Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nucleic Acid Aptamers as a Potential Nucleus Targeted Drug Delivery System

Author(s): Garima Shrivastava, Hamid A. Bakshi, Alaa A. Aljabali, Vijay Mishra, Faruck L. Hakkim, Nitin B. Charbe, Prashant Kesharwani, Dinesh K. Chellappan, Kamal Dua and Murtaza M. Tambuwala*

Volume 17, Issue 2, 2020

Page: [101 - 111] Pages: 11

DOI: 10.2174/1567201817666200106104332

Price: $65

Abstract

Background: Nucleus targeted drug delivery provides several opportunities for the treatment of fatal diseases such as cancer. However, the complex nucleocytoplasmic barriers pose significant challenges for delivering a drug directly and efficiently into the nucleus. Aptamers representing singlestranded DNA and RNA qualify as next-generation highly advanced and personalized medicinal agents that successfully inhibit the expression of certain proteins; possess extraordinary gene-expression for manoeuvring the diseased cell's fate with negligible toxicity. In addition, the precisely directed aptamers to the site of action present a tremendous potential to reach the nucleus by escaping the ensuing barriers to exhibit a better drug activity and gene expression.

Objective: This review epigrammatically highlights the significance of targeted drug delivery and presents a comprehensive description of the principal barriers faced by the nucleus targeted drug delivery paradigm and ensuing complexities thereof. Eventually, the progress of nucleus targeting with nucleic acid aptamers and success achieved so far have also been reviewed.

Methods: Systematic literature search was conducted of research published to date in the field of nucleic acid aptamers.

Conclusion: The review specifically points out the contribution of individual aptamers as the nucleustargeting agent rather than aptamers in conjugated form.

Keywords: Nucleus, nucleus targeted drug delivery, nucleus targeting DNA, proteins, nucleic acid aptamers, RNA aptamers.

Next »
Graphical Abstract

[1]
Xu, L.; He, X-Y.; Liu, B-Y.; Xu, C.; Ai, S-L.; Zhuo, R-X.; Cheng, S-X. Aptamer-functionalized albumin-based nanoparticles for targeted drug delivery. Colloids Surf. B Biointerfaces, 2018, 171, 24-30.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.008] [PMID: 30005287]
[2]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[3]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[4]
Tan, K.X.; Danquah, M.K.; Pan, S.; Yon, L.S. Binding characterization of aptamer-drug layered microformulations and in vitro release assessment. J. Pharm. Sci., 2019, 108(9), 2934-2941.
[http://dx.doi.org/10.1016/j.xphs.2019.03.037] [PMID: 31002808]
[5]
Fattal, E.; Hillaireau, H.; Ismail, S.I. Aptamers in therapeutics and drug delivery. Adv. Drug Deliv. Rev., 2018, 134, 1-2.
[http://dx.doi.org/10.1016/j.addr.2018.11.001] [PMID: 30442313]
[6]
Yoon, S.; Rossi, J.J. Aptamers: Uptake mechanisms and intracellular applications. Adv. Drug Deliv. Rev., 2018, 134, 22-35.
[http://dx.doi.org/10.1016/j.addr.2018.07.003] [PMID: 29981799]
[7]
Gold, L. Oligonucleotides as research, diagnostic, and therapeutic agents. J. Biol. Chem., 1995, 270(23), 13581-13584.
[http://dx.doi.org/10.1074/jbc.270.23.13581] [PMID: 7775406]
[8]
Bunka, D.H.; Stockley, P.G. Aptamers come of age - at last. Nat. Rev. Microbiol., 2006, 4(8), 588-596.
[http://dx.doi.org/10.1038/nrmicro1458] [PMID: 16845429]
[9]
White, R.R.; Sullenger, B.A.; Rusconi, C.P. Developing aptamers into therapeutics. J. Clin. Invest., 2000, 106(8), 929-934.
[http://dx.doi.org/10.1172/JCI11325] [PMID: 11032851]
[10]
Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 1992, 355(6360), 564-566.
[http://dx.doi.org/10.1038/355564a0] [PMID: 1741036]
[11]
Dey, A.K.; Griffiths, C.; Lea, S.M.; James, W. Structural characterization of an anti-gp120 RNA aptamer that neutralizes R5 strains of HIV-1. RNA, 2005, 11(6), 873-884.
[http://dx.doi.org/10.1261/rna.7205405] [PMID: 15923374]
[12]
Röthlisberger, P.; Hollenstein, M. Aptamer chemistry. Adv. Drug Deliv. Rev., 2018, 134, 3-21.
[http://dx.doi.org/10.1016/j.addr.2018.04.007] [PMID: 29626546]
[13]
Ng, E.W.; Shima, D.T.; Calias, P.; Cunningham, E.T., Jr; Guyer, D.R.; Adamis, A.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov., 2006, 5(2), 123-132.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
[14]
Xuan, W.; Peng, Y.; Deng, Z.; Peng, T.; Kuai, H.; Li, Y.; He, J.; Jin, C.; Liu, Y.; Wang, R.; Tan, W. A basic insight into aptamer-drug conjugates (ApDCs). Biomaterials, 2018, 182, 216-226.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.021] [PMID: 30138784]
[15]
He, F.; Wen, N.; Xiao, D.; Yan, J.; Xiong, H.; Cai, S.; Liu, Z.; Liu, Y.; Liu, Y. Aptamer based targeted drug delivery systems: Current potential and challenges. Curr. Med. Chem., 2018, 25, 1-29.
[http://dx.doi.org/10.2174/0929867325666181008142831] [PMID: 30295183]
[16]
Moosavian, S.A.; Sahebkar, A. Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett., 2019, 448, 144-154.
[http://dx.doi.org/10.1016/j.canlet.2019.01.045] [PMID: 30763718]
[17]
Maimaitiyiming, Y.; Hong, F.; Yang, C.; Naranmandura, H. Novel insights into the role of aptamers in the fight against cancer. J. Cancer Res. Clin. Oncol., 2019, 145(4), 797-810.
[http://dx.doi.org/10.1007/s00432-019-02882-7] [PMID: 30830295]
[18]
Torchilin, V.P. Drug targeting. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S81-S91.
[http://dx.doi.org/10.1016/S0928-0987(00)00166-4] [PMID: 11033430]
[19]
Oh, E.; Delehanty, J.B.; Sapsford, K.E.; Susumu, K.; Goswami, R.; Blanco-Canosa, J.B.; Dawson, P.E.; Granek, J.; Shoff, M.; Zhang, Q.; Goering, P.L.; Huston, A.; Medintz, I.L. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano, 2011, 5(8), 6434-6448.
[http://dx.doi.org/10.1021/nn201624c] [PMID: 21774456]
[20]
Pouton, C.W.; Wagstaff, K.M.; Roth, D.M.; Moseley, G.W.; Jans, D.A. Targeted delivery to the nucleus. Adv. Drug Deliv. Rev., 2007, 59(8), 698-717.
[http://dx.doi.org/10.1016/j.addr.2007.06.010] [PMID: 17681634]
[21]
Tambuwala, M.M. Natural nuclear factor kappa beta inhibitors: Safe therapeutic options for inflammatory bowel disease. Inflamm. Bowel Dis., 2016, 22(3), 719-723.
[http://dx.doi.org/10.1097/MIB.0000000000000655] [PMID: 26717321]
[22]
Cao, Z.; Li, D.; Wang, J.; Xiong, M.; Yang, X. Direct nucleus-targeted drug delivery using cascade pHe /photo dual-sensitive polymeric nanocarrier for cancer therapy. Small, 2019, 15(36) e1902022
[http://dx.doi.org/10.1002/smll.201902022] [PMID: 31318147]
[23]
Czech, T.; Lalani, R.; Oyewumi, M.O. Delivery systems as vital tools in drug repurposing. AAPS PharmSciTech, 2019, 20(3), 116.
[http://dx.doi.org/10.1208/s12249-019-1333-z] [PMID: 30771030]
[24]
McDonald, D.; Vodicka, M.A.; Lucero, G.; Svitkina, T.M.; Borisy, G.G.; Emerman, M.; Hope, T.J. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol., 2002, 159(3), 441-452.
[http://dx.doi.org/10.1083/jcb.200203150] [PMID: 12417576]
[25]
Chan, C.K.; Hübner, S.; Hu, W.; Jans, D.A. Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: Implications for nonviral DNA delivery. Gene Ther., 1998, 5(9), 1204-1212.
[http://dx.doi.org/10.1038/sj.gt.3300708] [PMID: 9930321]
[26]
Baluch, S.; Midwood, C.J.; Griffiths, J.R.; Stubbs, M.; Coombes, R.C. Monitoring therapeutic response to tamoxifen in NMU-induced rat mammary tumours by 31P MRS. Br. J. Cancer, 1991, 63(6), 901-904.
[http://dx.doi.org/10.1038/bjc.1991.198] [PMID: 2069847]
[27]
Sharma, A.; Arambula, J.F.; Koo, S.; Kumar, R.; Singh, H.; Sessler, J.L.; Kim, J.S. Hypoxia-targeted drug delivery. Chem. Soc. Rev., 2019, 48(3), 771-813.
[http://dx.doi.org/10.1039/C8CS00304A] [PMID: 30575832]
[28]
Shi, S.; Kong, N.; Feng, C.; Shajii, A.; Bejgrowicz, C.; Tao, W.; Farokhzad, O.C. Drug delivery strategies for the treatment of metabolic diseases. Adv. Healthc. Mater., 2019, 8(12) e1801655
[http://dx.doi.org/10.1002/adhm.201801655] [PMID: 30957991]
[29]
Maeda, H.; Fang, J.; Inutsuka, T.; Kitamoto, Y. Vascular permeability enhancement in solid tumor: Various factors, mechanisms involved and its implications. Int. Immunopharmacol., 2003, 3(3), 319-328.
[http://dx.doi.org/10.1016/S1567-5769(02)00271-0] [PMID: 12639809]
[30]
Majumdar, S.; Siahaan, T.J. Peptide-mediated targeted drug delivery. Med. Res. Rev., 2012, 32(3), 637-658.
[http://dx.doi.org/10.1002/med.20225] [PMID: 20814957]
[31]
Large, D.E.; Soucy, J.R.; Hebert, J.; Auguste, D.T. Advances in receptor‐mediated, tumor‐targeted drug delivery. Adv. Ther., 2019, 2(1) 1800091
[http://dx.doi.org/10.1002/adtp.201800091]
[32]
Flygare, J.A.; Pillow, T.H.; Aristoff, P. Antibody-drug conjugates for the treatment of cancer. Chem. Biol. Drug Des., 2013, 81(1), 113-121.
[http://dx.doi.org/10.1111/cbdd.12085] [PMID: 23253133]
[33]
Chen, F.; Huang, G. Application of glycosylation in targeted drug delivery. Eur. J. Med. Chem., 2019, 182 111612
[http://dx.doi.org/10.1016/j.ejmech.2019.111612] [PMID: 31421631]
[34]
LaVan, D.A.; McGuire, T.; Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol., 2003, 21(10), 1184-1191.
[http://dx.doi.org/10.1038/nbt876] [PMID: 14520404]
[35]
Narayanaswamy, R.; Torchilin, V.P. Hydrogels and their applications in targeted drug delivery. Molecules, 2019, 24(3), 603.
[http://dx.doi.org/10.3390/molecules24030603] [PMID: 30744011]
[36]
Yao, J.; Fan, Y.; Li, Y.; Huang, L. Strategies on the nuclear-targeted delivery of genes. J. Drug Target., 2013, 21(10), 926-939.
[http://dx.doi.org/10.3109/1061186X.2013.830310] [PMID: 2396456]
[37]
Zabner, J.; Fasbender, A.J.; Moninger, T.; Poellinger, K.A.; Welsh, M.J. Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem., 1995, 270(32), 18997-19007.
[http://dx.doi.org/10.1074/jbc.270.32.18997] [PMID: 7642560]
[38]
Zhu, G.; Chen, X. Aptamer-based targeted therapy. Adv. Drug Deliv. Rev., 2018, 134, 65-78.
[http://dx.doi.org/10.1016/j.addr.2018.08.005] [PMID: 30125604]
[39]
Belleperche, M.; DeRosa, M.C. pH-Control in Aptamer-Based Diagnostics, Therapeutics, and Analytical Applications. Pharmaceuticals (Basel), 2018, 11(3)E80
[http://dx.doi.org/10.3390/ph11030080] [PMID: 30149664]
[40]
Sivakumar, P.; Kim, S.; Kang, H.C.; Shim, M.S. Targeted siRNA delivery using aptamer-siRNA chimeras and aptamer-conjugated nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(3) e1543
[http://dx.doi.org/10.1002/wnan.1543] [PMID: 30070426]
[41]
Catuogno, S.; Esposito, C.L.; Condorelli, G.; de Franciscis, V. Nucleic acids delivering nucleic acids. Adv. Drug Deliv. Rev., 2018, 134, 79-93.
[http://dx.doi.org/10.1016/j.addr.2018.04.006] [PMID: 29630917]
[42]
Kim, M.; Kim, D.M.; Kim, K.S.; Jung, W.; Kim, D.E. Applications of cancer cell-specific aptamers in targeted delivery of anticancer therapeutic agents. Molecules, 2018, 23(4) E830
[http://dx.doi.org/10.3390/molecules23040830] [PMID: 29617327]
[43]
Dehghani, S.; Nosrati, R.; Yousefi, M.; Nezami, A.; Soltani, F.; Taghdisi, S.M.; Abnous, K.; Alibolandi, M.; Ramezani, M. Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review. Biosens. Bioelectron., 2018, 110, 23-37.
[http://dx.doi.org/10.1016/j.bios.2018.03.037] [PMID: 29579646]
[44]
Cansiz, S.; Zhang, L.; Wu, C.; Wu, Y.; Teng, I.T.; Hou, W.; Wang, Y.; Wan, S.; Cai, R.; Jin, C.; Liu, Q.; Tan, W. DNA aptamer based nanodrugs: Molecular engineering for efficiency. Chem. Asian J., 2015, 10(10), 2084-2094.
[http://dx.doi.org/10.1002/asia.201500434] [PMID: 26177853]
[45]
Zhu, H.; Li, J.; Zhang, X.B.; Ye, M.; Tan, W. Nucleic acid aptamer-mediated drug delivery for targeted cancer therapy. Chem Med Chem, 2015, 10(1), 39-45.
[http://dx.doi.org/10.1002/cmdc.201402312] [PMID: 25277749]
[46]
Khan, M.N.; Lane, M.E.; McCarron, P.A.; Tambuwala, M.M. Caffeic acid phenethyl ester is protective in experimental ulcerative colitis via reduction in levels of pro-inflammatory mediators and enhancement of epithelial barrier function. Inflammopharmacology, 2018, 26(2), 561-569.
[http://dx.doi.org/10.1007/s10787-017-0364-x] [PMID: 28528363]
[47]
Lukacs, G.L.; Haggie, P.; Seksek, O.; Lechardeur, D.; Freedman, N.; Verkman, A.S. Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem., 2000, 275(3), 1625-1629.
[http://dx.doi.org/10.1074/jbc.275.3.1625] [PMID: 10636854]
[48]
Kao, H.P.; Abney, J.R.; Verkman, A.S. Determinants of the translational mobility of a small solute in cell cytoplasm. J. Cell Biol., 1993, 120(1), 175-184.
[http://dx.doi.org/10.1083/jcb.120.1.175] [PMID: 8416987]
[49]
Bechara, C.; Sagan, S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett., 2013, 587(12), 1693-1702.
[http://dx.doi.org/10.1016/j.febslet.2013.04.031] [PMID: 23669356]
[50]
Muller, R.H.; Keck, C.M. Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol., 2004, 113(1-3), 151-170.
[http://dx.doi.org/10.1016/j.jbiotec.2004.06.007] [PMID: 15380654]
[51]
Kau, T.R.; Silver, P.A. Nuclear transport as a target for cell growth. Drug Discov. Today, 2003, 8(2), 78-85.
[http://dx.doi.org/10.1016/S1359-6446(02)02562-X] [PMID: 12565010]
[52]
Capecchi, M.R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell, 1980, 22(2 Pt 2), 479-488.
[http://dx.doi.org/10.1016/0092-8674(80)90358-X] [PMID: 6256082]
[53]
Zhou, X.; Huang, L. DNA transfection mediated by cationic liposomes containing lipopolylysine: Characterization and mechanism of action. Biochim. Biophys. Acta, 1994, 1189(2), 195-203.
[http://dx.doi.org/10.1016/0005-2736(94)90066-3] [PMID: 8292625]
[54]
Wagner, E.; Cotten, M.; Foisner, R.; Birnstiel, M.L. Transferrin-polycation-DNA complexes: The effect of polycations on the structure of the complex and DNA delivery to cells. Proc. Natl. Acad. Sci. USA, 1991, 88(10), 4255-4259.
[http://dx.doi.org/10.1073/pnas.88.10.4255] [PMID: 2034670]
[55]
Gottschalk, S.; Sparrow, J.T.; Hauer, J.; Mims, M.P.; Leland, F.E.; Woo, S.L.; Smith, L.C.A. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. Gene Ther., 1996, 3(5), 448-457.
[PMID: 9156807]
[56]
Lechardeur, D.; Sohn, K.J.; Haardt, M.; Joshi, P.B.; Monck, M.; Graham, R.W.; Beatty, B.; Squire, J.; O’Brodovich, H.; Lukacs, G.L. Metabolic instability of plasmid DNA in the cytosol: A potential barrier to gene transfer. Gene Ther., 1999, 6(4), 482-497.
[http://dx.doi.org/10.1038/sj.gt.3300867] [PMID: 10476208]
[57]
Dauty, E.; Verkman, A.S. Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: A new barrier for non-viral gene delivery. J. Biol. Chem., 2005, 280(9), 7823-7828.
[http://dx.doi.org/10.1074/jbc.M412374200] [PMID: 15632160]
[58]
Stoffler, D.; Fahrenkrog, B.; Aebi, U. The nuclear pore complex: From molecular architecture to functional dynamics. Curr. Opin. Cell Biol., 1999, 11(3), 391-401.
[http://dx.doi.org/10.1016/S0955-0674(99)80055-6] [PMID: 10395558]
[59]
Ogris, M.; Wagner, E. Targeting tumors with non-viral gene delivery systems. Drug Discov. Today, 2002, 7(8), 479-485.
[http://dx.doi.org/10.1016/S1359-6446(02)02243-2] [PMID: 11965397]
[60]
Collard, W.T.; Yang, Y.; Kwok, K.Y.; Park, Y.; Rice, K.G. Biodistribution, metabolism, and in vivo gene expression of low molecular weight glycopeptide polyethylene glycol peptide DNA co-condensates. J. Pharm. Sci., 2000, 89(4), 499-512.
[http://dx.doi.org/10.1002/(SICI)1520-6017(200004)89:4<499:AID-JPS7>3.0.CO;2-V] [PMID: 10737911]
[61]
Kircheis, R.; Blessing, T.; Brunner, S.; Wightman, L.; Wagner, E. Tumor targeting with surface-shielded ligand--polycation DNA complexes. J. Control. Release, 2001, 72(1-3), 165-170.
[http://dx.doi.org/10.1016/S0168-3659(01)00272-3] [PMID: 11389995]
[62]
Oupický, D.; Howard, K.A.; Konák, C.; Dash, P.R.; Ulbrich, K.; Seymour, L.W. Steric stabilization of poly-L-Lysine/DNA complexes by the covalent attachment of semitelechelic poly[N-(2- hydroxypropyl)methacrylamide]. Bioconjug. Chem., 2000, 11(4), 492-501. [N-(2-hydroxypropyl)methacrylamide].
[http://dx.doi.org/10.1021/bc990143e] [PMID: 10898570]
[63]
Bertrand, N.; Leroux, J.C. The journey of a drug-carrier in the body: An anatomo-physiological perspective. J. Control. Release, 2012, 161(2), 152-163.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.098] [PMID: 22001607]
[64]
Kwon, I.K.; Lee, S.C.; Han, B.; Park, K. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release, 2012, 164(2), 108-114.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.010] [PMID: 22800574]
[65]
Ruenraroengsak, P.; Cook, J.M.; Florence, A.T. Nanosystem drug targeting: Facing up to complex realities. J. Control. Release, 2010, 141(3), 265-276.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.032] [PMID: 19895862]
[66]
Smith, P.J.; Olson, J.A.; Constable, D.; Schwartz, J.; Proffitt, R.T.; Adler-Moore, J.P. Effects of dosing regimen on accumulation, retention and prophylactic efficacy of liposomal amphotericin B. J. Antimicrob. Chemother., 2007, 59(5), 941-951.
[http://dx.doi.org/10.1093/jac/dkm077] [PMID: 17400589]
[67]
Scott, R.C.; Crabbe, D.; Krynska, B.; Ansari, R.; Kiani, M.F. Aiming for the heart: targeted delivery of drugs to diseased cardiac tissue. Expert Opin. Drug Deliv., 2008, 5(4), 459-470.
[http://dx.doi.org/10.1517/17425247.5.4.459] [PMID: 18426386]
[68]
Torchilin, V.P. Passive and active drug targeting: Drug delivery to tumors as an example. Handb. Exp. Pharmacol., 2010, 197(197), 3-53.
[http://dx.doi.org/10.1007/978-3-642-00477-3_1] [PMID: 20217525]
[69]
Wakaskar, R.R. Passive and active targeting in the tumour microenvironment. Int. J. Drug Dev. Res., 2017, 9(2), 37-41.
[70]
Nantz, M.; Knipp, R. Functionalized nanoparticles for magnetically-guided, heat-induced drug delivery, 2015.http:// www.flintbox.com/public/project/26926/
[71]
N’Guyen, T.T.T.; Duong, H.T.T.; Basuki, J.; Montembault, V.; Pascual, S.; Guibert, C.; Fresnais, J.; Boyer, C.; Whittaker, M.R.; Davis, T.P.; Fontaine, L. Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(52), 14152-14156.
[http://dx.doi.org/10.1002/anie.201306724] [PMID: 24255024]
[72]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[73]
Steed, J.W.; Turner, D.R.; Wallace, K.J. Core Concepts in Supramolecular Chemistry and Nanochemistry; John Wiley: Chichester, England; Hoboken, NJ, 2007.
[74]
Yang, X-Z.; Du, J-Z.; Dou, S.; Mao, C-Q.; Long, H-Y.; Wang, J. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano, 2012, 6(1), 771-781.
[http://dx.doi.org/10.1021/nn204240b] [PMID: 22136582]
[75]
Lee, J-H.; Chen, K-J.; Noh, S-H.; Garcia, M.A.; Wang, H.; Lin, W-Y.; Jeong, H.; Kong, B.J.; Stout, D.B.; Cheon, J.; Tseng, H.R. On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew. Chem. Int. Ed. Engl., 2013, 52(16), 4384-4388.
[http://dx.doi.org/10.1002/anie.201207721] [PMID: 23519915]
[76]
Poon, Z.; Chang, D.; Zhao, X.; Hammond, P.T. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano, 2011, 5(6), 4284-4292.
[http://dx.doi.org/10.1021/nn200876f] [PMID: 21513353]
[77]
Ling, D.; Park, W.; Park, S.J.; Lu, Y.; Kim, K.S.; Hackett, M.J.; Kim, B.H.; Yim, H.; Jeon, Y.S.; Na, K.; Hyeon, T. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc., 2014, 136(15), 5647-5655.
[http://dx.doi.org/10.1021/ja4108287] [PMID: 24689550]
[78]
Lee, Y.; Ishii, T.; Cabral, H.; Kim, H.J.; Seo, J.H.; Nishiyama, N.; Oshima, H.; Osada, K.; Kataoka, K. Charge-conversional polyionic complex micelles-efficient nanocarriers for protein delivery into cytoplasm. Angew. Chem. Int. Ed. Engl., 2009, 48(29), 5309-5312.
[http://dx.doi.org/10.1002/anie.200900064] [PMID: 19294716]
[79]
Kaittanis, C.; Shaffer, T.M.; Ogirala, A.; Santra, S.; Perez, J.M.; Chiosis, G.; Li, Y.; Josephson, L.; Grimm, J. Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat. Commun., 2014, 5, 3384.
[http://dx.doi.org/10.1038/ncomms4384] [PMID: 24594970]
[80]
Khati, M. The future of aptamers in medicine. J. Clin. Pathol., 2010, 63(6), 480-487.
[http://dx.doi.org/10.1136/jcp.2008.062786] [PMID: 20360137]
[81]
Yu, J.; Xie, X.; Zheng, M.; Yu, L.; Zhang, L.; Zhao, J.; Jian, D.; Che, X. Fabrication and characterization of NLSS-conjugated glycol chitosan micelles for improving the nuclear delivery of Doxorubicin. Int. J. Nanomedicine, 2012, 7, 5079-5090.
[http://dx.doi.org/10.2147/IJN.S36150] [PMID: 23049255]
[82]
Cohen, O.; Granek, R. Nucleus-targeted drug delivery: Theoretical optimization of nanoparticles decoration for enhanced intracellular active transport. Nano Lett., 2014, 14(5), 2515-2521.
[http://dx.doi.org/10.1021/nl500248q] [PMID: 24646130]
[83]
Maity, A.R.; Stepensky, D. Efficient subcellular targeting to the cell nucleus of quantum dots densely decorated with a nuclear localization sequence peptide. ACS Appl. Mater. Interfaces, 2016, 8(3), 2001-2009.
[http://dx.doi.org/10.1021/acsami.5b10295] [PMID: 26731220]
[84]
Khan, M.N.; Haggag, Y.A.; Lane, M.E.; McCarron, P.A.; Tambuwala, M.M. Polymeric nano-encapsulation of curcumin enhances its anti-cancer activity in breast (MDA-MB231) and lung (A549) cancer cells through reduction in expression of HIF-1α and nuclear p65 (Rel A). Curr. Drug Deliv., 2018, 15(2), 286-295.
[http://dx.doi.org/10.2174/1567201814666171019104002] [PMID: 29065834]
[85]
Dua, K.; Wadhwa, R.; Singhvi, G.; Rapalli, V.; Shukla, S.D.; Shastri, M.D.; Gupta, G.; Satija, S.; Mehta, M.; Khurana, N.; Awasthi, R.; Maurya, P.K.; Thangavelu, L. S, R.; Tambuwala, M.M.; Collet, T.; Hansbro, P.M.; Chellappan, D.K. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev. Res., 2019, 80(6), 714-730.
[http://dx.doi.org/10.1002/ddr.21571] [PMID: 31691339]
[86]
Prasher, P.; Sharma, M. Medicinal chemistry of acridine and its analogues. MedChemComm, 2018, 9(10), 1589-1618.
[http://dx.doi.org/10.1039/C8MD00384J] [PMID: 30429967]
[87]
Jian, Y.; Gao, Z.; Sun, J.; Shen, Q.; Feng, F.; Jing, Y.; Yang, C. RNA aptamers interfering with nucleophosmin oligomerization induce apoptosis of cancer cells. Oncogene, 2009, 28(47), 4201-4211.
[http://dx.doi.org/10.1038/onc.2009.275] [PMID: 19734942]
[88]
Zamay, T.N.; Kolovskaya, O.S.; Glazyrin, Y.E.; Zamay, G.S.; Kuznetsova, S.A.; Spivak, E.A.; Wehbe, M.; Savitskaya, A.G.; Zubkova, O.A.; Kadkina, A.; Wang, X.; Muharemagic, D.; Dubynina, A.; Sheina, Y.; Salmina, A.B.; Berezovski, M.V.; Zamay, A.S. DNA-aptamer targeting vimentin for tumor therapy in vivo. Nucleic Acid Ther., 2014, 24(2), 160-170.
[http://dx.doi.org/10.1089/nat.2013.0471] [PMID: 24410722]
[89]
Zhang, L.; Liu, H.; Shao, Y.; Lin, C.; Jia, H.; Chen, G.; Yang, D.; Wang, Y. Selective lighting up of epiberberine alkaloid fluorescence by fluorophore-switching aptamer and stoichiometric targeting of human telomeric DNA G-quadruplex multimer. Anal. Chem., 2015, 87(1), 730-737.
[http://dx.doi.org/10.1021/ac503730j] [PMID: 25429435]
[90]
Mi, J.; Ray, P.; Liu, J.; Kuan, C-T.; Xu, J.; Hsu, D.; Sullenger, B.A.; White, R.R.; Clary, B.M. In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase protein DHX9. Mol. Ther. Nucleic Acids, 2016, 5e, 315.
[http://dx.doi.org/10.1038/mtna.2016.27] [PMID: 27115840]
[91]
Shrivastava, G.; Hyodo, M.; Yoshimura, S.H.; Akita, H.; Harashima, H. Identification of a Nucleoporin358-specific RNA aptamer for use as a nucleus-targeting liposomal delivery system. Nucleic Acid Ther., 2016, 26(5), 286-298.
[http://dx.doi.org/10.1089/nat.2016.0604] [PMID: 27548508]
[92]
Chen, D.; Li, B.; Cai, S.; Wang, P.; Peng, S.; Sheng, Y.; He, Y.; Gu, Y.; Chen, H. Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy. Biomaterials, 2016, 100, 1-16.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.017] [PMID: 27236844]
[93]
Deng, R.; Qu, H.; Liang, L.; Zhang, J.; Zhang, B.; Huang, D.; Xu, S.; Liang, C.; Xu, W. Tracing the therapeutic process of targeted aptamer/drug conjugate on cancer cells by surface-enhanced Raman scattering spectroscopy. Anal. Chem., 2017, 89(5), 2844-2851.
[http://dx.doi.org/10.1021/acs.analchem.6b03971] [PMID: 28192929]
[94]
Sun, P.; Zhang, N.; Tang, Y.; Yang, Y.; Chu, X.; Zhao, Y. SL2B aptamer and folic acid dual-targeting DNA nanostructures for synergic biological effect with chemotherapy to combat colorectal cancer. Int. J. Nanomedicine, 2017, 12, 2657-2672.
[http://dx.doi.org/10.2147/IJN.S132929] [PMID: 28435250]
[95]
Liu, X.; Wu, L.; Wang, L.; Jiang, W. A dual-targeting DNA tetrahedron nanocarrier for breast cancer cell imaging and drug delivery. Talanta, 2018, 179, 356-363.
[http://dx.doi.org/10.1016/j.talanta.2017.11.034] [PMID: 29310244]
[96]
Duo, Y.; Yang, M.; Du, Z.; Feng, C.; Xing, C.; Wu, Y.; Xie, Z.; Zhang, F.; Huang, L.; Zeng, X.; Chen, H. CX-5461-loaded nucleolus-targeting nanoplatform for cancer therapy through induction of pro-death autophagy. Acta Biomater., 2018, 79, 317-330.
[http://dx.doi.org/10.1016/j.actbio.2018.08.035] [PMID: 30172068]
[97]
Tucker, W.O.; Kinghorn, A.B.; Fraser, L.A.; Cheung, Y.W.; Tanner, J.A. Selection and characterization of a DNA aptamer specifically targeting human HECT ubiquitin ligase WWP1. Int. J. Mol. Sci., 2018, 19(3)E763
[http://dx.doi.org/10.3390/ijms19030763] [PMID: 29518962]
[98]
Zhou, J.; Lazar, D.; Li, H.; Xia, X.; Satheesan, S.; Charlins, P.; O’Mealy, D.; Akkina, R.; Saayman, S.; Weinberg, M.S.; Rossi, J.J.; Morris, K.V. Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1. Theranostics, 2018, 8(6), 1575-1590.
[http://dx.doi.org/10.7150/thno.23085] [PMID: 29556342]
[99]
Yoon, S.; Wu, X.; Armstrong, B.; Habib, N.; Rossi, J.J. An RNA aptamer targeting the receptor tyrosine kinase PDGFRα induces anti-tumor effects through STAT3 and p53 in glioblastoma. Mol. Ther. Nucleic Acids, 2019, 14, 131-141.
[http://dx.doi.org/10.1016/j.omtn.2018.11.012] [PMID: 30594071]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy