Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

小分子抑制化合物的PERK依赖信号通路作为大肠癌的有希望的基于目标的治疗方法的使用。

卷 20, 期 3, 2020

页: [223 - 238] 页: 16

弟呕挨: 10.2174/1568009620666200106114826

价格: $65

摘要

背景:结直肠癌是死亡率最高的最常见癌症之一。最新数据报道,小分子抑制剂激活促凋亡的PERK依赖性未折叠蛋白应答信号通路可能构成一种创新的抗癌治疗策略。 目的:在本研究中,我们评估了PERK依赖性未折叠蛋白反应信号通路小分子抑制剂42215对HT-29人结肠腺癌和CCD 841 CoN正常人结肠上皮细胞系的有效性。 方法:通过基于刃天青和乳酸脱氢酶(LDH)的测试评估PERK抑制剂的细胞毒性。通过流式细胞术使用FITC缀合的膜联蛋白V指示凋亡和碘化丙啶指示坏死以及通过比色半胱氨酸天冬氨酸蛋白酶3测定来测量凋亡的细胞死亡。通过使用碘化丙锭染色的流式细胞术测量被测PERK抑制剂对细胞周期进程的影响。通过Western印迹技术检测真核起始因子2α的磷酸化形式的水平。 结果:获得的结果表明,所研究的PERK抑制剂仅对癌细胞具有选择性,因为它以剂量和时间依赖性的方式抑制了它们的生存能力,并诱导了它们的凋亡和G2 / M细胞周期停滞。此外,42215 PERK抑制剂引起了HT-29癌细胞内eIF2α磷酸化的显着抑制。结论:高度选择性的PERK抑制剂可通过激活PERK依赖性未折叠蛋白应答信号通路的促凋亡分支来提供突破性的抗癌治疗策略。

关键词: PERK,eIF2α,PERK抑制剂,内质网应激,未折叠的蛋白质反应,癌症,细胞凋亡。

« Previous
图形摘要

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Cooper, G.M. The cell: a molecular approach, 2nd ed; ASM Press Sinauer Associates: Washington, D.C. Sunderland, Massachusetts, 2000.
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[4]
Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[5]
Favoriti, P.; Carbone, G.; Greco, M.; Pirozzi, F.; Pirozzi, R.E.; Corcione, F. Worldwide burden of colorectal cancer: A review. Updates Surg., 2016, 68(1), 7-11.
[http://dx.doi.org/10.1007/s13304-016-0359-y] [PMID: 27067591]
[6]
Li, X.; An, B.; Ma, J.; He, B.; Qi, J.; Wang, W.; Qin, C.; Zhao, Q. Prognostic value of the tumor size in resectable colorectal cancer with different primary locations: A retrospective study with the propensity score matching. J. Cancer, 2019, 10(2), 313-322.
[http://dx.doi.org/10.7150/jca.26882] [PMID: 30719125]
[7]
Kanwar, S.S.; Poolla, A.; Majumdar, A.P. Regulation of colon cancer recurrence and development of therapeutic strategies. World J. Gastrointest. Pathophysiol., 2012, 3(1), 1-9.
[http://dx.doi.org/10.4291/wjgp.v3.i1.1] [PMID: 22368781]
[8]
Zou, H.; Li, L.; Garcia Carcedo, I.; Xu, Z.P.; Monteiro, M.; Gu, W. Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis. Int. J. Nanomedicine, 2016, 11, 1947-1958.
[PMID: 27226714]
[9]
Jemal, A.; Clegg, L.X.; Ward, E.; Ries, L.A.; Wu, X.; Jamison, P.M.; Wingo, P.A.; Howe, H.L.; Anderson, R.N.; Edwards, B.K. Annual report to the nation on the status of cancer, 1975-2001, with a special feature regarding survival. Cancer, 2004, 101(1), 3-27.
[http://dx.doi.org/10.1002/cncr.20288] [PMID: 15221985]
[10]
Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl.), 2015, 3, 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[11]
Liu, C.Y.; Kaufman, R.J. The unfolded protein response. J. Cell Sci., 2003, 116(Pt 10), 1861-1862.
[http://dx.doi.org/10.1242/jcs.00408] [PMID: 12692187]
[12]
Pereira, E.R.; Frudd, K.; Awad, W.; Hendershot, L.M. Endoplasmic reticulum (ER) stress and hypoxia response pathways interact to potentiate hypoxia-inducible factor 1 (HIF-1) transcriptional activity on targets like vascular endothelial growth factor (VEGF). J. Biol. Chem., 2014, 289(6), 3352-3364.
[http://dx.doi.org/10.1074/jbc.M113.507194] [PMID: 24347168]
[13]
Koumenis, C. ER stress, hypoxia tolerance and tumor progression. Curr. Mol. Med., 2006, 6(1), 55-69.
[http://dx.doi.org/10.2174/156652406775574604] [PMID: 16472113]
[14]
Siwecka, N.; Rozpędek, W.; Pytel, D.; Wawrzynkiewicz, A.; Dziki, A.; Dziki, Ł.; Diehl, J.A.; Majsterek, I. Dual role of endoplasmic reticulum stress-mediated unfolded protein response signaling pathway in carcinogenesis. Int. J. Mol. Sci., 2019, 20(18), E4354
[http://dx.doi.org/10.3390/ijms20184354] [PMID: 31491919]
[15]
Rozpedek, W.; Nowak, A.; Pytel, D.; Diehl, J.A.; Majsterek, I. Molecular basis of human diseases and targeted therapy based on small-molecule inhibitors of ER stress-induced signaling pathways. Curr. Mol. Med., 2017, 17(2), 118-132.
[http://dx.doi.org/10.2174/1566524017666170306122643] [PMID: 28266275]
[16]
Madden, E.; Logue, S.E.; Healy, S.J.; Manie, S.; Samali, A. The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance. Biol. Cell, 2019, 111(1), 1-17.
[http://dx.doi.org/10.1111/boc.201800050] [PMID: 30302777]
[17]
Ojha, R.; Amaravadi, R.K. Targeting the unfolded protein response in cancer. Pharmacol. Res., 2017, 120, 258-266.
[http://dx.doi.org/10.1016/j.phrs.2017.04.003] [PMID: 28396092]
[18]
Ma, Y.; Hendershot, L.M. The role of the unfolded protein response in tumour development: Friend or foe? Nat. Rev. Cancer, 2004, 4(12), 966-977.
[http://dx.doi.org/10.1038/nrc1505] [PMID: 15573118]
[19]
Bobrovnikova-Marjon, E.; Grigoriadou, C.; Pytel, D.; Zhang, F.; Ye, J.; Koumenis, C.; Cavener, D.; Diehl, J.A. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene, 2010, 29(27), 3881-3895.
[http://dx.doi.org/10.1038/onc.2010.153] [PMID: 20453876]
[20]
Wang, W.A.; Groenendyk, J.; Michalak, M. Endoplasmic reticulum stress associated responses in cancer. Biochim. Biophys. Acta, 2014, 1843(10), 2143-2149.
[http://dx.doi.org/10.1016/j.bbamcr.2014.01.012] [PMID: 24440276]
[21]
Limonta, P.; Moretti, R.M.; Marzagalli, M.; Fontana, F.; Raimondi, M.; Montagnani Marelli, M. Role of endoplasmic reticulum stress in the anticancer activity of natural compounds. Int. J. Mol. Sci., 2019, 20(4), E961
[http://dx.doi.org/10.3390/ijms20040961] [PMID: 30813301]
[22]
Rozpedek, W.; Pytel, D.; Mucha, B.; Leszczynska, H.; Diehl, J.A.; Majsterek, I. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr. Mol. Med., 2016, 16(6), 533-544.
[http://dx.doi.org/10.2174/1566524016666160523143937] [PMID: 27211800]
[23]
Hu, H.; Tian, M.; Ding, C.; Yu, S. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front. Immunol., 2019, 9, 3083.
[http://dx.doi.org/10.3389/fimmu.2018.03083] [PMID: 30662442]
[24]
Lei, Y.; Wang, S.; Ren, B.; Wang, J.; Chen, J.; Lu, J.; Zhan, S.; Fu, Y.; Huang, L.; Tan, J. CHOP favors endoplasmic reticulum stress-induced apoptosis in hepatocellular carcinoma cells via inhibition of autophagy. PLoS One, 2017, 12(8), e0183680
[http://dx.doi.org/10.1371/journal.pone.0183680] [PMID: 28841673]
[25]
Oka, O.B.; Bulleid, N.J. Forming disulfides in the endoplasmic reticulum. Biochim. Biophys. Acta, 2013, 1833(11), 2425-2429.
[http://dx.doi.org/10.1016/j.bbamcr.2013.02.007] [PMID: 23434683]
[26]
Grek, C.; Townsend, D.M. Protein disulfide isomerase superfamily in disease and the regulation of apoptosis. Endoplasmic Reticulum Stress Dis., 2014, 1(1), 4-17.
[http://dx.doi.org/10.2478/ersc-2013-0001] [PMID: 25309899]
[27]
Hsu, S.K.; Chiu, C.C.; Dahms, H.U.; Chou, C.K.; Cheng, C.M.; Chang, W.T.; Cheng, K.C.; Wang, H.D.; Lin, I.L. Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int. J. Mol. Sci., 2019, 20(10), E2518
[http://dx.doi.org/10.3390/ijms20102518] [PMID: 31121863]
[28]
Takei, N.; Yoneda, A.; Sakai-Sawada, K.; Kosaka, M.; Minomi, K.; Tamura, Y. Hypoxia-inducible ERO1α promotes cancer progression through modulation of integrin-β1 modification and signalling in HCT116 colorectal cancer cells. Sci. Rep., 2017, 7(1), 9389.
[http://dx.doi.org/10.1038/s41598-017-09976-7] [PMID: 28839225]
[29]
Pytel, D.; Seyb, K.; Liu, M.; Ray, S.S.; Concannon, J.; Huang, M.; Cuny, G.D.; Diehl, J.A.; Glicksman, M.A. Enzymatic characterization of ER stress-dependent kinase, PERK, and development of a high-throughput assay for identification of PERK inhibitors. J. Biomol. Screen., 2014, 19(7), 1024-1034.
[http://dx.doi.org/10.1177/1087057114525853] [PMID: 24598103]
[30]
Agarwal, M.B. Is cancer chemotherapy dying? Asian J. Transfus. Sci., 2016, 10(Suppl. 1), S1-S7.
[http://dx.doi.org/10.4103/0973-6247.182735] [PMID: 27330251]
[31]
Naveed, S.; Aslam, M.; Ahmad, A. Starvation based differential chemotherapy: A novel approach for cancer treatment. Oman Med. J., 2014, 29(6), 391-398.
[http://dx.doi.org/10.5001/omj.2014.107] [PMID: 25584154]
[32]
Partridge, A.H.; Burstein, H.J.; Winer, E.P. Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer. J. Natl. Cancer Inst. Monogr., 2001, (30), 135-142.
[http://dx.doi.org/10.1093/oxfordjournals.jncimonographs.a003451] [PMID: 11773307]
[33]
Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol., 2018, 9, 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[34]
Karolak, A.; Estrella, V.C.; Huynh, A.S.; Chen, T.; Vagner, J.; Morse, D.L.; Rejniak, K.A. Targeting ligand specificity linked to tumor tissue topological heterogeneity via single-cell micro-pharmacological modeling. Sci. Rep., 2018, 8(1), 3638.
[http://dx.doi.org/10.1038/s41598-018-21883-z] [PMID: 29483578]
[35]
Shi, Z.; Yu, X.; Yuan, M.; Lv, W.; Feng, T.; Bai, R.; Zhong, H. Activation of the PERK-ATF4 pathway promotes chemo-resistance in colon cancer cells. Sci. Rep., 2019, 9(1), 3210.
[http://dx.doi.org/10.1038/s41598-019-39547-x] [PMID: 30824833]
[36]
Salaroglio, I.C.; Panada, E.; Moiso, E.; Buondonno, I.; Provero, P.; Rubinstein, M.; Kopecka, J.; Riganti, C. PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. Mol. Cancer, 2017, 16(1), 91.
[http://dx.doi.org/10.1186/s12943-017-0657-0] [PMID: 28499449]
[37]
Chipurupalli, S.; Kannan, E.; Tergaonkar, V.; D’Andrea, R.; Robinson, N. Hypoxia induced ER stress response as an adaptive mechanism in cancer. Int. J. Mol. Sci., 2019, 20(3), E749
[http://dx.doi.org/10.3390/ijms20030749] [PMID: 30754624]
[38]
Dauer, P.; Sharma, N.S.; Gupta, V.K.; Durden, B.; Hadad, R.; Banerjee, S.; Dudeja, V.; Saluja, A.; Banerjee, S. ER stress sensor, glucose regulatory protein 78 (GRP78) regulates redox status in pancreatic cancer thereby maintaining “stemness”. Cell Death Dis., 2019, 10(2), 132.
[http://dx.doi.org/10.1038/s41419-019-1408-5] [PMID: 30755605]
[39]
Deng, W.G.; Ruan, K.H.; Du, M.; Saunders, M.A.; Wu, K.K. Aspirin and salicylate bind to immunoglobulin heavy chain binding protein (BiP) and inhibit its ATPase activity in human fibroblasts. FASEB J., 2001, 15(13), 2463-2470.
[http://dx.doi.org/10.1096/fj.01-0259com] [PMID: 11689471]
[40]
Sharma, S.H.; Rajamanickam, V.; Nagarajan, S. Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem. Biol. Interact., 2018, 291, 16-28.
[http://dx.doi.org/10.1016/j.cbi.2018.06.001] [PMID: 29879413]
[41]
Rouschop, K.M.; Dubois, L.J.; Keulers, T.G.; van den Beucken, T.; Lambin, P.; Bussink, J.; van der Kogel, A.J.; Koritzinsky, M.; Wouters, B.G. PERK/eIF2α signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc. Natl. Acad. Sci. USA, 2013, 110(12), 4622-4627.
[http://dx.doi.org/10.1073/pnas.1210633110] [PMID: 23471998]
[42]
Armengol, G.; Rojo, F.; Castellví, J.; Iglesias, C.; Cuatrecasas, M.; Pons, B.; Baselga, J.; Ramón y Cajal, S. 4E-binding protein 1: A key molecular “funnel factor” in human cancer with clinical implications. Cancer Res., 2007, 67(16), 7551-7555.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0881] [PMID: 17699757]
[43]
Larsson, O.; Li, S.; Issaenko, O.A.; Avdulov, S.; Peterson, M.; Smith, K.; Bitterman, P.B.; Polunovsky, V.A. Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res., 2007, 67(14), 6814-6824.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0752] [PMID: 17638893]
[44]
Pervin, S.; Tran, A.H.; Zekavati, S.; Fukuto, J.M.; Singh, R.; Chaudhuri, G. Increased susceptibility of breast cancer cells to stress mediated inhibition of protein synthesis. Cancer Res., 2008, 68(12), 4862-4874.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0074] [PMID: 18559534]
[45]
Blais, J.D.; Addison, C.L.; Edge, R.; Falls, T.; Zhao, H.; Wary, K.; Koumenis, C.; Harding, H.P.; Ron, D.; Holcik, M.; Bell, J.C. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol. Cell. Biol., 2006, 26(24), 9517-9532.
[http://dx.doi.org/10.1128/MCB.01145-06] [PMID: 17030613]
[46]
Giglio, P.; Fimia, G.M.; Lovat, P.E.; Piacentini, M.; Corazzari, M. Fateful music from a talented orchestra with a wicked conductor: Connection between oncogenic BRAF, ER stress, and autophagy in human melanoma. Mol. Cell. Oncol., 2015, 2(3), e995016
[http://dx.doi.org/10.4161/23723556.2014.995016] [PMID: 27308477]
[47]
Corazzari, M.; Rapino, F.; Ciccosanti, F.; Giglio, P.; Antonioli, M.; Conti, B.; Fimia, G.M.; Lovat, P.E.; Piacentini, M. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ., 2015, 22(6), 946-958.
[http://dx.doi.org/10.1038/cdd.2014.183] [PMID: 25361077]
[48]
Corazzari, M.; Gagliardi, M.; Fimia, G.M.; Piacentini, M. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front. Oncol., 2017, 7, 78.
[http://dx.doi.org/10.3389/fonc.2017.00078] [PMID: 28491820]
[49]
Wouters, B.G.; van den Beucken, T.; Magagnin, M.G.; Lambin, P.; Koumenis, C. Targeting hypoxia tolerance in cancer. Drug Resist. Updat., 2004, 7(1), 25-40.
[http://dx.doi.org/10.1016/j.drup.2003.12.004] [PMID: 15072769]
[50]
Schito, L.; Semenza, G.L. Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer, 2016, 2(12), 758-770.
[http://dx.doi.org/10.1016/j.trecan.2016.10.016] [PMID: 28741521]
[51]
Petrova, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Amelio, I. The hypoxic tumour microenvironment. Oncogenesis, 2018, 7(1), 10.
[http://dx.doi.org/10.1038/s41389-017-0011-9] [PMID: 29362402]
[52]
Rozpedek, W.; Pytel, D.; Nowak-Zdunczyk, A.; Lewko, D.; Wojtczak, R.; Diehl, J.A.; Majsterek, I. Breaking the DNA damage response via serine/threonine kinase inhibitors to improve cancer treatment. Curr. Med. Chem., 2018.
[PMID: 29345572]
[53]
Koumenis, C.; Naczki, C.; Koritzinsky, M.; Rastani, S.; Diehl, A.; Sonenberg, N.; Koromilas, A.; Wouters, B.G. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol. Cell. Biol., 2002, 22(21), 7405-7416.
[http://dx.doi.org/10.1128/MCB.22.21.7405-7416.2002] [PMID: 12370288]
[54]
Höckel, M.; Vaupel, P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst., 2001, 93(4), 266-276.
[http://dx.doi.org/10.1093/jnci/93.4.266] [PMID: 11181773]
[55]
Li, Z.; Li, Z. Glucose regulated protein 78: A critical link between tumor microenvironment and cancer hallmarks. Biochim. Biophys. Acta, 2012, 1826(1), 13-22.
[PMID: 22426159]
[56]
Shuda, M.; Kondoh, N.; Imazeki, N.; Tanaka, K.; Okada, T.; Mori, K.; Hada, A.; Arai, M.; Wakatsuki, T.; Matsubara, O.; Yamamoto, N.; Yamamoto, M. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: A possible involvement of the ER stress pathway in hepatocarcinogenesis. J. Hepatol., 2003, 38(5), 605-614.
[http://dx.doi.org/10.1016/S0168-8278(03)00029-1] [PMID: 12713871]
[57]
Li, J.; Lee, A.S. Stress induction of GRP78/BiP and its role in cancer. Curr. Mol. Med., 2006, 6(1), 45-54.
[http://dx.doi.org/10.2174/156652406775574523] [PMID: 16472112]
[58]
Fu, Y.; Li, J.; Lee, A.S. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res., 2007, 67(8), 3734-3740.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4594] [PMID: 17440086]
[59]
Song, M.S.; Park, Y.K.; Lee, J.H.; Park, K. Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-epsilon/ERK/AP-1 signaling cascade. Cancer Res., 2001, 61(22), 8322-8330.
[PMID: 11719466]
[60]
Zorzi, E.; Bonvini, P. Inducible hsp70 in the regulation of cancer cell survival: Analysis of chaperone induction, expression and activity. Cancers (Basel), 2011, 3(4), 3921-3956.
[http://dx.doi.org/10.3390/cancers3043921] [PMID: 24213118]
[61]
Miao, Y.R.; Eckhardt, B.L.; Cao, Y.; Pasqualini, R.; Argani, P.; Arap, W.; Ramsay, R.G.; Anderson, R.L. Inhibition of established micrometastases by targeted drug delivery via cell surface-associated GRP78. Clin. Cancer Res., 2013, 19(8), 2107-2116.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2991] [PMID: 23470966]
[62]
Mhaidat, N.M.; Alzoubi, K.H.; Almomani, N.; Khabour, O.F. Expression of glucose regulated protein 78 (GRP78) determines colorectal cancer response to chemotherapy. Cancer Biomark., 2015, 15(2), 197-203.
[http://dx.doi.org/10.3233/CBM-140454] [PMID: 25519021]
[63]
Mhaidat, N.M.; Alzoubi, K.H.; Khabour, O.F.; Banihani, M.N.; Al-Balas, Q.A.; Swaidan, S. GRP78 regulates sensitivity of human colorectal cancer cells to DNA targeting agents. Cytotechnology, 2016, 68(3), 459-467.
[http://dx.doi.org/10.1007/s10616-014-9799-8] [PMID: 25399254]
[64]
Pi, L.; Li, X.; Song, Q.; Shen, Y.; Lu, X.; Di, B. Knockdown of glucose-regulated protein 78 abrogates chemoresistance of hypopharyngeal carcinoma cells to cisplatin induced by unfolded protein in response to severe hypoxia. Oncol. Lett., 2014, 7(3), 685-692.
[http://dx.doi.org/10.3892/ol.2013.1753] [PMID: 24527073]
[65]
Chang, Y.J.; Chen, W.Y.; Huang, C.Y.; Liu, H.H.; Wei, P.L. Glucose-regulated protein 78 (GRP78) regulates colon cancer metastasis through EMT biomarkers and the NRF-2/HO-1 pathway. Tumour Biol., 2015, 36(3), 1859-1869.
[http://dx.doi.org/10.1007/s13277-014-2788-x] [PMID: 25431258]
[66]
Chern, Y.J.; Wong, J.C.T.; Cheng, G.S.W.; Yu, A.; Yin, Y.; Schaeffer, D.F.; Kennecke, H.F.; Morin, G.; Tai, I.T. The interaction between SPARC and GRP78 interferes with ER stress signaling and potentiates apoptosis via PERK/eIF2α and IRE1α/XBP-1 in colorectal cancer. Cell Death Dis., 2019, 10(7), 504.
[http://dx.doi.org/10.1038/s41419-019-1687-x] [PMID: 31243264]
[67]
Axten, J.M.; Medina, J.R.; Feng, Y.; Shu, A.; Romeril, S.P.; Grant, S.W.; Li, W.H.; Heerding, D.A.; Minthorn, E.; Mencken, T.; Atkins, C.; Liu, Q.; Rabindran, S.; Kumar, R.; Hong, X.; Goetz, A.; Stanley, T.; Taylor, J.D.; Sigethy, S.D.; Tomberlin, G.H.; Hassell, A.M.; Kahler, K.M.; Shewchuk, L.M.; Gampe, R.T. Discovery of 7-methyl-5-(1-[3-(trifluoromethyl)phenyl]acetyl-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem., 2012, 55(16), 7193-7207.
[http://dx.doi.org/10.1021/jm300713s] [PMID: 22827572]
[68]
Moreno, J.A.; Halliday, M.; Molloy, C.; Radford, H.; Verity, N.; Axten, J.M.; Ortori, C.A.; Willis, A.E.; Fischer, P.M.; Barrett, D.A.; Mallucci, G.R. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med., 2013, 5(206), 206ra138
[http://dx.doi.org/10.1126/scitranslmed.3006767] [PMID: 24107777]
[69]
Mercado, G.; Castillo, V.; Soto, P.; López, N.; Axten, J.M.; Sardi, S.P.; Hoozemans, J.J.M.; Hetz, C. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease. Neurobiol. Dis., 2018, 112, 136-148.
[http://dx.doi.org/10.1016/j.nbd.2018.01.004] [PMID: 29355603]
[70]
Atkins, C.; Liu, Q.; Minthorn, E.; Zhang, S.Y.; Figueroa, D.J.; Moss, K.; Stanley, T.B.; Sanders, B.; Goetz, A.; Gaul, N.; Choudhry, A.E.; Alsaid, H.; Jucker, B.M.; Axten, J.M.; Kumar, R. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res., 2013, 73(6), 1993-2002.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3109] [PMID: 23333938]
[71]
Rojas-Rivera, D.; Delvaeye, T.; Roelandt, R.; Nerinckx, W.; Augustyns, K.; Vandenabeele, P.; Bertrand, M.J.M. When PERK inhibitors turn out to be new potent RIPK1 inhibitors: Critical issues on the specificity and use of GSK2606414 and GSK2656157. Cell Death Differ., 2017, 24(6), 1100-1110.
[http://dx.doi.org/10.1038/cdd.2017.58] [PMID: 28452996]
[72]
Hanaoka, M.; Ishikawa, T.; Ishiguro, M.; Tokura, M.; Yamauchi, S.; Kikuchi, A.; Uetake, H.; Yasuno, M.; Kawano, T. Expression of ATF6 as a marker of pre-cancerous atypical change in ulcerative colitis-associated colorectal cancer: A potential role in the management of dysplasia. J. Gastroenterol., 2018, 53(5), 631-641.
[http://dx.doi.org/10.1007/s00535-017-1387-1] [PMID: 28884228]
[73]
Liu, C.Y.; Hsu, C.C.; Huang, T.T.; Lee, C.H.; Chen, J.L.; Yang, S.H.; Jiang, J.K.; Chen, W.S.; Lee, K.D.; Teng, H.W. ER stress-related ATF6 upregulates CIP2A and contributes to poor prognosis of colon cancer. Mol. Oncol., 2018, 12(10), 1706-1717.
[http://dx.doi.org/10.1002/1878-0261.12365] [PMID: 30063110]
[74]
Jin, C.; Jin, Z.; Chen, N.Z.; Lu, M.; Liu, C.B.; Hu, W.L.; Zheng, C.G. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma. Biochem. Biophys. Res. Commun., 2016, 470(1), 75-81.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.119] [PMID: 26742428]
[75]
Ji, H.; Huang, C.; Wu, S.; Kasim, V. XBP1-s promotes colorectal cancer cell proliferation by inhibiting TAp73 transcriptional activity. Biochem. Biophys. Res. Commun., 2019, 508(1), 203-209.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.112] [PMID: 30473215]
[76]
Mhaidat, N.M.; Alzoubi, K.H.; Abushbak, A. X-box binding protein 1 (XBP-1) enhances colorectal cancer cell invasion. J. Chemother., 2015, 27(3), 167-173.
[http://dx.doi.org/10.1179/1973947815Y.0000000006] [PMID: 25692573]
[77]
Spaan, C.N.; Smit, W.L.; van Lidth de Jeude, J.F.; Meijer, B.J.; Muncan, V.; van den Brink, G.R.; Heijmans, J. Expression of UPR effector proteins ATF6 and XBP1 reduce colorectal cancer cell proliferation and stemness by activating PERK signaling. Cell Death Dis., 2019, 10(7), 490.
[http://dx.doi.org/10.1038/s41419-019-1729-4] [PMID: 31227689]
[78]
Haze, K.; Yoshida, H.; Yanagi, H.; Yura, T.; Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell, 1999, 10(11), 3787-3799.
[http://dx.doi.org/10.1091/mbc.10.11.3787] [PMID: 10564271]
[79]
Vandewynckel, Y.P.; Laukens, D.; Geerts, A.; Bogaerts, E.; Paridaens, A.; Verhelst, X.; Janssens, S.; Heindryckx, F.; Van Vlierberghe, H. The paradox of the unfolded protein response in cancer. Anticancer Res., 2013, 33(11), 4683-4694.
[PMID: 24222102]
[80]
Chang, M.Y.; Shen, Y.L. Linalool exhibits cytotoxic effects by activating antitumor immunity. Molecules, 2014, 19(5), 6694-6706.
[http://dx.doi.org/10.3390/molecules19056694] [PMID: 24858101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy