Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Enhancement of Adsorption-Photocatalysis of Malachite Green Using Oil Palm Biomass-Derived Activated Carbon/ Titanium Dioxide Composite

Author(s): Yean L. Pang*, Wen S. Teh, Steven Lim, Ahmad Z. Abdullah, Hwai C. Ong and Chien-Hou Wu

Volume 17, Issue 5, 2021

Published on: 06 January, 2020

Page: [603 - 617] Pages: 15

DOI: 10.2174/1573411016666200106105903

Price: $65

Abstract

Background: Nowadays, effective wastewater treatment has become a hot research topic in the field of environment. A series of novel activated carbon/ titanium dioxide (AC/TiO2) composites at various weight ratio were synthesised using the sol-gel method and were characterised using XRD, SEM-EDX, FT-IR, TGA and surface area analysis.

Methods: TiO2 particles were successfully incorporated on the AC surface and were mainly composed of Ti, O and C atoms. The AC/TiO2 composites were made up of spherical TiO2 particles agglomerated on the smooth tubular and porous structure of AC. The photocatalytic efficiency was influenced by the weight proportion of AC:TiO2 and the degradation process was attributed to the adsorption and photocatalytic processes.

Results: It was found that 2.5 g/L AC/TiO2 at a weight ratio of 3:1 on an initial Malachite Green concentration of 10 mg/L at 50°C led to a degradation efficiency of 96.3% in 7.5 minutes under a halogen lamp. A chemical oxygen demand (COD) removal of 96.7% was also recorded. Reusability of the AC/TiO2 composite and kinetic study of the photodegradation of Malachite Green were also investigated. The recycled AC/TiO2 composite achieved high catalytic performance (83.1%) after one catalytic cycle.

Conclusion: The degradation kinetics of Malachite Green at various solution temperatures were fitted to the pseudo-first-order reactions and the activation energy for the degradation of Malachite Green was 21.48 kJ/mol. This work demonstrated that AC/TiO2 composite is a promising material for photocatalytic degradation of organic dyes.

Keywords: Activated carbon, adsorption-photocatalysis, biomass, empty fruit bunch, malachite green, TiO2.

