Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

The Effect of Treatment and Bone Metabolic Factors on Fracture Incidence in Patients with Thalassemia-Induced Osteoporosis: An Observational Study

Author(s): Athanasios N. Tsartsalis*, George I. Lambrou, Eugenia Vlachou, Athanasia Samartzi, George P. Chrousos, Christina Kanaka-Gantenbein and Antonis Kattamis

Volume 15, Issue 4, 2020

Page: [381 - 388] Pages: 8

DOI: 10.2174/1574885515666200106110602

Abstract

Background: Thalassemia Major (TM) is a hereditary disease caused by defective globin synthesis. Because of the significant increase in life expectancy, these patients suffer from various health conditions, including endocrinopathies and low bone mineral density.

Aim: The aim of the present study was to evaluate the fracture incidence regarding the markers of bone metabolism, bone mineral density and treatment of osteoporosis as well as the treatment of comorbidities.

Methods: Sixty-four patients with TM (32 men and 32 women) participated in a cross-sectional study design. The patients were recruited from “Aghia Sofia” Children’s Hospital and evaluated using Dual-energy X-ray Absorptiometry (DXA) of the lumbar spine and femoral neck and with markers of bone remodeling including Receptor Activator of Nuclear factor Kappa-Β Ligand (RANKL), Osteoprotegerin (OPG), C-Terminal Telopeptide (CTX), and sclerostin.

Results: The statistical analysis of markers of bone metabolism in relation to fractures revealed no statistical significance. However, statistical analysis of bone mineral density and markers of bone metabolism in relation to fractures was also not significant.

Conclusions: In TM patients, fractures are not related to bone mineral density. Maybe some other conditions are the cause, haemosidirosis, drugs, comorbid conditions.

Keywords: Osteoporosis, thalassemia major, fracture, sclerostin, RANKL, OPG.

Graphical Abstract

[1]
Soltanoff CS, Yang S, Chen W, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr 2009; 19(1): 1-46.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v19.i1.10] [PMID: 19191755]
[2]
Balogh ZJ, Varga E, Tomka J, Süveges G, Tóth L, Simonka JA. The new injury severity score is a better predictor of extended hospitalization and intensive care unit admission than the injury severity score in patients with multiple orthopaedic injuries. J Orthop Trauma 2003; 17(7): 508-12.
[http://dx.doi.org/10.1097/00005131-200308000-00006] [PMID: 12902789]
[3]
Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement 2000; 17(1): 1-45.
[PMID: 11525451]
[4]
NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, March 7-29, 2000: highlights of the conference. South Med J 2001; 94(6): 569-73.
[PMID: 11440324]
[5]
Hellekson KL. NIH releases statement on osteoporosis prevention, diagnosis, and therapy. Am Fam Physician 2002; 66(1): 161-2.
[PMID: 12126031]
[6]
Melton LJ III, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 1993; 8(10): 1227-33.
[http://dx.doi.org/10.1002/jbmr.5650081010] [PMID: 8256660]
[7]
Lauritzen JB, Schwarz P, Lund B, McNair P, Transbøl I. Changing incidence and residual lifetime risk of common osteoporosis-related fractures. Osteoporos Int 1993; 3(3): 127-32.
[http://dx.doi.org/10.1007/BF01623273] [PMID: 8481588]
[8]
Ismail AA, Pye SR, Cockerill WC, et al. Incidence of limb fracture across Europe: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 2002; 13(7): 565-71.
[http://dx.doi.org/10.1007/s001980200074] [PMID: 12111017]
[9]
Lyritis GP, Rizou S, Galanos A, Makras P. Incidence of hip fractures in Greece during a 30-year period: 1977-2007. Osteoporos Int 2013; 24(5): 1579-85.
[http://dx.doi.org/10.1007/s00198-012-2154-z] [PMID: 23064370]
[10]
Cooper C, Atkinson EJ, Jacobsen SJ, O’Fallon WM, Melton LJ III. Population-based study of survival after osteoporotic fractures. Am J Epidemiol 1993; 137(9): 1001-5.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a116756] [PMID: 8317445]
[11]
Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR. Study of Osteoporotic Fractures Research Group Vertebral fractures and mortality in older women: a prospective study. Arch Intern Med 1999; 159(11): 1215-20.
[http://dx.doi.org/10.1001/archinte.159.11.1215] [PMID: 10371229]
[12]
Ismail AA, O’Neill TW, Cooper C, et al. Mortality associated with vertebral deformity in men and women: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 1998; 8(3): 291-7.
[http://dx.doi.org/10.1007/s001980050067] [PMID: 9797915]
[13]
Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 1999; 353(9156): 878-82.
[http://dx.doi.org/10.1016/S0140-6736(98)09075-8] [PMID: 10093980]
[14]
Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D. Risk of mortality following clinical fractures. Osteoporos Int 2000; 11(7): 556-61.
[http://dx.doi.org/10.1007/s001980070075] [PMID: 11069188]
[15]
Weatherall DJ. The thalassemiasThe Molecular Basis of Blood Diseases. Philadelphia, PA: WB Saunders 1994; p. 815.
[16]
Dresner Pollack R, Rachmilewitz E, Blumenfeld A, Idelson M, Goldfarb AW. Bone mineral metabolism in adults with beta-thalassaemia major and intermedia. Br J Haematol 2000; 111(3): 902-7.
[PMID: 11122154]
[17]
Voskaridou E, Stoupa E, Antoniadou L, et al. Osteoporosis and osteosclerosis in sickle cell/beta-thalassemia: the role of the RANKL/osteoprotegerin axis. Haematologica 2006; 91(6): 813-6.
[PMID: 16704959]
[18]
Otrock ZK, Azar ST, Shamseddeen WA, et al. Intravenous zoledronic acid treatment in thalassemia-induced osteoporosis: results of a phase II clinical trial. Ann Hematol 2006; 85(9): 605-9.
[http://dx.doi.org/10.1007/s00277-006-0136-y] [PMID: 16830143]
[19]
Allon R, Levy Y, Lavi I, Kramer A, Barzilai M, Wollstein R. How to best predict fragility fractures: an update and systematic review. Isr Med Assoc J 2018; 20(12): 773-9.
[PMID: 30550009]
[20]
Chen YG, Lu CS, Lin TY, Lin CL, Tzeng HE, Tsai CH. Risk of fracture in transfusion-naïve thalassemia population: A nationwide population-based retrospective cohort study. Bone 2018; 106: 121-5.
[http://dx.doi.org/10.1016/j.bone.2017.10.016]] [PMID: 29054753]
[21]
Tsartsalis AN, Lambrou GI, Tsartsalis DN, et al. Bone metabolism markers in thalassemia major-induced osteoporosis: results from a cross-sectional observational study. Curr Mol Med 2019; 19(5): 335-41.
[http://dx.doi.org/10.2174/1566524019666190314114447] [PMID: 30868952]
[22]
Reynolds AW, Liu G, Kocis PT, Skowronski JN, Leslie DL, Fox EJ. Comparison of osteoporosis pharmacotherapy fracture rates: analysis of a MarketScan® claims database cohort. Int J Endocrinol Metab 2018; 16(3)e12104
[http://dx.doi.org/10.5812/ijem.12104] [PMID: 30464768]
[23]
De Luna G, Ranque B, Courbebaisse M, et al. High bone mineral density in sickle cell disease: Prevalence and characteristics. Bone 2018; 110: 199-203.
[http://dx.doi.org/10.1016/j.bone.2018.02.003] [PMID: 29428552]
[24]
Osella G, Priola AM, Priola SM, et al. Dual-energy X-ray absorptiometry predictors of vertebral deformities in beta-thalassemia major. J Clin Densitom 2018; 21(4): 507-16.
[http://dx.doi.org/10.1016/j.jocd.2017.06.028] [PMID: 28756994]
[25]
Ho SW, Kwek EB. Multiple Pathological Fractures Secondary to Endocrinopathy from Thalassaemia. Ann Acad Med Singapore 2016; 45(7): 318-21.
[PMID: 27523513]
[26]
Feichtinger X, Kocijan R, Resch H, Muschitz C. Bone microarchitecture deteriorations and a fragility fracture in a patient with beta and alpha heterozygous thalassemia: a case report. Wien Klin Wochenschr 2017; 129(5-6): 212-6.
[http://dx.doi.org/10.1007/s00508-016-1032-7] [PMID: 27363996]
[27]
Vogiatzi MG, Macklin EA, Fung EB, et al. Prevalence of fractures among the Thalassemia syndromes in North America. Bone 2006; 38(4): 571-5.
[http://dx.doi.org/10.1016/j.bone.2005.10.001] [PMID: 16298178]
[28]
Giusti A, Pinto V, Forni GL, Pilotto A. Management of beta-thalassemia-associated osteoporosis. Ann N Y Acad Sci 2016; 1368(1): 73-81.
[http://dx.doi.org/10.1111/nyas.13041] [PMID: 27060977]
[29]
Gambacciani M, Levancini M. Management of postmenopausal osteoporosis and the prevention of fractures. Panminerva Med 2014; 56(2): 115-31.
[PMID: 24942322]
[30]
Piga A. Impact of bone disease and pain in thalassemia. Hematology (Am Soc Hematol Educ Program) 2017; 2017(1): 272-7.
[http://dx.doi.org/10.1182/asheducation-2017.1.272] [PMID: 29222266]
[31]
Heaney RP. Nutritional factors in osteoporosis. Annu Rev Nutr 1993; 13: 287-316.
[http://dx.doi.org/10.1146/annurev.nu.13.070193.001443] [PMID: 8369148]
[32]
Lindsay R. Prevention and treatment of osteoporosis. Lancet 1993; 341(8848): 801-5.
[http://dx.doi.org/10.1016/0140-6736(93)90571-W] [PMID: 8096009]
[33]
Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995; 332(5): 305-11.
[http://dx.doi.org/10.1056/NEJM199502023320506] [PMID: 7816067]
[34]
Filosa A, Di Maio S, Saviano A, Vocca S, Esposito G. Can adrenarche influence the degree of osteopenia in thalassemic children? J Pediatr Endocrinol Metab 1996; 9(3): 401-6.
[http://dx.doi.org/10.1515/JPEM.1996.9.3.401] [PMID: 8887150]
[35]
Murphy S, Khaw KT, Sneyd MJ, Compston JE. Endogenous sex hormones and bone mineral density among community-based postmenopausal women. Postgrad Med J 1992; 68(805): 908-13.
[http://dx.doi.org/10.1136/pgmj.68.805.908] [PMID: 1494513]

© 2025 Bentham Science Publishers | Privacy Policy