D. Activation of telomerase by human cytomegalovirus. J. Natl. Cancer Inst., 2009, 101(7), 488-497.
[http://dx.doi.org/10.1093/jnci/djp031] [PMID: 19318640]
[55]
Bellon, M.; Nicot, C. Regulation of telomerase and telomeres: human tumor viruses take control. J. Natl. Cancer Inst., 2008, 100(2), 98-108.
[http://dx.doi.org/10.1093/jnci/djm269] [PMID: 18182620]
[56]
Lewis, K.A.; Tollefsbol, T.O. Regulation of the telomerase Reverse transcriptase subunit through epigenetic mechanisms. Front. Genet., 2016, 7, 83.
[http://dx.doi.org/10.3389/fgene.2016.00083] [PMID: 27242892]
[57]
Liu, L.; Liu, C.; Fotouhi, O.; Fan, Y.; Wang, K.; Xia, C.; Shi, B.; Zhang, G.; Wang, K.; Kong, F.; Larsson, C.; Hu, S.; Xu, D. TERT promoter hypermethylation in gastrointestinal cancer: a potential stool biomarker. Oncologist, 2017, 22(10), 1178-1188.
[http://dx.doi.org/10.1634/theoncologist.2017-0064] [PMID: 28754720]
[58]
Lee, D.D.; Leão, R.; Komosa, M.; Gallo, M.; Zhang, C.H.; Lipman, T.; Remke, M.; Heidari, A.; Nunes, N.M.; Apolónio, J.D.; Price, A.J.; De Mello, R.A.; Dias, J.S.; Huntsman, D.; Hermanns, T.; Wild, P.J.; Vanner, R.; Zadeh, G.; Karamchandani, J.; Das, S.; Taylor, M.D.; Hawkins, C.E.; Wasserman, J.D.; Figueiredo, A.; Hamilton, R.J.; Minden, M.D.; Wani, K.; Diplas, B.; Yan, H.; Aldape, K.; Akbari, M.R.; Danesh, A.; Pugh, T.J.; Dirks, P.B.; Castelo-Branco, P.; Tabori, U. DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. J. Clin. Invest., 2019, 129(1), 223-229.
[http://dx.doi.org/10.1172/JCI121303] [PMID: 30358567]
[59]
Ge, Z.; Li, W.; Wang, N.; Liu, C.; Zhu, Q.; Björkholm, M.; Gruber, A.; Xu, D. Chromatin remodeling: recruitment of histone demethylase RBP2 by Mad1 for transcriptional repression of a Myc target gene, telomerase reverse transcriptase. FASEB J., 2010, 24(2), 579-586.
[http://dx.doi.org/10.1096/fj.09-140087] [PMID: 19762557]
[60]
Liu, C.; Fang, X.; Ge, Z.; Jalink, M.; Kyo, S.; Björkholm, M.; Gruber, A.; Sjöberg, J.; Xu, D. The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res., 2007, 67(6), 2626-2631.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4126] [PMID: 17363582]
[61]
Castelo-Branco, P.; Choufani, S.; Mack, S.; Gallagher, D.; Zhang, C.; Lipman, T.; Zhukova, N.; Walker, E.J.; Martin, D.; Merino, D.; Wasserman, J.D.; Elizabeth, C.; Alon, N.; Zhang, L.; Hovestadt, V.; Kool, M.; Jones, D.T.; Zadeh, G.; Croul, S.; Hawkins, C.; Hitzler, J.; Wang, J.C.; Baruchel, S.; Dirks, P.B.; Malkin, D.; Pfister, S.; Taylor, M.D.; Weksberg, R.; Tabori, U. Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncol., 2013, 14(6), 534-542.
[http://dx.doi.org/10.1016/S1470-2045(13)70110-4] [PMID: 23598174]
[62]
Hou, M.; Wang, X.; Popov, N.; Zhang, A.; Zhao, X.; Zhou, R.; Zetterberg, A.; Björkholm, M.; Henriksson, M.; Gruber, A.; Xu, D. The histone deacetylase inhibitor trichostatin A derepresses the telomerase reverse transcriptase (hTERT) gene in human cells. Exp. Cell Res., 2002, 274(1), 25-34.
[http://dx.doi.org/10.1006/excr.2001.5462] [PMID: 11855854]
[63]
Kim, W.; Ludlow, A.T.; Min, J.; Robin, J.D.; Stadler, G.; Mender, I.; Lai, T.P.; Zhang, N.; Wright, W.E.; Shay, J.W. Regulation of the human telomerase gene tert by telomere position effect-over long distances (TPE-OLD): implications for aging and cancer. PLoS Biol., 2016, 14(12), e2000016
[http://dx.doi.org/10.1371/journal.pbio.2000016] [PMID: 27977688]
[64]
Ma, R; Liu, C; Lu, M The TERT locus genotypes of rs2736100- CC/CA and rs2736098-AA predict shorter survival in renal cell carcinoma. Urol. Oncol., 2019, 37(301), e1-301-e10.
[65]
Yuan, X.; Cheng, G.; Yu, J.; Zheng, S.; Sun, C.; Sun, Q.; Li, K.; Lin, Z.; Liu, T.; Li, P.; Xu, Y.; Kong, F.; Bjorkholm, M.; Xu, D. The TERT promoter mutation incidence is modified by germline TERT rs2736098 and rs2736100 polymorphisms in hepatocellular carcinoma. Oncotarget, 2017, 8(14), 23120-23129.
[http://dx.doi.org/10.18632/oncotarget.15498] [PMID: 28416747]
[66]
Mocellin, S.; Verdi, D.; Pooley, K.A.; Landi, M.T.; Egan, K.M.; Baird, D.M.; Prescott, J.; De Vivo, I.; Nitti, D. Telomerase reverse transcriptase locus polymorphisms and cancer risk: a field synopsis and meta-analysis. J. Natl. Cancer Inst., 2012, 104(11), 840-854.
[http://dx.doi.org/10.1093/jnci/djs222] [PMID: 22523397]
[67]
Huang, F.W.; Hodis, E.; Xu, M.J.; Kryukov, G.V.; Chin, L.; Garraway, L.A. Highly recurrent TERT promoter mutations in human melanoma. Science, 2013, 339(6122), 957-959.
[http://dx.doi.org/10.1126/science.1229259] [PMID: 23348506]
[68]
Horn, S.; Figl, A.; Rachakonda, P.S.; Fischer, C.; Sucker, A.; Gast, A.; Kadel, S.; Moll, I.; Nagore, E.; Hemminki, K.; Schadendorf, D.; Kumar, R. TERT promoter mutations in familial and sporadic melanoma. Science, 2013, 339(6122), 959-961.
[http://dx.doi.org/10.1126/science.1230062] [PMID: 23348503]
[69]
Liu, T.; Yuan, X.; Xu, D. Cancer-Specific telomerase reverse transcriptase (tert) promoter mutations: biological and clinical implications. Genes (Basel), 2016, 7(7), E38
[http://dx.doi.org/10.3390/genes7070038] [PMID: 27438857]
[70]
Killela, P.J.; Reitman, Z.J.; Jiao, Y.; Bettegowda, C.; Agrawal, N.; Diaz, L.A., Jr; Friedman, A.H.; Friedman, H.; Gallia, G.L.; Giovanella, B.C.; Grollman, A.P.; He, T.C.; He, Y.; Hruban, R.H.; Jallo, G.I.; Mandahl, N.; Meeker, A.K.; Mertens, F.; Netto, G.J.; Rasheed, B.A.; Riggins, G.J.; Rosenquist, T.A.; Schiffman, M.; Shih, IeM.; Theodorescu, D.; Torbenson, M.S.; Velculescu, V.E.; Wang, T.L.; Wentzensen, N.; Wood, L.D.; Zhang, M.; McLendon, R.E.; Bigner, D.D.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N.; Yan, H. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl. Acad. Sci. USA, 2013, 110(15), 6021-6026.
[http://dx.doi.org/10.1073/pnas.1303607110] [PMID: 23530248]
[71]
Wang, K.; Liu, T.; Liu, C.; Meng, Y.; Yuan, X.; Liu, L.; Ge, N.; Liu, J.; Wang, C.; Ren, H.; Yan, K.; Hu, S.; Xu, Z.; Fan, Y.; Xu, D. TERT promoter mutations and TERT mRNA but not FGFR3 mutations are urinary biomarkers in Han Chinese patients with urothelial bladder cancer. Oncologist, 2015, 20(3), 263-269.
[http://dx.doi.org/10.1634/theoncologist.2014-0391] [PMID: 25657201]
[72]
Liu, T.; Wang, N.; Cao, J.; Sofiadis, A.; Dinets, A.; Zedenius, J.; Larsson, C.; Xu, D. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene, 2014, 33(42), 4978-4984.
[http://dx.doi.org/10.1038/onc.2013.446] [PMID: 24141777]
[73]
Wang, K.; Liu, T.; Liu, L.; Liu, J.; Liu, C.; Wang, C.; Ge, N.; Ren, H.; Yan, K.; Hu, S.; Björkholm, M.; Fan, Y.; Xu, D. TERT promoter mutations in renal cell carcinomas and upper tract urothelial carcinomas. Oncotarget, 2014, 5(7), 1829-1836.
[http://dx.doi.org/10.18632/oncotarget.1829] [PMID: 24742867]
[74]
Wang, N.; Liu, T.; Sofiadis, A.; Juhlin, C.C.; Zedenius, J.; Höög, A.; Larsson, C.; Xu, D. TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA. Cancer, 2014, 120(19), 2965-2979.
[http://dx.doi.org/10.1002/cncr.28800] [PMID: 24898513]
[75]
Li, C.; Wu, S.; Wang, H.; Bi, X.; Yang, Z.; Du, Y.; He, L.; Cai, Z.; Wang, J.; Fan, Z. The C228T mutation of TERT promoter frequently occurs in bladder cancer stem cells and contributes to tumorigenesis of bladder cancer. Oncotarget, 2015, 6(23), 19542-19551.
[http://dx.doi.org/10.18632/oncotarget.4295] [PMID: 26143634]
[76]
Bell, R.J.; Rube, H.T.; Kreig, A.; Mancini, A.; Fouse, S.D.; Nagarajan, R.P.; Choi, S.; Hong, C.; He, D.; Pekmezci, M.; Wiencke, J.K.; Wrensch, M.R.; Chang, S.M.; Walsh, K.M.; Myong, S.; Song, J.S.; Costello, J.F. Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science, 2015, 348(6238), 1036-1039.
[http://dx.doi.org/10.1126/science.aab0015] [PMID: 25977370]
[77]
Stern, J.L.; Theodorescu, D.; Vogelstein, B.; Papadopoulos, N.; Cech, T.R. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers. Genes Dev., 2015, 29(21), 2219-2224.
[http://dx.doi.org/10.1101/gad.269498.115] [PMID: 26515115]
[78]
Mancini, A.; Xavier-Magalhães, A.; Woods, W.S. Disruption of the beta1L isoform of GABP reverses glioblastoma replicative immortality in a tert promoter mutation-dependent manner. Cancer Cell, 2018, 34, 513-528.
[79]
Yuan, X.; Mu, N.; Wang, N.; Strååt, K.; Sofiadis, A.; Guo, Y.; Stenman, A.; Li, K.; Cheng, G.; Zhang, L.; Kong, F.; Ekblad, L.; Wennerberg, J.; Nilsson, I.L.; Juhlin, C.C.; Larsson, C.; Xu, D. GABPA inhibits invasion/metastasis in papillary thyroid carcinoma by regulating DICER1 expression. Oncogene, 2019, 38(7), 965-979.
[http://dx.doi.org/10.1038/s41388-018-0483-x] [PMID: 30181547]
[80]
Guo, Y.; Yuan, X.; Li, K.; Dai, M.; Zhang, L.; Wu, Y.; Sun, C.; Chen, Y.; Cheng, G.; Liu, C.; Strååt, K.; Kong, F.; Zhao, S.; Bjorkhölm, M.; Xu, D. GABPA is a master regulator of luminal identity and restrains aggressive diseases in bladder cancer. Cell Death Differ., 2019. Epub ahead of Print
[http://dx.doi.org/10.1038/s41418-019-0466-7] [PMID: 31802036]
[81]
Valentijn, L.J.; Koster, J.; Zwijnenburg, D.A.; Hasselt, N.E.; van Sluis, P.; Volckmann, R.; van Noesel, M.M.; George, R.E.; Tytgat, G.A.; Molenaar, J.J.; Versteeg, R. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat. Genet., 2015, 47(12), 1411-1414.
[http://dx.doi.org/10.1038/ng.3438] [PMID: 26523776]
[82]
Peifer, M.; Hertwig, F.; Roels, F.; Dreidax, D.; Gartlgruber, M.; Menon, R.; Krämer, A.; Roncaioli, J.L.; Sand, F.; Heuckmann, J.M.; Ikram, F.; Schmidt, R.; Ackermann, S.; Engesser, A.; Kahlert, Y.; Vogel, W.; Altmüller, J.; Nürnberg, P.; Thierry-Mieg, J.; Thierry-Mieg, D.; Mariappan, A.; Heynck, S.; Mariotti, E.; Henrich, K.O.; Gloeckner, C.; Bosco, G.; Leuschner, I.; Schweiger, M.R.; Savelyeva, L.; Watkins, S.C.; Shao, C.; Bell, E.; Höfer, T.; Achter, V.; Lang, U.; Theissen, J.; Volland, R.; Saadati, M.; Eggert, A.; de Wilde, B.; Berthold, F.; Peng, Z.; Zhao, C.; Shi, L.; Ortmann, M.; Büttner, R.; Perner, S.; Hero, B.; Schramm, A.; Schulte, J.H.; Herrmann, C.; O’Sullivan, R.J.; Westermann, F.; Thomas, R.K.; Fischer, M. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature, 2015, 526(7575), 700-704.
[http://dx.doi.org/10.1038/nature14980] [PMID: 26466568]
[83]
Ackermann, S.; Cartolano, M.; Hero, B.; Welte, A.; Kahlert, Y.; Roderwieser, A.; Bartenhagen, C.; Walter, E.; Gecht, J.; Kerschke, L.; Volland, R.; Menon, R.; Heuckmann, J.M.; Gartlgruber, M.; Hartlieb, S.; Henrich, K.O.; Okonechnikov, K.; Altmüller, J.; Nürnberg, P.; Lefever, S.; de Wilde, B.; Sand, F.; Ikram, F.; Rosswog, C.; Fischer, J.; Theissen, J.; Hertwig, F.; Singhi, A.D.; Simon, T.; Vogel, W.; Perner, S.; Krug, B.; Schmidt, M.; Rahmann, S.; Achter, V.; Lang, U.; Vokuhl, C.; Ortmann, M.; Büttner, R.; Eggert, A.; Speleman, F.; O’Sullivan, R.J.; Thomas, R.K.; Berthold, F.; Vandesompele, J.; Schramm, A.; Westermann, F.; Schulte, J.H.; Peifer, M.; Fischer, M. A mechanistic classification of clinical phenotypes in neuroblastoma. Science, 2018, 362(6419), 1165-1170.
[http://dx.doi.org/10.1126/science.aat6768] [PMID: 30523111]
[84]
Heaphy, C.M.; de Wilde, R.F.; Jiao, Y.; Klein, A.P.; Edil, B.H.; Shi, C.; Bettegowda, C.; Rodriguez, F.J.; Eberhart, C.G.; Hebbar, S.; Offerhaus, G.J.; McLendon, R.; Rasheed, B.A.; He, Y.; Yan, H.; Bigner, D.D.; Oba-Shinjo, S.M.; Marie, S.K.; Riggins, G.J.; Kinzler, K.W.; Vogelstein, B.; Hruban, R.H.; Maitra, A.; Papadopoulos, N.; Meeker, A.K. Altered telomeres in tumors with ATRX and DAXX mutations. Science, 2011, 333(6041), 425.
[http://dx.doi.org/10.1126/science.1207313] [PMID: 21719641]
[85]
Horikawa, I.; Barrett, J.C. cis-Activation of the human telomerase gene (hTERT) by the hepatitis B virus genome. J. Natl. Cancer Inst., 2001, 93(15), 1171-1173.
[http://dx.doi.org/10.1093/jnci/93.15.1171] [PMID: 11481390]
[86]
Sung, W.K.; Zheng, H.; Li, S.; Chen, R.; Liu, X.; Li, Y.; Lee, N.P.; Lee, W.H.; Ariyaratne, P.N.; Tennakoon, C.; Mulawadi, F.H.; Wong, K.F.; Liu, A.M.; Poon, R.T.; Fan, S.T.; Chan, K.L.; Gong, Z.; Hu, Y.; Lin, Z.; Wang, G.; Zhang, Q.; Barber, T.D.; Chou, W.C.; Aggarwal, A.; Hao, K.; Zhou, W.; Zhang, C.; Hardwick, J.; Buser, C.; Xu, J.; Kan, Z.; Dai, H.; Mao, M.; Reinhard, C.; Wang, J.; Luk, J.M. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet., 2012, 44(7), 765-769.
[http://dx.doi.org/10.1038/ng.2295] [PMID: 22634754]
[87]
Nault, J.C.; Datta, S.; Imbeaud, S.; Franconi, A.; Mallet, M.; Couchy, G.; Letouzé, E.; Pilati, C.; Verret, B.; Blanc, J.F.; Balabaud, C.; Calderaro, J.; Laurent, A.; Letexier, M.; Bioulac-Sage, P.; Calvo, F.; Zucman-Rossi, J. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet., 2015, 47(10), 1187-1193.
[http://dx.doi.org/10.1038/ng.3389] [PMID: 26301494]
[88]
Chang, K.P.; Wang, C.I.; Pickering, C.R.; Huang, Y.; Tsai, C.N.; Tsang, N.M.; Kao, H.K.; Cheng, M.H.; Myers, J.N. Prevalence of promoter mutations in the TERT gene in oral cavity squamous cell carcinoma. Head Neck, 2017, 39(6), 1131-1137.
[http://dx.doi.org/10.1002/hed.24728] [PMID: 28230921]
[89]
Balsara, B.R.; Sonoda, G.; du Manoir, S.; Siegfried, J.M.; Gabrielson, E.; Testa, J.R. Comparative genomic hybridization analysis detects frequent, often high-level, overrepresentation of DNA sequences at 3q, 5p, 7p, and 8q in human non-small cell lung carcinomas. Cancer Res., 1997, 57(11), 2116-2120.
[PMID: 9187106]
[90]
Meyerson, M.; Counter, C.M.; Eaton, E.N.; Ellisen, L.W.; Steiner, P.; Caddle, S.D.; Ziaugra, L.; Beijersbergen, R.L.; Davidoff, M.J.; Liu, Q.; Bacchetti, S.; Haber, D.A.; Weinberg, R.A. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell, 1997, 90(4), 785-795.
[http://dx.doi.org/10.1016/S0092-8674(00)80538-3] [PMID: 9288757]
[91]
Kilian, A.; Bowtell, D.D.; Abud, H.E.; Hime, G.R.; Venter, D.J.; Keese, P.K.; Duncan, E.L.; Reddel, R.R.; Jefferson, R.A. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum. Mol. Genet., 1997, 6(12), 2011-2019.
[http://dx.doi.org/10.1093/hmg/6.12.2011] [PMID: 9328464]
[92]
Zhang, A.; Zheng, C.; Lindvall, C.; Hou, M.; Ekedahl, J.; Lewensohn, R.; Yan, Z.; Yang, X.; Henriksson, M.; Blennow, E.; Nordenskjöld, M.; Zetterberg, A.; Björkholm, M.; Gruber, A.; Xu, D. Frequent amplification of the telomerase reverse transcriptase gene in human tumors. Cancer Res., 2000, 60(22), 6230-6235.
[PMID: 11103775]
[93]
Dahlström, J.; Liu, T.; Yuan, X.; Saft, L.; Ghaderi, M.; Wei, Y.B.; Lavebratt, C.; Li, P.; Zheng, C.; Björkholm, M.; Xu, D. TERT rs2736100 genotypes are associated with differential risk of myeloproliferative neoplasms in Swedish and Chinese male patient populations. Ann. Hematol., 2016, 95(11), 1825-1832.
[http://dx.doi.org/10.1007/s00277-016-2787-7] [PMID: 27561898]
[94]
Wei, R.; Cao, L.; Pu, H.; Wang, H.; Zheng, Y.; Niu, X.; Weng, X.; Zhang, H.; Favus, M.; Zhang, L.; Jia, W.; Zeng, Y.; Amos, C.I.; Lu, S.; Wang, H.Y.; Liu, Y.; Liu, W. TERT Polymorphism rs2736100-C is associated with egfr mutation-positive non-small cell lung Cancer. Clin. Cancer Res., 2015, 21(22), 5173-5180.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0009] [PMID: 26149460]
[95]
Bojesen, S.E.; Pooley, K.A.; Johnatty, S.E. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet., 2013, 45, 371-384.
[http://dx.doi.org/10.1038/ng.2566]
[96]
Rachakonda, P.S.; Hosen, I.; de Verdier, P.J.; Fallah, M.; Heidenreich, B.; Ryk, C.; Wiklund, N.P.; Steineck, G.; Schadendorf, D.; Hemminki, K.; Kumar, R. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc. Natl. Acad. Sci. USA, 2013, 110(43), 17426-17431.
[http://dx.doi.org/10.1073/pnas.1310522110] [PMID: 24101484]
[97]
Cheng, G.; Yuan, X.; Wang, F.; Sun, Q.; Xin, Q.; Li, K.; Sun, C.; Lin, Z.; Luan, Y.; Xu, Y.; Li, P.; Kong, F.; Xu, D. Association between the telomerase rs2736098_tt genotype and a lower risk of chronic hepatitis b and cirrhosis in chinese males. Clin. Transl. Gastroenterol., 2017, 8(3), e79
[http://dx.doi.org/10.1038/ctg.2017.9] [PMID: 28300824]
[98]
Wong, M.S.; Wright, W.E.; Shay, J.W. Alternative splicing regulation of telomerase: a new paradigm? Trends Genet., 2014, 30(10), 430-438.
[http://dx.doi.org/10.1016/j.tig.2014.07.006] [PMID: 25172021]
[99]
Avin, B.A.; Umbricht, C.B.; Zeiger, M.A. Human telomerase reverse transcriptase regulation by DNA methylation, transcription factor binding and alternative splicing (Review). Int. J. Oncol., 2016, 49(6), 2199-2205.
[http://dx.doi.org/10.3892/ijo.2016.3743] [PMID: 27779655]
[100]
Fan, Y.; Liu, Z.; Fang, X.; Ge, Z.; Ge, N.; Jia, Y.; Sun, P.; Lou, F.; Björkholm, M.; Gruber, A.; Ekman, P.; Xu, D. Differential expression of full-length telomerase reverse transcriptase mRNA and telomerase activity between normal and malignant renal tissues. Clin. Cancer Res., 2005, 11(12), 4331-4337.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0099] [PMID: 15958614]
[101]
Jalink, M.; Ge, Z.; Liu, C.; Björkholm, M.; Gruber, A.; Xu, D. Human normal T lymphocytes and lymphoid cell lines do express alternative splicing variants of human telomerase reverse transcriptase (hTERT) mRNA. Biochem. Biophys. Res. Commun., 2007, 353(4), 999-1003.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.149] [PMID: 17204238]
[102]
Selvanathan, S.P.; Graham, G.T.; Erkizan, H.V.; Dirksen, U.; Natarajan, T.G.; Dakic, A.; Yu, S.; Liu, X.; Paulsen, M.T.; Ljungman, M.E.; Wu, C.H.; Lawlor, E.R.; Üren, A.; Toretsky, J.A. Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing. Proc. Natl. Acad. Sci. USA, 2015, 112(11), E1307-E1316.
[http://dx.doi.org/10.1073/pnas.1500536112] [PMID: 25737553]
[103]
Ito, T.; Watanabe, H.; Yamamichi, N.; Kondo, S.; Tando, T.; Haraguchi, T.; Mizutani, T.; Sakurai, K.; Fujita, S.; Izumi, T.; Isobe, T.; Iba, H. Brm transactivates the telomerase reverse transcriptase (TERT) gene and modulates the splicing patterns of its transcripts in concert with p54(nrb). Biochem. J., 2008, 411(1), 201-209.
[http://dx.doi.org/10.1042/BJ20071075] [PMID: 18042045]
[104]
Listerman, I.; Sun, J.; Gazzaniga, F.S.; Lukas, J.L.; Blackburn, E.H. The major reverse transcriptase-incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis. Cancer Res., 2013, 73(9), 2817-2828.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3082] [PMID: 23610451]
[105]
Sayed, M.E.; Yuan, L.; Robin, J.D.; Tedone, E.; Batten, K.; Dahlson, N.; Wright, W.E.; Shay, J.W.; Ludlow, A.T. NOVA1 directs PTBP1 to hTERT pre-mRNA and promotes telomerase activity in cancer cells. Oncogene, 2019, 38(16), 2937-2952.
[http://dx.doi.org/10.1038/s41388-018-0639-8] [PMID: 30568224]
[106]
Li, H.; Zhao, L.; Yang, Z.; Funder, J.W.; Liu, J.P. Telomerase is controlled by protein kinase Calpha in human breast cancer cells. J. Biol. Chem., 1998, 273(50), 33436-33442.
[http://dx.doi.org/10.1074/jbc.273.50.33436] [PMID: 9837921]
[107]
Kang, S.S.; Kwon, T.; Kwon, D.Y.; Do, S.I. Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J. Biol. Chem., 1999, 274(19), 13085-13090.
[http://dx.doi.org/10.1074/jbc.274.19.13085] [PMID: 10224060]
[108]
Chang, J.T.; Lu, Y.C.; Chen, Y.J.; Tseng, C.P.; Chen, Y.L.; Fang, C.W.; Cheng, A.J. hTERT phosphorylation by PKC is essential for telomerase holoprotein integrity and enzyme activity in head neck cancer cells. Br. J. Cancer, 2006, 94(6), 870-878.
[http://dx.doi.org/10.1038/sj.bjc.6603008] [PMID: 16508638]
[109]
Haendeler, J.; Hoffmann, J.; Brandes, R.P.; Zeiher, A.M.; Dimmeler, S. Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol. Cell. Biol., 2003, 23(13), 4598-4610.
[http://dx.doi.org/10.1128/MCB.23.13.4598-4610.2003] [PMID: 12808100]
[110]
Kharbanda, S.; Kumar, V.; Dhar, S.; Pandey, P.; Chen, C.; Majumder, P.; Yuan, Z.M.; Whang, Y.; Strauss, W.; Pandita, T.K.; Weaver, D.; Kufe, D. Regulation of the hTERT telomerase catalytic subunit by the c-Abl tyrosine kinase. Curr. Biol., 2000, 10(10), 568-575.
[http://dx.doi.org/10.1016/S0960-9822(00)00483-8] [PMID: 10837221]
[111]
Jeong, S.A.; Kim, K.; Lee, J.H.; Cha, J.S.; Khadka, P.; Cho, H.S.; Chung, I.K. Akt-mediated phosphorylation increases the binding affinity of hTERT for importin α to promote nuclear translocation. J. Cell Sci., 2015, 128(15), 2951.
[http://dx.doi.org/10.1242/jcs.176453] [PMID: 26240165]
[112]
Miwa, S.; Czapiewski, R.; Wan, T.; Bell, A.; Hill, K.N.; von Zglinicki, T.; Saretzki, G. Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria. Aging (Albany NY), 2016, 8(10), 2551-2567.
[http://dx.doi.org/10.18632/aging.101089] [PMID: 27777385]
[113]
Forsythe, H.L.; Jarvis, J.L.; Turner, J.W.; Elmore, L.W.; Holt, S.E. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J. Biol. Chem., 2001, 276(19), 15571-15574.
[http://dx.doi.org/10.1074/jbc.C100055200] [PMID: 11274138]
[114]
Kim, J.H.; Park, S.M.; Kang, M.R.; Oh, S.Y.; Lee, T.H.; Muller, M.T.; Chung, I.K. Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev., 2005, 19(7), 776-781.
[http://dx.doi.org/10.1101/gad.1289405] [PMID: 15805468]
[115]
Jeong, Y.Y.; Her, J.; Oh, S.Y.; Chung, I.K. Hsp90-binding immunophilin FKBP52 modulates telomerase activity by promoting the cytoplasmic retrotransport of hTERT. Biochem. J., 2016, 473(20), 3517-3532.
[http://dx.doi.org/10.1042/BCJ20160344] [PMID: 27503910]
[116]
Lee, J.H.; Khadka, P.; Baek, S.H.; Chung, I.K. CHIP promotes human telomerase reverse transcriptase degradation and negatively regulates telomerase activity. J. Biol. Chem., 2010, 285(53), 42033-42045.
[http://dx.doi.org/10.1074/jbc.M110.149831] [PMID: 20959453]
[117]
Oh, W.; Lee, E.W.; Lee, D.; Yang, M.R.; Ko, A.; Yoon, C.H.; Lee, H.W.; Bae, Y.S.; Choi, C.Y.; Song, J. Hdm2 negatively regulates telomerase activity by functioning as an E3 ligase of hTERT. Oncogene, 2010, 29(28), 4101-4112.
[http://dx.doi.org/10.1038/onc.2010.160] [PMID: 20453884]
[118]
Farooqi, A.A.; Mansoor, Q.; Alaaeddine, N.; Xu, B. MicroRNA regulation of telomerase reverse transcriptase (tert): micro machines pull strings of papier-mâché Puppets. Int. J. Mol. Sci., 2018, 19(4), E1051
[http://dx.doi.org/10.3390/ijms19041051] [PMID: 29614790]
[119]
Lü, M.H.; Tang, B.; Zeng, S.; Hu, C.J.; Xie, R.; Wu, Y.Y.; Wang, S.M.; He, F.T.; Yang, S.M. Long noncoding RNA BC032469, a novel competing endogenous RNA, upregulates hTERT expression by sponging miR-1207-5p and promotes proliferation in gastric cancer. Oncogene, 2016, 35(27), 3524-3534.
[http://dx.doi.org/10.1038/onc.2015.413] [PMID: 26549025]
[120]
Aiello, A.; Bacci, L.; Re, A.; Ripoli, C.; Pierconti, F.; Pinto, F.; Masetti, R.; Grassi, C.; Gaetano, C.; Bassi, P.F.; Pontecorvi, A.; Nanni, S.; Farsetti, A. MALAT1 and HOTAIR long non-coding rnas play opposite role in estrogen-mediated transcriptional regulation in prostate cancer cells. Sci. Rep., 2016, 6, 38414.
[http://dx.doi.org/10.1038/srep38414] [PMID: 27922078]
[121]
Trapp, S.; Parcells, M.S.; Kamil, J.P.; Schumacher, D.; Tischer, B.K.; Kumar, P.M.; Nair, V.K.; Osterrieder, N. A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. J. Exp. Med., 2006, 203(5), 1307-1317.
[http://dx.doi.org/10.1084/jem.20052240] [PMID: 16651385]
[122]
Kheimar, A.; Trimpert, J.; Groenke, N.; Kaufer, B.B. Overexpression of cellular telomerase RNA enhances virus-induced cancer formation. Oncogene, 2019, 38(10), 1778-1786.
[http://dx.doi.org/10.1038/s41388-018-0544-1] [PMID: 30846849]
[123]
Chin, L.; Artandi, S.E.; Shen, Q.; Tam, A.; Lee, S.L.; Gottlieb, G.J.; Greider, C.W.; DePinho, R.A. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell, 1999, 97(4), 527-538.
[http://dx.doi.org/10.1016/S0092-8674(00)80762-X] [PMID: 10338216]
[124]
González-Suárez, E.; Samper, E.; Flores, J.M.; Blasco, M.A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat. Genet., 2000, 26(1), 114-117.
[http://dx.doi.org/10.1038/79089] [PMID: 10973262]
[125]
Alter, B.P.; Giri, N.; Savage, S.A.; Rosenberg, P.S. Cancer in dyskeratosis congenita. Blood, 2009, 113(26), 6549-6557.
[http://dx.doi.org/10.1182/blood-2008-12-192880] [PMID: 19282459]
[126]
Kedde, M.; le Sage, C.; Duursma, A.; Zlotorynski, E.; van Leeuwen, B.; Nijkamp, W.; Beijersbergen, R.; Agami, R. Telomerase-independent regulation of ATR by human telomerase RNA. J. Biol. Chem., 2006, 281(52), 40503-40514.
[http://dx.doi.org/10.1074/jbc.M607676200] [PMID: 17098743]
[127]
Liu, H.; Yang, Y.; Ge, Y.; Liu, J.; Zhao, Y. TERC promotes cellular inflammatory response independent of telomerase. Nucleic Acids Res., 2019, 47(15), 8084-8095.
[http://dx.doi.org/10.1093/nar/gkz584] [PMID: 31294790]
[128]
Baena-Del Valle, J.A.; Zheng, Q.; Esopi, D.M.; Rubenstein, M.; Hubbard, G.K.; Moncaliano, M.C.; Hruszkewycz, A.; Vaghasia, A.; Yegnasubramanian, S.; Wheelan, S.J.; Meeker, A.K.; Heaphy, C.M.; Graham, M.K.; De Marzo, A.M. MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J. Pathol., 2018, 244(1), 11-24.
[http://dx.doi.org/10.1002/path.4980] [PMID: 28888037]
[129]
Yi, X.; Tesmer, V.M.; Savre-Train, I.; Shay, J.W.; Wright, W.E. Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels. Mol. Cell. Biol., 1999, 19(6), 3989-3997.
[http://dx.doi.org/10.1128/MCB.19.6.3989] [PMID: 10330139]
[130]
Wong, J.M.; Collins, K. Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Genes Dev., 2006, 20(20), 2848-2858.
[http://dx.doi.org/10.1101/gad.1476206] [PMID: 17015423]
[131]
Boyraz, B.; Moon, D.H.; Segal, M.; Muosieyiri, M.Z.; Aykanat, A.; Tai, A.K.; Cahan, P.; Agarwal, S. Posttranscriptional manipulation of TERC reverses molecular hallmarks of telomere disease. J. Clin. Invest., 2016, 126(9), 3377-3382.
[http://dx.doi.org/10.1172/JCI87547] [PMID: 27482890]
[132]
Tummala, H.; Walne, A.; Collopy, L.; Cardoso, S.; de la Fuente, J.; Lawson, S.; Powell, J.; Cooper, N.; Foster, A.; Mohammed, S.; Plagnol, V.; Vulliamy, T.; Dokal, I. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J. Clin. Invest., 2015, 125(5), 2151-2160.
[http://dx.doi.org/10.1172/JCI78963] [PMID: 25893599]
[133]
Richards, LA; Kumari, A; Knezevic, K DKC1 is a transcriptional target of GATA1 and drives upregulation of telomerase activity in normal human erythroblasts. Haematologica, 2019, Pii: haematol.2018.515699.
[http://dx.doi.org/10.3324/haematol.2018.215699]
[134]
Akalin, A.; Elmore, L.W.; Forsythe, H.L.; Amaker, B.A.; McCollum, E.D.; Nelson, P.S.; Ware, J.L.; Holt, S.E. A novel mechanism for chaperone-mediated telomerase regulation during prostate cancer progression. Cancer Res., 2001, 61(12), 4791-4796.
[PMID: 11406554]
[135]
Venteicher, A.S.; Meng, Z.; Mason, P.J.; Veenstra, T.D.; Artandi, S.E. Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell, 2008, 132(6), 945-957.
[http://dx.doi.org/10.1016/j.cell.2008.01.019] [PMID: 18358808]
[136]
Li, W.; Zeng, J.; Li, Q.; Zhao, L.; Liu, T.; Björkholm, M.; Jia, J.; Xu, D. Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer. Mol. Cancer, 2010, 9, 132.
[http://dx.doi.org/10.1186/1476-4598-9-132] [PMID: 20509972]
[137]
Flynn, R.L.; Cox, K.E.; Jeitany, M.; Wakimoto, H.; Bryll, A.R.; Ganem, N.J.; Bersani, F.; Pineda, J.R.; Suvà, M.L.; Benes, C.H.; Haber, D.A.; Boussin, F.D.; Zou, L. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science, 2015, 347(6219), 273-277.
[http://dx.doi.org/10.1126/science.1257216] [PMID: 25593184]
[138]
Yost, K.E.; Clatterbuck Soper, S.F.; Walker, R.L.; Pineda, M.A.; Zhu, Y.J.; Ester, C.D.; Showman, S.; Roschke, A.V.; Waterfall, J.J.; Meltzer, P.S. Rapid and reversible suppression of ALT by DAXX in osteosarcoma cells. Sci. Rep., 2019, 9(1), 4544.
[http://dx.doi.org/10.1038/s41598-019-41058-8] [PMID: 30872698]
[139]
Arora, R.; Lee, Y.; Wischnewski, H.; Brun, C.M.; Schwarz, T.; Azzalin, C.M. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun., 2014, 5, 5220.
[http://dx.doi.org/10.1038/ncomms6220] [PMID: 25330849]
[140]
Hu, Y.; Shi, G.; Zhang, L.; Li, F.; Jiang, Y.; Jiang, S.; Ma, W.; Zhao, Y.; Songyang, Z.; Huang, J. Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX. Sci. Rep., 2016, 6, 32280.
[http://dx.doi.org/10.1038/srep32280] [PMID: 27578458]
[141]
O’Sullivan, R.J.; Arnoult, N.; Lackner, D.H.; Oganesian, L.; Haggblom, C.; Corpet, A.; Almouzni, G.; Karlseder, J. Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nat. Struct. Mol. Biol., 2014, 21(2), 167-174.
[http://dx.doi.org/10.1038/nsmb.2754] [PMID: 24413054]
[142]
Liang, X.; Yuan, X.; Yu, J.; Wu, Y.; Li, K.; Sun, C.; Li, S.; Shen, L.; Kong, F.; Jia, J.; Björkholm, M.; Xu, D. Histone Chaperone ASF1A predicts poor outcomes for patients with gastrointestinal cancer and drives cancer progression by stimulating transcription of β-catenin target genes. EBioMedicine, 2017, 21, 104-116.
[http://dx.doi.org/10.1016/j.ebiom.2017.06.007] [PMID: 28625518]
[143]
Wu, Y.; Li, X.; Yu, J.; Björkholm, M.; Xu, D. ASF1a inhibition induces p53-dependent growth arrest and senescence of cancer cells. Cell Death Dis., 2019, 10(2), 76.
[http://dx.doi.org/10.1038/s41419-019-1357-z] [PMID: 30692519]
[144]
Herling, C.D.; Klaumünzer, M.; Rocha, C.K.; Altmüller, J.; Thiele, H.; Bahlo, J.; Kluth, S.; Crispatzu, G.; Herling, M.; Schiller, J.; Engelke, A.; Tausch, E.; Döhner, H.; Fischer, K.; Goede, V.; Nürnberg, P.; Reinhardt, H.C.; Stilgenbauer, S.; Hallek, M.; Kreuzer, K.A. Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood, 2016, 128(3), 395-404.
[http://dx.doi.org/10.1182/blood-2016-01-691550] [PMID: 27226433]
[145]
Speedy, H.E.; Kinnersley, B.; Chubb, D. Germ line mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia. Blood, 2016, 128, 2319-2326.
[http://dx.doi.org/10.1182/blood-2016-01-695692]
[146]
Aoude, L.G.; Pritchard, A.L.; Robles-Espinoza, C.D.; Wadt, K.; Harland, M.; Choi, J.; Gartside, M.; Quesada, V.; Johansson, P.; Palmer, J.M.; Ramsay, A.J.; Zhang, X.; Jones, K.; Symmons, J.; Holland, E.A.; Schmid, H.; Bonazzi, V.; Woods, S.; Dutton-Regester, K.; Stark, M.S.; Snowden, H.; van Doorn, R.; Montgomery, G.W.; Martin, N.G.; Keane, T.M.; López-Otín, C.; Gerdes, A.M.; Olsson, H.; Ingvar, C.; Borg, A.; Gruis, N.A.; Trent, J.M.; Jönsson, G.; Bishop, D.T.; Mann, G.J.; Newton-Bishop, J.A.; Brown, K.M.; Adams, D.J.; Hayward, N.K. Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. J. Natl. Cancer Inst., 2014, 107(2), dju408
[http://dx.doi.org/10.1093/jnci/dju408] [PMID: 25505254]
[147]
Broderick, P.; Dobbins, S.E.; Chubb, D. Validation of recently proposed colorectal cancer susceptibility gene variants in an analysis of families and patients-a systematic review. Gastroenterology, 2017, 152, 75-77.
[http://dx.doi.org/10.1053/j.gastro.2016.09.041]
[148]
Bainbridge, M.N.; Armstrong, G.N.; Gramatges, M.M.; Bertuch, A.A.; Jhangiani, S.N.; Doddapaneni, H.; Lewis, L.; Tombrello, J.; Tsavachidis, S.; Liu, Y.; Jalali, A.; Plon, S.E.; Lau, C.C.; Parsons, D.W.; Claus, E.B.; Barnholtz-Sloan, J.; Il’yasova, D.; Schildkraut, J.; Ali-Osman, F.; Sadetzki, S.; Johansen, C.; Houlston, R.S.; Jenkins, R.B.; Lachance, D.; Olson, S.H.; Bernstein, J.L.; Merrell, R.T.; Wrensch, M.R.; Walsh, K.M.; Davis, F.G.; Lai, R.; Shete, S.; Aldape, K.; Amos, C.I.; Thompson, P.A.; Muzny, D.M.; Gibbs, R.A.; Melin, B.S.; Bondy, M.L. Germline mutations in shelterin complex genes are associated with familial glioma. J. Natl. Cancer Inst., 2014, 107(1), 384.
[PMID: 25482530]
[149]
McMaster, M.L.; Sun, C.; Landi, M.T.; Savage, S.A.; Rotunno, M.; Yang, X.R.; Jones, K.; Vogt, A.; Hutchinson, A.; Zhu, B.; Wang, M.; Hicks, B.; Thirunavukarason, A.; Stewart, D.R.; Koutros, S.; Goldstein, A.M.; Chanock, S.J.; Caporaso, N.E.; Tucker, M.A.; Goldin, L.R.; Liu, Y. Germline mutations in Protection of Telomeres 1 in two families with Hodgkin lymphoma. Br. J. Haematol., 2018, 181(3), 372-377.
[http://dx.doi.org/10.1111/bjh.15203] [PMID: 29693246]
[150]
Spinella, J.F.; Cassart, P.; Garnier, N.; Rousseau, P.; Drullion, C.; Richer, C.; Ouimet, M.; Saillour, V.; Healy, J.; Autexier, C.; Sinnett, D. A novel somatic mutation in ACD induces telomere lengthening and apoptosis resistance in leukemia cells. BMC Cancer, 2015, 15, 621.
[http://dx.doi.org/10.1186/s12885-015-1639-5] [PMID: 26345285]
[151]
Poonepalli, A.; Banerjee, B.; Ramnarayanan, K.; Palanisamy, N.; Putti, T.C.; Hande, M.P. Telomere-mediated genomic instability and the clinico-pathological parameters in breast cancer. Genes Chromosomes Cancer, 2008, 47(12), 1098-1109.
[http://dx.doi.org/10.1002/gcc.20608] [PMID: 18720522]
[152]
Heng, J.; Zhang, F.; Guo, X.; Tang, L.; Peng, L.; Luo, X.; Xu, X.; Wang, S.; Dai, L.; Wang, J. Integrated analysis of promoter methylation and expression of telomere related genes in breast cancer. Oncotarget, 2017, 8(15), 25442-25454.
[http://dx.doi.org/10.18632/oncotarget.16036] [PMID: 28424414]
[153]
Dinami, R.; Ercolani, C.; Petti, E.; Piazza, S.; Ciani, Y.; Sestito, R.; Sacconi, A.; Biagioni, F.; le Sage, C.; Agami, R.; Benetti, R.; Mottolese, M.; Schneider, C.; Blandino, G.; Schoeftner, S. miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res., 2014, 74(15), 4145-4156.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2038] [PMID: 24876105]
[154]
Miyachi, K.; Fujita, M.; Tanaka, N.; Sasaki, K.; Sunagawa, M. Correlation between telomerase activity and telomeric-repeat binding factors in gastric cancer. J. Exp. Clin. Cancer Res., 2002, 21(2), 269-275.
[PMID: 12148588]
[155]
Lin, X.; Gu, J.; Lu, C.; Spitz, M.R.; Wu, X. Expression of telomere-associated genes as prognostic markers for overall survival in patients with non-small cell lung cancer. Clin. Cancer Res., 2006, 12(19), 5720-5725.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2809] [PMID: 17020976]
[156]
Lantuejoul, S.; Raynaud, C.; Salameire, D.; Gazzeri, S.; Moro-Sibilot, D.; Soria, J.C.; Brambilla, C.; Brambilla, E. Telomere maintenance and DNA damage responses during lung carcinogenesis. Clin. Cancer Res., 2010, 16(11), 2979-2988.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0142] [PMID: 20404006]
[157]
Oh, B.K.; Kim, Y.J.; Park, C.; Park, Y.N. Up-regulation of telomere-binding proteins, TRF1, TRF2, and TIN2 is related to telomere shortening during human multistep hepatocarcinogenesis. Am. J. Pathol., 2005, 166(1), 73-80.
[http://dx.doi.org/10.1016/S0002-9440(10)62233-X] [PMID: 15632001]
[158]
Chen, W.; Wang, Y.; Li, F.; Lin, W.; Liang, Y.; Ma, Z. Expression of telomere repeat binding factor 1 and TRF2 in prostate cancer and correlation with clinical parameters. BioMed Res. Int., 2017, 2017, 9764752
[http://dx.doi.org/10.1155/2017/9764752] [PMID: 28808664]
[159]
Pal, D.; Sharma, U.; Singh, S.K.; Kakkar, N.; Prasad, R. Over-expression of telomere binding factors (TRF1 & TRF2) in renal cell carcinoma and their inhibition by using SiRNA induce apoptosis, reduce cell proliferation and migration invitro. PLoS One, 2015, 10(3), e0115651
[http://dx.doi.org/10.1371/journal.pone.0115651] [PMID: 25730259]
[160]
Méndez-Pertuz, M.; Martínez, P.; Blanco-Aparicio, C.; Gómez-Casero, E.; Belen García, A.; Martínez-Torrecuadrada, J.; Palafox, M.; Cortés, J.; Serra, V.; Pastor, J.; Blasco, M.A. Modulation of telomere protection by the PI3K/AKT pathway. Nat. Commun., 2017, 8(1), 1278.
[http://dx.doi.org/10.1038/s41467-017-01329-2] [PMID: 29097657]
[161]
Tan, R.; Nakajima, S.; Wang, Q. Nek7 Protects telomeres from oxidative DNA damage by phosphorylation and stabilization of TRF1. Mol. Cell, 2017, 65, 818-831.
[http://dx.doi.org/10.1016/j.molcel.2017.01.015]
[162]
Cherfils-Vicini, J.; Iltis, C.; Cervera, L.; Pisano, S.; Croce, O.; Sadouni, N.; Győrffy, B.; Collet, R.; Renault, V.M.; Rey-Millet, M.; Leonetti, C.; Zizza, P.; Allain, F.; Ghiringhelli, F.; Soubeiran, N.; Shkreli, M.; Vivier, E.; Biroccio, A.; Gilson, E. Cancer cells induce immune escape via glycocalyx changes controlled by the telomeric protein TRF2. EMBO J., 2019, 38(11), e100012
[http://dx.doi.org/10.15252/embj.2018100012] [PMID: 31000523]
[163]
Diala, I.; Wagner, N.; Magdinier, F.; Shkreli, M.; Sirakov, M.; Bauwens, S.; Schluth-Bolard, C.; Simonet, T.; Renault, V.M.; Ye, J.; Djerbi, A.; Pineau, P.; Choi, J.; Artandi, S.; Dejean, A.; Plateroti, M.; Gilson, E. Telomere protection and TRF2 expression are enhanced by the canonical Wnt signalling pathway. EMBO Rep., 2013, 14(4), 356-363.
[http://dx.doi.org/10.1038/embor.2013.16] [PMID: 23429341]
[164]
Saha, A.; Roy, S.; Kar, M.; Roy, S.; Thakur, S.; Padhi, S.; Akhter, Y.; Banerjee, B. Role of telomeric TRF2 in orosphere formation and csc phenotype maintenance through efficient dna repair pathway and its correlation with recurrence in OSCC. Stem Cell Rev Rep, 2018, 14(6), 871-887.
[http://dx.doi.org/10.1007/s12015-018-9823-z] [PMID: 29872959]
[165]
Panero, J.; Stanganelli, C.; Arbelbide, J.; Fantl, D.B.; Kohan, D.; García Rivello, H.; Rabinovich, G.A.; Slavutsky, I. Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression. Blood Cells Mol. Dis., 2014, 52(2-3), 134-139.
[http://dx.doi.org/10.1016/j.bcmd.2013.10.002] [PMID: 24239198]
[166]
Pal, D.; Singh, S.K.; Kakkar, N.; Prasad, R. Expression of telomere binding proteins (RAP1 and POT1) in renal cell carcinoma and their correlation with clinicopathological parameters. Indian J. Clin. Biochem., 2017, 32(3), 301-305.
[http://dx.doi.org/10.1007/s12291-016-0611-8] [PMID: 28811689]
[167]
Wijaya, A.B.; Hidayatullah, F.; Setyabudhi, V.V.; Pahlevi, F.R.; Indra, R.; Nurseta, T. Profile of POT1 as telomerase shelterin component discriminatesbetween cervical cancer and normal cervical cells. Turk. J. Med. Sci., 2017, 47(2), 417-423.
[http://dx.doi.org/10.3906/sag-1512-123] [PMID: 28425274]
[168]
Dahlström, J.; Zhang, X.; Ghaderi, M.; Hultcrantz, M.; Björkholm, M.; Xu, D. Dysregulation of shelterin factors coupled with telomere shortening in Philadelphia chromosome negative myeloproliferative neoplasms. Haematologica, 2015, 100(10), e402-e405.
[http://dx.doi.org/10.3324/haematol.2015.125765] [PMID: 26185173]
[169]
Poncet, D.; Belleville, A.; t’kint de Roodenbeke, C.; Roborel de Climens, A.; Ben Simon, E.; Merle-Beral, H.; Callet-Bauchu, E.; Salles, G.; Sabatier, L.; Delic, J.; Gilson, E. Changes in the expression of telomere maintenance genes suggest global telomere dysfunction in B-chronic lymphocytic leukemia. Blood, 2008, 111(4), 2388-2391.
[http://dx.doi.org/10.1182/blood-2007-09-111245] [PMID: 18077792]
[170]
Thijssen, P.E.; Tobi, E.W.; Balog, J.; Schouten, S.G.; Kremer, D.; El Bouazzaoui, F.; Henneman, P.; Putter, H.; Eline Slagboom, P.; Heijmans, B.T.; van der Maarel, S.M. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes. Epigenetics, 2013, 8(5), 512-521.
[http://dx.doi.org/10.4161/epi.24450] [PMID: 23644601]
[171]
Schoeftner, S.; Blasco, M.A. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat. Cell Biol., 2008, 10(2), 228-236.
[http://dx.doi.org/10.1038/ncb1685] [PMID: 18157120]
[172]
Le Berre, G.; Hossard, V.; Riou, J.F.; Guieysse-Peugeot, A.L. Repression of TERRA expression by subtelomeric dna methylation is dependent on NRF1 Binding. Int. J. Mol. Sci., 2019, 20(11), E2791
[http://dx.doi.org/10.3390/ijms20112791] [PMID: 31181625]
[173]
Xu, Y.; Suzuki, Y.; Ishizuka, T.; Xiao, C.D.; Liu, X.; Hayashi, T.; Komiyama, M. Finding a human telomere DNA-RNA hybrid G-quadruplex formed by human telomeric 6-mer RNA and 16-mer DNA using click chemistry: a protective structure for telomere end. Bioorg. Med. Chem., 2014, 22(16), 4419-4421.
[http://dx.doi.org/10.1016/j.bmc.2014.05.053] [PMID: 24947481]
[174]
Montero, J.J.; López de Silanes, I.; Graña, O.; Blasco, M.A. Telomeric RNAs are essential to maintain telomeres. Nat. Commun., 2016, 7, 12534.
[http://dx.doi.org/10.1038/ncomms12534] [PMID: 27531349]
[175]
Gomez, D.L.; Armando, R.G.; Cerrudo, C.S.; Ghiringhelli, P.D.; Gomez, D.E. Telomerase as a cancer target. development of new molecules. Curr. Top. Med. Chem., 2016, 16(22), 2432-2440.
[http://dx.doi.org/10.2174/1568026616666160212122425] [PMID: 26873194]
[176]
Tefferi, A. Telomerase Inhibitor Imetelstat in Essential Thrombocythemia and Myelofibrosis. N. Engl. J. Med., 2015, 373(26), 2580-2581.
[PMID: 26709404]
[177]
Tefferi, A.; Lasho, T.L.; Begna, K.H.; Patnaik, M.M.; Zblewski, D.L.; Finke, C.M.; Laborde, R.R.; Wassie, E.; Schimek, L.; Hanson, C.A.; Gangat, N.; Wang, X.; Pardanani, A. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N. Engl. J. Med., 2015, 373(10), 908-919.
[http://dx.doi.org/10.1056/NEJMoa1310523] [PMID: 26332545]
[178]
Baerlocher, G.M.; Oppliger Leibundgut, E.; Ottmann, O.G.; Spitzer, G.; Odenike, O.; McDevitt, M.A.; Röth, A.; Daskalakis, M.; Burington, B.; Stuart, M.; Snyder, D.S. Telomerase inhibitor imetelstat in patients with essential thrombocythemia. N. Engl. J. Med., 2015, 373(10), 920-928.
[http://dx.doi.org/10.1056/NEJMoa1503479] [PMID: 26332546]
[179]
Thompson, P.A.; Drissi, R.; Muscal, J.A.; Panditharatna, E.; Fouladi, M.; Ingle, A.M.; Ahern, C.H.; Reid, J.M.; Lin, T.; Weigel, B.J.; Blaney, S.M. A phase I trial of imetelstat in children with refractory or recurrent solid tumors: a Children’s Oncology Group Phase I Consortium Study (ADVL1112). Clin. Cancer Res., 2013, 19(23), 6578-6584.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1117] [PMID: 24097866]
[180]
Bryan, C.; Rice, C.; Hoffman, H.; Harkisheimer, M.; Sweeney, M.; Skordalakes, E. Structural basis of telomerase inhibition by the highly Specific BIBR1532. Structure, 2015, 23(10), 1934-1942.
[http://dx.doi.org/10.1016/j.str.2015.08.006] [PMID: 26365799]
[181]
Damm, K.; Hemmann, U.; Garin-Chesa, P.; Hauel, N.; Kauffmann, I.; Priepke, H.; Niestroj, C.; Daiber, C.; Enenkel, B.; Guilliard, B.; Lauritsch, I.; Müller, E.; Pascolo, E.; Sauter, G.; Pantic, M.; Martens, U.M.; Wenz, C.; Lingner, J.; Kraut, N.; Rettig, W.J.; Schnapp, A. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J., 2001, 20(24), 6958-6968.
[http://dx.doi.org/10.1093/emboj/20.24.6958] [PMID: 11742973]
[182]
Morais, K.D.S.; Arcanjo, D.D.S.; de Faria Lopes, G.P.; da Silva, G.G.; da Mota, T.H.A.; Gabriel, T.R.; Rabello Ramos, D.D.A.; Silva, F.P.; de Oliveira, D.M. Long-term in vitro treatment with telomerase inhibitor MST-312 induces resistance by selecting long telomeres cells. Cell Biochem. Funct., 2019, 37(4), 273-280.
[http://dx.doi.org/10.1002/cbf.3398] [PMID: 31012504]
[183]
Seimiya, H.; Oh-hara, T.; Suzuki, T.; Naasani, I.; Shimazaki, T.; Tsuchiya, K.; Tsuruo, T. Telomere shortening and growth inhibition of human cancer cells by novel synthetic telomerase inhibitors MST-312, MST-295, and MST-1991. Mol. Cancer Ther., 2002, 1(9), 657-665.
[PMID: 12479362]
[184]
Berletch, J.B.; Liu, C.; Love, W.K.; Andrews, L.G.; Katiyar, S.K.; Tollefsbol, T.O. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J. Cell. Biochem., 2008, 103(2), 509-519.
[http://dx.doi.org/10.1002/jcb.21417] [PMID: 17570133]
[185]
Hurst, C.D.; Platt, F.M.; Knowles, M.A. Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine. Eur. Urol., 2014, 65(2), 367-369.
[http://dx.doi.org/10.1016/j.eururo.2013.08.057] [PMID: 24035680]
[186]
Bougel, S.; Lhermitte, B.; Gallagher, G.; de Flaugergues, J.C.; Janzer, R.C.; Benhattar, J. Methylation of the hTERT promoter: a novel cancer biomarker for leptomeningeal metastasis detection in cerebrospinal fluids. Clin. Cancer Res., 2013, 19(8), 2216-2223.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1246] [PMID: 23444211]
[187]
Wang, K.; Liu, T.; Ge, N.; Liu, L.; Yuan, X.; Liu, J.; Kong, F.; Wang, C.; Ren, H.; Yan, K.; Hu, S.; Xu, Z.; Björkholm, M.; Fan, Y.; Zhao, S.; Liu, C.; Xu, D. TERT promoter mutations are associated with distant metastases in upper tract urothelial carcinomas and serve as urinary biomarkers detected by a sensitive castPCR. Oncotarget, 2014, 5(23), 12428-12439.
[http://dx.doi.org/10.18632/oncotarget.2660] [PMID: 25474136]
[188]
Ji, W.; Lou, W.; Hong, Z.; Qiu, L.; Di, W. Genomic amplification of HPV, h-TERC and c-MYC in liquid-based cytological specimens for screening of cervical intraepithelial neoplasia and cancer. Oncol. Lett., 2019, 17(2), 2099-2106.
[PMID: 30675277]
[189]
Xie, H.; Liu, T.; Wang, N.; Björnhagen, V.; Höög, A.; Larsson, C.; Lui, W.O.; Xu, D. TERT promoter mutations and gene amplification: promoting TERT expression in Merkel cell carcinoma. Oncotarget, 2014, 5(20), 10048-10057.
[http://dx.doi.org/10.18632/oncotarget.2491] [PMID: 25301727]
[190]
Hiyama, E.; Hiyama, K.; Yokoyama, T.; Matsuura, Y.; Piatyszek, M.A.; Shay, J.W. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat. Med., 1995, 1(3), 249-255.
[http://dx.doi.org/10.1038/nm0395-249] [PMID: 7585042]
[191]
Xing, M.; Liu, R.; Liu, X.; Murugan, A.K.; Zhu, G.; Zeiger, M.A.; Pai, S.; Bishop, J. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J. Clin. Oncol., 2014, 32(25), 2718-2726.
[http://dx.doi.org/10.1200/JCO.2014.55.5094] [PMID: 25024077]
[192]
Sahm, F.; Schrimpf, D.; Olar, A.; Koelsche, C.; Reuss, D.; Bissel, J.; Kratz, A.; Capper, D.; Schefzyk, S.; Hielscher, T.; Wang, Q.; Sulman, E.P.; Adeberg, S.; Koch, A.; Okuducu, A.F.; Brehmer, S.; Schittenhelm, J.; Becker, A.; Brokinkel, B.; Schmidt, M.; Ull, T.; Gousias, K.; Kessler, A.F.; Lamszus, K.; Debus, J.; Mawrin, C.; Kim, Y.J.; Simon, M.; Ketter, R.; Paulus, W.; Aldape, K.D.; Herold-Mende, C.; von Deimling, A. TERT Promoter mutations and risk of recurrence in meningioma. J. Natl. Cancer Inst., 2015, 108(5), djv377
[http://dx.doi.org/10.1093/jnci/djv377] [PMID: 26668184]
[193]
Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; Beroukhim, R.; Bernard, B.; Wu, C.J.; Genovese, G.; Shmulevich, I.; Barnholtz-Sloan, J.; Zou, L.; Vegesna, R.; Shukla, S.A.; Ciriello, G.; Yung, W.K.; Zhang, W.; Sougnez, C.; Mikkelsen, T.; Aldape, K.; Bigner, D.D.; Van Meir, E.G.; Prados, M.; Sloan, A.; Black, K.L.; Eschbacher, J.; Finocchiaro, G.; Friedman, W.; Andrews, D.W.; Guha, A.; Iacocca, M.; O’Neill, B.P.; Foltz, G.; Myers, J.; Weisenberger, D.J.; Penny, R.; Kucherlapati, R.; Perou, C.M.; Hayes, D.N.; Gibbs, R.; Marra, M.; Mills, G.B.; Lander, E.; Spellman, P.; Wilson, R.; Sander, C.; Weinstein, J.; Meyerson, M.; Gabriel, S.; Laird, P.W.; Haussler, D.; Getz, G.; Chin, L. The somatic genomic landscape of glioblastoma. Cell, 2013, 155(2), 462-477.
[http://dx.doi.org/10.1016/j.cell.2013.09.034] [PMID: 24120142]
[194]
Svahn, F.; Juhlin, C.C.; Paulsson, J.O.; Fotouhi, O.; Zedenius, J.; Larsson, C.; Stenman, A. Telomerase reverse transcriptase promoter hypermethylation is associated with metastatic disease in abdominal paraganglioma. Clin. Endocrinol. (Oxf.), 2018, 88(2), 343-345.
[http://dx.doi.org/10.1111/cen.13513] [PMID: 29130501]
[195]
Benhamou, Y.; Picco, V.; Raybaud, H.; Sudaka, A.; Chamorey, E.; Brolih, S.; Monteverde, M.; Merlano, M.; Lo Nigro, C.; Ambrosetti, D.; Pagès, G. Telomeric repeat-binding factor 2: a marker for survival and anti-EGFR efficacy in oral carcinoma. Oncotarget, 2016, 7(28), 44236-44251.
[http://dx.doi.org/10.18632/oncotarget.10005] [PMID: 27329590]

© 2024 Bentham Science Publishers | Privacy Policy