Graphical Abstract

[1]
Jiang, Q.; Chen, S.; Deng, X.; Feng, Y.; Reddy, N.; Zhu, Q.; Liu, W.; Qiu, Y. A sustainable low temperature yarn reinforcing process to reduce water and energy consumptions and pollution in the textile industry. J. Clean. Prod., 2019, 210, 646-652.
[http://dx.doi.org/10.1016/j.jclepro.2018.11.034]
[2]
Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent advances for dyes removal using novel adsorbents: A review., Environ. Pollut., 2019, 252(Pt A), 352-365.
[http://dx.doi.org/10.1016/j.envpol.2019.05.072] [PMID: 31158664]
[3]
Fabryanty, R.; Valencia, C.; Soetaredjo, F.E.; Putro, J.N.; Santoso, S.P.; Kurniawan, A.; Ju, Y-H.; Ismadji, S. Removal of crystal violet dye by adsorption using bentonite – alginate composite. J. Environ. Chem. Eng., 2017, 5, 5677-5687.
[http://dx.doi.org/10.1016/j.jece.2017.10.057]
[4]
Lei, C.; Zhu, X.; Zhu, B.; Jiang, C.; Le, Y.; Yu, J. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions. J. Hazard. Mater., 2017, 321, 801-811.
[http://dx.doi.org/10.1016/j.jhazmat.2016.09.070] [PMID: 27720468]
[5]
Omri, A.; Lambert, S.D.; Geens, J.; Bennour, F.; Benzina, M. Synthesis, surface characterization and photocatalytic activity of TiO2 supported on almond shell activated carbon. J. Mater. Sci. Technol., 2014, 30, 894-902.
[http://dx.doi.org/10.1016/j.jmst.2014.04.007]
[6]
Ragupathy, S.; Raghu, K.; Prabu, P. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 138, 314-320.
[http://dx.doi.org/10.1016/j.saa.2014.11.087] [PMID: 25506648]
[7]
de Oliveira Pereira, L.; Marques Sales, I.; Pereira Zampiere, L.; Silveira Vieira, S.; do Rosário Guimarães, I.; Magalhães, F. Preparation of magnetic photocatalysts from TiO2, activated carbon and iron nitrate for environmental remediation. J. Photochem. Photobiol. Chem., 2019, 382111907
[http://dx.doi.org/10.1016/j.jphotochem.2019.111907]]
[8]
Martins, A.C.; Cazetta, A.L.; Pezoti, O.; Souza, J.R.B.; Zhang, T.; Pilau, E.J.; Asefa, T.; Almeida, V.C. Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram. Int., 2017, 43, 4411-4418.
[http://dx.doi.org/10.1016/j.ceramint.2016.12.088]
[9]
Foo, M.L.; Tan, C.R.; Lim, P.D.; Ooi, C.W.; Tan, K.W.; Chew, I.M.L. Surface-modified nanocrystalline cellulose from oil palm empty fruit bunch for effective binding of curcumin. Int. J. Biol. Macromol., 2019, 138, 1064-1071.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.035] [PMID: 31301392]
[10]
Hossain, M.A.; Jewaratnam, J.; Ganesan, P. Prospect of hydrogen production from oil palm biomass by thermochemical process – A review. Int. J. Hydrogen Energy, 2016, 41, 16637-16655.
[http://dx.doi.org/10.1016/j.ijhydene.2016.07.104]
[11]
Yoo, H-M.; Park, S-W.; Seo, Y-C.; Kim, K-H. Applicability assessment of empty fruit bunches from palm oil mills for use as bio-solid refuse fuels. J. Environ. Manage., 2019, 234, 1-7.
[http://dx.doi.org/10.1016/j.jenvman.2018.11.035] [PMID: 30599325]
[12]
Sharma, A.; Lee, B-K. Growth of TiO2 nano-wall on activated carbon fibers for enhancing the photocatalytic oxidation of benzene in aqueous phase. Catal. Today, 2017, 287, 113-121.
[http://dx.doi.org/10.1016/j.cattod.2016.11.019]
[13]
Orha, C.; Pode, R.; Manea, F.; Lazau, C.; Bandas, C. Titanium dioxide-modified activated carbon for advanced drinking water treatment. Process Saf. Environ. Prot., 2017, 108, 26-33.
[http://dx.doi.org/10.1016/j.psep.2016.07.013]
[14]
Khan, S.B.; Hou, M.; Shuang, S.; Zhang, Z. Morphological influence of TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes. Appl. Surf. Sci., 2017, 400, 184-193.
[http://dx.doi.org/10.1016/j.apsusc.2016.12.172]
[15]
Nguyen, C-C.; Nguyen, D.T.; Do, T-O. A novel route to synthesize C/Pt/TiO2 phase tunable anatase-Rutile TiO2 for efficient sunlight-driven photocatalytic applications. Appl. Catal. B, 2018, 226, 46-52.
[http://dx.doi.org/10.1016/j.apcatb.2017.12.038]
[16]
Bailón-García, E.; Elmouwahidi, A.; Álvarez, M.A.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J. New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Appl. Catal. B, 2017, 201, 29-40.
[http://dx.doi.org/10.1016/j.apcatb.2016.08.015]
[17]
Zangeneh, H.; Zinatizadeh, A.A.L.; Habibi, M.; Akia, M.; Hasnain Isa, M. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem., 2015, 26, 1-36.
[http://dx.doi.org/10.1016/j.jiec.2014.10.043]
[18]
Chen, J.; Qin, Y.; Chen, Z.; Yang, Z.; Yang, W.; Wang, Y. Gas circulating fluidized beds photocatalytic regeneration of I-TiO2 modified activated carbons saturated with toluene. Chem. Eng. J., 2016, 293, 281-290.
[http://dx.doi.org/10.1016/j.cej.2016.02.070]
[19]
Gar Alalm, M.; Tawfik, A.; Ookawara, S. Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. J. Environ. Chem. Eng., 2016, 4, 1929-1937.
[http://dx.doi.org/10.1016/j.jece.2016.03.023]
[20]
Dinari, M.; Haghighi, A. Surface modification of TiO2 nanoparticle by three dimensional silane coupling agent and preparation of polyamide/modified- TiO2 nanocomposites for removal of Cr (VI) from aqueous solutions. Prog. Org. Coat., 2017, 110, 24-34.
[http://dx.doi.org/10.1016/j.porgcoat.2017.04.044]
[21]
Khalid, N.R.; Majid, A.; Tahir, M.B. Niaz; Khalid S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int., 2017, 43, 14552-14571.
[http://dx.doi.org/10.1016/j.ceramint.2017.08.143]
[22]
Xing, B.; Shi, C.; Zhang, C.; Yi, G.; Chen, L.; Guo, H.; Huang, G.; Cao, J. Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation. J. Nanomater, 2016, 2016.
[23]
García-Muñoz, P.; Carbajo, J.; Faraldos, M.; Bahamonde, A. Photocatalytic degradation of phenol and isoproturon: Effect of adding an activated carbon to titania catalyst. J. Photochem. Photobiol. Chem., 2014, 287, 8-18.
[http://dx.doi.org/10.1016/j.jphotochem.2014.05.002]
[24]
Sobana, N.; Krishnakumar, B.; Swaminathan, M. Synergism and effect of operational parameters on solar photocatalytic degradation of an azo dye (Direct Yellow 4) using activated carbon-loaded zinc oxide. Mater. Sci. Semicond. Process., 2013, 16, 1046-1051.
[http://dx.doi.org/10.1016/j.mssp.2013.01.002]
[25]
Choquette-Labbé, M.; Shewa, W.A.; Lalman, J.A.; Shanmugam, S.R. Photocatalytic degradation of phenol and phenol derivatives using a Nano-TiO2 catalyst: Integrating quantitative and qualitative factors using response surface methodology. Water (Switzerland), 2014, 6, 1785-1806.
[http://dx.doi.org/10.3390/w6061785]
[26]
Qu, W.; Yuan, T.; Yin, G.; Xu, S.; Zhang, Q.; Su, H. Effect of properties of activated carbon on malachite green adsorption. Fuel, 2019, 249, 45-53.
[http://dx.doi.org/10.1016/j.fuel.2019.03.058]
[27]
Huang, N.; Shu, J.; Wang, Z.; Chen, M.; Ren, C.; Zhang, W. One-step pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation. J. Alloys Compd., 2015, 648, 919-929.
[http://dx.doi.org/10.1016/j.jallcom.2015.07.039]
[28]
Sivakumar Natarajan, T.; Bajaj, H.C.; Tayade, R.J. Palmyra tuber peel derived activated carbon and anatase TiO2 nanotube based nanocomposites with enhanced photocatalytic performance in rhodamine 6G dye degradation. Process Saf. Environ. Prot., 2016, 104, 346-357.
[http://dx.doi.org/10.1016/j.psep.2016.09.021]
[29]
Baek, M-H.; Yoon, J-W.; Hong, J-S.; Suh, J-K. Application of TiO2-containing mesoporous spherical activated carbon in a fluidized bed photoreactor—Adsorption and photocatalytic activity. Appl. Catal. A Gen., 2013, 50, 222-229.
[http://dx.doi.org/10.1016/j.apcata.2012.10.018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy