Review Article

生物合成量子点作为生物医学应用的改良生物兼容工具

卷 28, 期 3, 2021

发表于: 02 January, 2020

页: [496 - 513] 页: 18

弟呕挨: 10.2174/0929867327666200102122737

价格: $65

摘要

量子点(QDs)的直径通常被限制在10纳米,由于其独特的光学特性,这被归因于量子限制,已经引起了研究人员的兴趣。半导体纳米晶体在早期作为发光二极管材料应用于电气工业之后,在临床诊断和生物医学应用方面继续显示出巨大的潜力。传统的量子点合成的物理和化学途径通常需要苛刻的条件和危险的试剂,当这些产品进入生理环境时,由于有机盖配体,它们会遇到非亲水性问题。然后利用生物,特别是微生物的自然还原能力,从现有的金属前体中制备量子点。由于蛋白质包覆量子点具有良好的生物相容性,低成本和生态友好的生物合成方法具有进一步生物医学应用的潜力。表面生物质能提供许多结合位点来修饰物质或靶向配体,从而通过简单高效的操作实现多种功能。生物合成量子点具有与化学量子点类似的发光特性,可以作为生物成像和生物标记剂。此外,在抗菌活性、金属离子检测和生物修复等方面也进行了广泛的研究。因此,本文详细介绍了生物合成量子点在生物医学应用方面的最新进展,并尽可能清楚地阐明了这些原理。

关键词: 量子点,生物合成,生物相容性,生物医学应用,光电化学,生物成像,微生物

[1]
Rosenthal, S.J.; Chang, J.C.; Kovtun, O.; McBride, J.R.; Tomlinson, I.D. Biocompatible quantum dots for biological applications. Chem. Biol., 2011, 18(1), 10-24.
[http://dx.doi.org/10.1016/j.chembiol.2010.11.013] [PMID: 21276935]
[2]
Reshma, V.G.; Mohanan, P.V. Quantum dots: applications and safety consequences. J. Lumin., 2019, 205, 287-298.
[http://dx.doi.org/10.1016/j.jlumin.2018.09.015]
[3]
Brichkin, S.B.; Razumov, V.F. Colloidal quantum dots: synthesis, properties and applications. Russ. Chem. Rev., 2016, 85(12), 1297-1312.
[http://dx.doi.org/10.1070/RCR4656]
[4]
Dameron, C.T.; Reese, R.N.; Mehra, R.K.; Kortan, A.R.; Carroll, P.J.; Steigerwald, M.L.; Brus, L.E.; Winge, D.R. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature, 1989, 338(6216), 596-597.
[http://dx.doi.org/10.1038/338596a0]
[5]
Zhou, J.; Yang, Y.; Zhang, C.Y. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem. Rev., 2015, 115(21), 11669-11717.
[http://dx.doi.org/10.1021/acs.chemrev.5b00049] [PMID: 26446443]
[6]
Cui, R.; Liu, H.H.; Xie, H.Y.; Zhang, Z.L.; Yang, Y.R.; Pang, D.W.; Xie, Z.X.; Chen, B.B.; Hu, B.; Shen, P. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Adv. Funct. Mater., 2009, 19(15), 2359-2364.
[http://dx.doi.org/10.1002/adfm.200801492]
[7]
Li, Y.; Cui, R.; Zhang, P.; Chen, B-B.; Tian, Z-Q.; Li, L.; Hu, B.; Pang, D-W.; Xie, Z-X. Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway. ACS Nano, 2013, 7(3), 2240-2248.
[http://dx.doi.org/10.1021/nn305346a] [PMID: 23398777]
[8]
Tian, L-J.; Li, W-W.; Zhu, T-T.; Chen, J-J.; Wang, W-K.; An, P-F.; Zhang, L.; Dong, J-C.; Guan, Y.; Liu, D-F.; Zhou, N-Q.; Liu, G.; Tian, Y-C.; Yu, H-Q. Directed biofabrication of nanoparticles through regulating extracellular electron transfer. J. Am. Chem. Soc., 2017, 139(35), 12149-12152.
[http://dx.doi.org/10.1021/jacs.7b07460] [PMID: 28825808]
[9]
Dameron, C.T.; Winge, D.R. Peptide-mediated formation of quantum semiconductors. Trends Biotechnol., 1990, 8(1), 3-6.
[http://dx.doi.org/10.1016/0167-7799(90)90122-E] [PMID: 1366570]
[10]
Zhang, Y.N.; Yang, L.L.; Tu, J.W.; Cui, R.; Pang, D.W. Live-cell synthesis of ZnSe quantum dots in Staphylococcus aureus. Chem. J. Chin. Univ., 2018, 39(6), 1158-1163.
[11]
Marusak, K.E.; Feng, Y.; Eben, C.F.; Payne, S.T.; Cao, Y.; You, L.; Zauscher, S. Cadmium sulphide quantum dots with tunable electronic properties by bacterial precipitation. RSC Advances, 2016, 6(80), 76158-76166.
[http://dx.doi.org/10.1039/C6RA13835G] [PMID: 28435671]
[12]
Wu, S.M.; Su, Y.L.; Liang, R.R.; Ai, X.X.; Qian, J.; Wang, C.; Chen, J.Q.; Yan, Z.Y. Crucial factors in biosynthesis of fluorescent CdSe quantum dots in Saccharomyces cerevisiae. Rsc Adv., 2015, 5(96), 79184-79191.
[http://dx.doi.org/10.1039/C5RA13011E]
[13]
Borovaya, M.; Pirko, Y.; Krupodorova, T.; Naumenko, A.; Blume, Y.; Yemets, A. Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.). P. Kumm. Biotechnol. Biotec. Eq, 2015, 29(6), 1156-1163.
[http://dx.doi.org/10.1080/13102818.2015.1064264]
[14]
Zhang, Z.W.; Chen, J.; Yang, Q.L.; Lan, K.; Yan, Z.Y.; Chen, J.Q. Eco-friendly intracellular microalgae synthesis of fluorescent CdSe QDs as a sensitive nanoprobe for determination of imatinib. Sens. Actuators B Chem., 2018, 263, 625-633.
[http://dx.doi.org/10.1016/j.snb.2018.02.169]
[15]
Ouyang, W.Z.; Sun, J. Biosynthesis of silver sulfide quantum dots in wheat endosperm cells. Mater. Lett., 2016, 164, 397-400.
[http://dx.doi.org/10.1016/j.matlet.2015.11.040]
[16]
Green, M.; Haigh, S.J.; Lewis, E.A.; Sandiford, L.; Burkitt-Gray, M.; Fleck, R.; Vizcay-Barrena, G.; Jensen, L.; Mirzai, H.; Curry, R.J.; Dailey, L.A. Erratum: the biosynthesis of infrared-emitting quantum dots in Allium fistulosum. Sci. Rep., 2016, 6, 22497.
[http://dx.doi.org/10.1038/srep22497] [PMID: 26940776]
[17]
Rao, M.D.; Pennathur, G. Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Mater. Res. Bull., 2017, 85, 64-73.
[http://dx.doi.org/10.1016/j.materresbull.2016.08.049]
[18]
Stürzenbaum, S.R.; Höckner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J.S.; Taniguchi, S.; Dailey, L.A.; Ahmad Khanbeigi, R.; Rosca, E.V.; Thanou, M.; Suhling, K.; Zayats, A.V.; Green, M. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol., 2013, 8(1), 57-60.
[http://dx.doi.org/10.1038/nnano.2012.232] [PMID: 23263722]
[19]
Talaeeshoar, F.; Delavari, H.H.; Poursalehi, R. Can earthworms biosynthesize highly luminescent quantum dots? Luminescence, 2018, 33(5), 850-854.
[http://dx.doi.org/10.1002/bio.3481] [PMID: 29687574]
[20]
Tan, L.; Wan, A.; Li, H. Synthesis of near-infrared quantum dots in cultured cancer cells. ACS Appl. Mater. Interfaces, 2014, 6(1), 18-23.
[http://dx.doi.org/10.1021/am404534v] [PMID: 24344828]
[21]
Nguyen, V.; Cai, Q.; Grimes, C.A. Towards efficient visible-light active photocatalysts: CdS/Au sensitized TiO2 nanotube arrays. J. Colloid Interface Sci., 2016, 483, 287-294.
[http://dx.doi.org/10.1016/j.jcis.2016.08.042] [PMID: 27565960]
[22]
Wang, L.; Chen, S.; Ding, Y.; Zhu, Q.; Zhang, N.; Yu, S. Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: for toxicity against brain cancer cell lines. J. Photochem. Photobiol. B, 2018, 178, 424-427.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.007] [PMID: 29207279]
[23]
Malarkodi, C.; Rajeshkumar, S.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G. Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg. Chem. Appl., 2014, 2014347167
[http://dx.doi.org/10.1155/2014/347167] [PMID: 24860280]
[24]
Shukla, M.; Kumari, S.; Shukla, S.; Shukla, R.K. Potent antibacterial activity of nano CdO synthesized via microemulsion scheme. J. Mater. Environ. Sci., 2012, 3(4), 678-685.
[25]
Kumar, S.A.; Ansary, A.A.; Ahmad, A.; Khan, M.I. Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J. Biomed. Nanotechnol., 2007, 3(2), 190-194.
[http://dx.doi.org/10.1166/jbn.2007.027]
[26]
Syed, A.; Ahmad, A. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 106, 41-47.
[http://dx.doi.org/10.1016/j.saa.2013.01.002] [PMID: 23357677]
[27]
Jacob, J.M.; Balakrishnan, R.M.; Kumar, U.B. Biosynthesis of lead selenide quantum rods in marine Aspergillus terreus. Mater. Lett., 2014, 124, 279-281.
[http://dx.doi.org/10.1016/j.matlet.2014.03.106]
[28]
Jacob, J.M.; Mohan, B.R.; Gowda, K.M.A. Insights into the optical and anti-bacterial properties of biogenic PbSe quantum rods. J. Saudi Chem. Soc., 2016, 20(4), 480-485.
[http://dx.doi.org/10.1016/j.jscs.2014.10.008]
[29]
Uddandarao, P.; Mohan, B.R. ZnS semiconductor quantum dots production by an endophytic fungus Aspergillus flavus. Mater. Sci. Eng. B-Adv., 2016, 207, 26-32.
[http://dx.doi.org/10.1016/j.mseb.2016.01.013]
[30]
Moeez, S.; Siddiqui, E.A.; Khan, S.; Ahmad, A. Size reduction of bulk alumina for mass production of fluorescent nanoalumina by fungus Humicola sp. J. Cluster Sci., 2017, 28(4), 1981-1993.
[http://dx.doi.org/10.1007/s10876-017-1195-z]
[31]
Khan, S.A.; Ahmad, A. Phase, size and shape transformation by fungal biotransformation of bulk TiO2. Chem. Eng. J., 2013, 230, 367-371.
[http://dx.doi.org/10.1016/j.cej.2013.06.091]
[32]
Silva, A.; Martinez-Gallegos, S.; Rosano-Ortega, G.; Schabes-Retchkiman, P.; Vega-Lebrun, C.; Albiter, V. Nanotoxicity for E. coli and characterization of silver quantum dots produced by biosynthesis with Eichhornia crassipes. J. Nanostr., 2017, 7(1), 1-12.
[http://dx.doi.org/10.22052/JNS.2017.01.001]
[33]
Thekkae Padil, V.V.; Černík, M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomedicine, 2013, 8, 889-898.
[http://dx.doi.org/10.2147/ijn.s40599] [PMID: 23467397]
[34]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[35]
Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27(7), 4020-4028.
[http://dx.doi.org/10.1021/la104825u] [PMID: 21401066]
[36]
Singh, A.K.; Pal, P.; Gupta, V.; Yadav, T.P.; Gupta, V.; Singh, S.P. Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using &ITEclipta alba&IT. Mater. Chem. Phys., 2018, 203, 40-48.
[http://dx.doi.org/10.1016/j.matchemphys.2017.09.049]
[37]
Zeng, Z.; Yu, D.; He, Z.; Liu, J.; Xiao, F.X.; Zhang, Y.; Wang, R.; Bhattacharyya, D.; Tan, T.T.Y. Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances. Sci. Rep., 2016, 6, 20142.
[http://dx.doi.org/10.1038/srep20142] [PMID: 26832603]
[38]
Onodera, A.; Nishiumi, F.; Kakiguchi, K.; Tanaka, A.; Tanabe, N.; Honma, A.; Yayama, K.; Yoshioka, Y.; Nakahira, K.; Yonemura, S.; Yanagihara, I.; Tsutsumi, Y.; Kawai, Y. Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size. Toxicol. Rep., 2015, 2, 574-579.
[http://dx.doi.org/10.1016/j.toxrep.2015.03.004] [PMID: 28962392]
[39]
Lutsenko, S.; Bhattacharjee, A.; Hubbard, A.L. Copper handling machinery of the brain. Metallomics, 2010, 2(9), 596-608.
[http://dx.doi.org/10.1039/c0mt00006j] [PMID: 21072351]
[40]
Scheinberg, I.H.; Sternlieb, I. Wilson disease and idiopathic copper toxicosis. Am. J. Clin. Nutr., 1996, 63(5), 842S-845S.
[http://dx.doi.org/10.1093/ajcn/63.5.842] [PMID: 8615372]
[41]
Shkinev, V.M.; Gomolitskii, V.N.; Spivakov, B.Y.; Geckeler, K.E.; Bayer, E. Determination of trace heavy metals in waters by atomic-absorption spectrometry after preconcentration by liquid-phase polymer-based retention. Talanta, 1989, 36(8), 861-863.
[http://dx.doi.org/10.1016/0039-9140(89)80168-7] [PMID: 18964820]
[42]
Ting, S.L.; Ee, S.J.; Ananthanarayanan, A.; Leong, K.C.; Chen, P. Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim. Acta, 2015, 172, 7-11.
[http://dx.doi.org/10.1016/j.electacta.2015.01.026]
[43]
Uddandarao, P.; Balakrishnan, R.M. Thermal and optical characterization of biologically synthesized ZnS nanoparticles synthesized from an endophytic fungus Aspergillus flavus: a colorimetric probe in metal detection. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 175, 200-207.
[http://dx.doi.org/10.1016/j.saa.2016.12.021] [PMID: 28040569]
[44]
Priyanka, U.; Gowda, A.K.M.; Elisha, M.G.; Teja, S.B.; Nitish, N.; Mohan, R.B. Biologically synthesized PbS nanoparticles for the detection of arsenic in water. Int. Biodeter. Biodegr., 2017, 119, 78-86.
[http://dx.doi.org/10.1016/j.ibiod.2016.10.009]
[45]
Jacob, J.M.; Sharma, S.; Balakrishnan, R.M. Exploring the fungal protein cadre in the biosynthesis of PbSe quantum dots. J. Hazard. Mater., 2017, 324(A), 54-61.
[http://dx.doi.org/10.1016/j.jhazmat.2015.12.056] [PMID: 26849922]
[46]
Cam, M.; Hisil, Y. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem., 2010, 123(3), 878-885.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.011]
[47]
Kaviya, S.; Kabila, S.; Jayasree, K.V. Room temperature biosynthesis of greatly stable fluorescent ZnO quantum dots for the selective detection of Cr3+ ions. Mater. Res. Bull., 2017, 95, 163-168.
[http://dx.doi.org/10.1016/j.materresbull.2017.07.025]
[48]
Kaviya, S. Size dependent ratiometric detection of Pb (II) ions in aqueous solution by light emitting biogenic CdS NPs. J. Lumin., 2018, 195, 209-215.
[http://dx.doi.org/10.1016/j.jlumin.2017.11.031]
[49]
Isarov, A.V.; Chrysochoos, J. Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper(II) ions. Langmuir, 1997, 13(12), 3142-3149.
[http://dx.doi.org/10.1021/la960985r]
[50]
Thermal ablation with High Intensity Focused Du, Q.-Q.; Li, Z.-Q.; Wu, S.-M. A sensitive and simple method for detecting Cu2+ in plasma using fluorescent Bacillus amylo-liquefaciens containing intracellularly biosynthesized CdSe quantum dots. Enzyme Microb. Technol., 2018, 119, 37-44.
[http://dx.doi.org/10.1016/j.enzmictec.2018.08.009] [PMID: 30243385]
[51]
Yan, Z-Y.; Du, Q-Q.; Wan, D-Y.; Lv, H.; Cao, Z.R.; Wu, S.M. Fluorescent CdSe QDs containing Bacillus licheniformis bioprobes for Copper (II) detection in water. Enzyme Microb. Technol., 2017, 107, 41-48.
[http://dx.doi.org/10.1016/j.enzmictec.2017.08.001] [PMID: 28899485]
[52]
Cui, Y-H.; Li, L-L.; Tian, L-J.; Zhou, N-Q.; Liu, D-F.; Lam, P.K.S.; Yu, H-Q. Synthesis of CdS1-XSeX quantum dots in a protozoa Tetrahymena pyriformis. Appl. Microbiol. Biotechnol., 2019, 103(2), 973-980.
[http://dx.doi.org/10.1007/s00253-018-9499-y] [PMID: 30417309]
[53]
Eisen, J.A.; Coyne, R.S.; Wu, M.; Wu, D.; Thiagarajan, M.; Wortman, J.R.; Badger, J.H.; Ren, Q.; Amedeo, P.; Jones, K.M.; Tallon, L.J.; Delcher, A.L.; Salzberg, S.L.; Silva, J.C.; Haas, B.J.; Majoros, W.H.; Farzad, M.; Carlton, J.M.; Smith, R.K. Jr.; Garg, J.; Pearlman, R.E.; Karrer, K.M.; Sun, L.; Manning, G.; Elde, N.C.; Turkewitz, A.P.; Asai, D.J.; Wilkes, D.E.; Wang, Y.; Cai, H.; Collins, K.; Stewart, B.A.; Lee, S.R.; Wilamowska, K.; Weinberg, Z.; Ruzzo, W.L.; Wloga, D.; Gaertig, J.; Frankel, J.; Tsao, C.C.; Gorovsky, M.A.; Keeling, P.J.; Waller, R.F.; Patron, N.J.; Cherry, J.M.; Stover, N.A.; Krieger, C.J.; del Toro, C.; Ryder, H.F.; Williamson, S.C.; Barbeau, R.A.; Hamilton, E.P.; Orias, E. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol., 2006, 4(9)e286
[http://dx.doi.org/10.1371/journal.pbio.0040286] [PMID: 16933976]
[54]
Lou, Y.B.; Zhao, Y.X.; Chen, J.X.; Zhu, J.J. Metal ions optical sensing by semiconductor quantum dots. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(4), 595-613.
[http://dx.doi.org/10.1039/C3TC31937G]
[55]
Nancharaiah, Y.V.; Lens, P.N.L. Selenium biomineralization for biotechnological applications. Trends Biotechnol., 2015, 33(6), 323-330.
[http://dx.doi.org/10.1016/j.tibtech.2015.03.004] [PMID: 25908504]
[56]
Herbel, M.J.; Blum, J.S.; Oremland, R.S.; Borglin, S.E. Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol. J., 2003, 20(6), 587-602.
[http://dx.doi.org/10.1080/713851163]
[57]
Pearce, C.I.; Coker, V.S.; Charnock, J.M.; Pattrick, R.A.D.; Mosselmans, J.F.W.; Law, N.; Beveridge, T.J.; Lloyd, J.R. Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology, 2008, 19(15)155603
[http://dx.doi.org/10.1088/0957-4484/19/15/155603] [PMID: 21825617]
[58]
Fellowes, J.W.; Pattrick, R.A.D.; Lloyd, J.R.; Charnock, J.M.; Coker, V.S.; Mosselmans, J.F.W.; Weng, T.C.; Pearce, C.I. Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors. Nanotechnology, 2013, 24(14)145603
[http://dx.doi.org/10.1088/0957-4484/24/14/145603] [PMID: 23508116]
[59]
Mal, J.; Nancharaiah, Y.V.; van Hullebusch, E.D.; Lens, P.N.L. Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge. Bioresour. Technol., 2016, 206, 1-8.
[http://dx.doi.org/10.1016/j.biortech.2016.01.064] [PMID: 26836844]
[60]
Mal, J.; Nancharaiah, Y.V.; Bera, S.; Maheshwari, N.; van Hullebusch, E.D.; Lens, P.N.L. Biosynthesis of CdSe nanoparticles by anaerobic granular sludge. Environ. Sci. Nano, 2017, 4(4), 824-833.
[http://dx.doi.org/10.1039/C6EN00623J]
[61]
Ayano, H.; Miyake, M.; Terasawa, K.; Kuroda, M.; Soda, S.; Sakaguchi, T.; Ike, M. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles. J. Biosci. Bioeng., 2014, 117(5), 576-581.
[http://dx.doi.org/10.1016/j.jbiosc.2013.10.010] [PMID: 24216457]
[62]
Ayano, H.; Kuroda, M.; Soda, S.; Ike, M. Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of CdSe nanoparticles. J. Biosci. Bioeng., 2015, 119(4), 440-445.
[http://dx.doi.org/10.1016/j.jbiosc.2014.09.021] [PMID: 25454693]
[63]
Gallardo, C.; Monrás, J.P.; Plaza, D.O.; Collao, B.; Saona, L.A.; Durán-Toro, V.; Venegas, F.A.; Soto, C.; Ulloa, G.; Vásquez, C.C.; Bravo, D.; Pérez-Donoso, J.M. Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria. J. Biotechnol., 2014, 187, 108-115.
[http://dx.doi.org/10.1016/j.jbiotec.2014.07.017] [PMID: 25064158]
[64]
Plaza, D.O.; Gallardo, C.; Straub, Y.D.; Bravo, D.; Pérez-Donoso, J.M. Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories. Microb. Cell Fact., 2016, 15(1), 76.
[http://dx.doi.org/10.1186/s12934-016-0477-8] [PMID: 27154202]
[65]
Ulloa, G.; Quezada, C.P.; Araneda, M.; Escobar, B.; Fuentes, E.; Álvarez, S.A.; Castro, M.; Bruna, N.; Espinoza-González, R.; Bravo, D.; Pérez-Donoso, J.M. Phosphate favors the biosynthesis of CdS quantum dots in Acidithiobacillus thiooxidans ATCC 19703 by improving metal uptake and tolerance. Front. Microbiol., 2018, 9, 234.
[http://dx.doi.org/10.3389/fmicb.2018.00234] [PMID: 29515535]
[66]
Bruna, N.; Collao, B.; Tello, A.; Caravantes, P.; Díaz-Silva, N.; Monrás, J.P.; Órdenes-Aenishanslins, N.; Flores, M.; Espinoza-Gonzalez, R.; Bravo, D.; Pérez-Donoso, J.M. Synthesis of salt-stable fluorescent nanoparticles (quantum dots) by polyextremophile halophilic bacteria. Sci. Rep., 2019, 9(1), 1953.
[http://dx.doi.org/10.1038/s41598-018-38330-8] [PMID: 30760793]
[67]
Glatstein, D.A.; Bruna, N.; Gallardo-Benavente, C.; Bravo, D.; Carro Perez, M.E.; Francisca, F.M.; Perez-Donoso, J.M. Arsenic and cadmium bioremediation by antarctic bacteria capable of biosynthesizing CdS fluorescent nanoparticles. J. Environ. Eng., 2018, 144(3)04017107
[http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0001293]
[68]
Xu, S.Z.; Luo, X.S.; Xing, Y.H.; Liu, S.; Huang, Q.Y.; Chen, W.L. Complete genome sequence of Raoultella sp. strain X13, a promising cell factory for the synthesis of CdS quantum dots. 3 Biotech, 2019, 9(4), 120.
[http://dx.doi.org/10.1007/s13205-019-1649-0] [PMID: 30854280]
[69]
Bakhshi, M.; Hosseini, M.R. Synthesis of CdS nanoparticles from cadmium sulfate solutions using the extracellular polymeric substances of B. licheniformis as stabilizing agent. Enzyme Microb. Technol., 2016, 95, 209-216.
[http://dx.doi.org/10.1016/j.enzmictec.2016.08.011] [PMID: 27866617]
[70]
Murray, A.J.; Roussel, J.; Rolley, J.; Woodhall, F.; Mikheenko, I.P.; Johnson, D.B.; Gomez-Bolivar, J.; Merroun, M.L.; Macaskie, L.E. Biosynthesis of zinc sulfide quantum dots using waste off-gas from a metal bioremediation process. Rsc Adv, 2017, 7(35), 21484-21491.
[http://dx.doi.org/10.1039/C6RA17236A]
[71]
Sandoval-Cardenas, I.; Gomez-Ramirez, M.; Rojas-Avelizapa, N.G. Use of a sulfur waste for biosynthesis of cadmium sulfide quantum clots with Fusarium oxysporum F. sp. lycopersici. Mater. Sci. Semicond. Process., 2017, 63, 33-39.
[http://dx.doi.org/10.1016/j.mssp.2017.01.017]
[72]
Nancharaiah, Y.V.; Lens, P.N.L. Ecology and biotechnology of selenium-respiring bacteria. Microbiol. Mol. Biol. Rev., 2015, 79(1), 61-80.
[http://dx.doi.org/10.1128/MMBR.00037-14] [PMID: 25631289]
[73]
Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: a review. Environ. Int., 2004, 30(7), 953-971.
[http://dx.doi.org/10.1016/j.envint.2004.02.001] [PMID: 15196844]
[74]
Reddy, P.A.K.; Reddy, P.V.L.; Kwon, E.; Kim, K.H.; Akter, T.; Kalagara, S. Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int., 2016, 91, 94-103.
[http://dx.doi.org/10.1016/j.envint.2016.02.012] [PMID: 26915711]
[75]
Bajorowicz, B.; Kobylański, M.P.; Gołąbiewska, A.; Nadolna, J.; Zaleska-Medynska, A.; Malankowska, A. Quantum dot-decorated semiconductor micro- and nanoparticles: a review of their synthesis, characterization and application in photocatalysis. Adv. Colloid Interface Sci., 2018, 256, 352-372.
[http://dx.doi.org/10.1016/j.cis.2018.02.003] [PMID: 29544654]
[76]
Jain, N.; Bhargava, A.; Panwar, J. Enhanced photocatalytic degradation of methylene blue using biologically synthesized “protein-capped” ZnO nanoparticles. Chem. Eng. J., 2014, 243, 549-555.
[http://dx.doi.org/10.1016/j.cej.2013.11.085]
[77]
Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater., 2010, 177(1-3), 70-80.
[http://dx.doi.org/10.1016/j.jhazmat.2009.12.047] [PMID: 20044207]
[78]
Jacob, J.M.; Rajan, R.; Aji, M.; Kurup, G.G.; Pugazhendhi, A. Bio-inspired ZnS quantum dots as efficient photo catalysts for the degradation of methylene blue in aqueous phase. Ceram. Int., 2019, 45(4), 4857-4862.
[http://dx.doi.org/10.1016/j.ceramint.2018.11.182]
[79]
Wang, G.L.; Xu, J.J.; Chen, H.Y. Progress in the studies of photoetectrochemical sensors. Sci. China Ser. B. Chem., 2009, 52(11), 1789-1800.
[http://dx.doi.org/10.1007/s11426-009-0271-0]
[80]
Wright, M.; Uddin, A. Organic-inorganic hybrid solar cells: a comparative review. Sol. Energy Mater. Sol. Cells, 2012, 107, 87-111.
[http://dx.doi.org/10.1016/j.solmat.2012.07.006]
[81]
Feng, Y.Y.; Ngaboyamahina, E.; Marusak, K.E.; Cao, Y.X.L.; You, L.C.; Glass, J.T.; Zauscher, S. Hybrid (Organic/Inorganic) electrodes from bacterially precipitated CdS for PEC/storage applications. J. Phys. Chem. C, 2017, 121(7), 3734-3743.
[http://dx.doi.org/10.1021/acs.jpcc.6b11387]
[82]
Yang, Z.Q.; Wang, Y.; Zhang, D. A novel signal-on photoelectrochemical sensing platform based on biosynthesis of CdS quantum dots sensitizing ZnO nanorod arrays. Sens. Actuators B Chem., 2018, 261, 515-521.
[http://dx.doi.org/10.1016/j.snb.2018.01.190]
[83]
Yan, Z-Y.; Ai, X-X.; Su, Y-L.; Liu, X-Y.; Shan, X-H.; Wu, S-M. Intracellular biosynthesis of fluorescent CdSe quantum dots in Bacillus subtilis: a strategy to construct signaling bacterial probes for visually detecting interaction between Bacillus subtilis and Staphylococcus aureus. Microsc. Microanal., 2016, 22(1), 13-21.
[http://dx.doi.org/10.1017/S1431927615015548] [PMID: 26687198]
[84]
Xiong, L-H.; Cui, R.; Zhang, Z-L.; Yu, X.; Xie, Z.; Shi, Y-B.; Pang, D-W. Uniform fluorescent nanobioprobes for pathogen detection. ACS Nano, 2014, 8(5), 5116-5124.
[http://dx.doi.org/10.1021/nn501174g] [PMID: 24779675]
[85]
Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods, 2008, 5(9), 763-775.
[http://dx.doi.org/10.1038/nmeth.1248] [PMID: 18756197]
[86]
Bao, H-F.; Hao, N.; Yang, Y-X.; Zhao, D-Y. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res., 2010, 3(7), 481-489.
[http://dx.doi.org/10.1007/s12274-010-0008-6]
[87]
Low, P.S.; Henne, W.A.; Doorneweerd, D.D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res., 2008, 41(1), 120-129.
[http://dx.doi.org/10.1021/ar7000815] [PMID: 17655275]
[88]
Bao, H.; Lu, Z.; Cui, X.; Qiao, Y.; Guo, J.; Anderson, J.M.; Li, C.M. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater., 2010, 6(9), 3534-3541.
[http://dx.doi.org/10.1016/j.actbio.2010.03.030] [PMID: 20350621]
[89]
Pawar, V.; Kumar, A.R.; Zinjarde, S.; Gosavi, S. Bioinspired inimitable cadmium telluride quantum dots for bioimaging purposes. J. Nanosci. Nanotechnol., 2013, 13(6), 3826-3831.
[http://dx.doi.org/10.1166/jnn.2013.7215] [PMID: 23862414]
[90]
Mareeswari, P.; Brijitta, J.; Harikrishna Etti, S.; Meganathan, C.; Kaliaraj, G.S. Rhizopus stolonifer mediated biosynthesis of biocompatible cadmium chalcogenide quantum dots. Enzyme Microb. Technol., 2016, 95, 225-229.
[http://dx.doi.org/10.1016/j.enzmictec.2016.08.016] [PMID: 27866619]
[91]
Stürzenbaum, S.R.; Winters, C.; Galay, M.; Morgan, A.J.; Kille, P. Metal ion trafficking in earthworms. Identification of a cadmium-specific metallothionein. J. Biol. Chem., 2001, 276(36), 34013-34018.
[http://dx.doi.org/10.1074/jbc.M103605200] [PMID: 11418603]
[92]
Stürzenbaum, S.R.; Georgiev, O.; Morgan, A.J.; Kille, P. Cadmium detoxification in earthworms: from genes to cells. Environ. Sci. Technol., 2004, 38(23), 6283-6289.
[http://dx.doi.org/10.1021/es049822c] [PMID: 15597883]
[93]
Tian, L.J.; Zhou, N.Q.; Liu, X.W.; Liu, J.H.; Zhang, X.; Huang, H.; Zhu, T.T.; Li, L.L.; Huang, Q.; Li, W.W.; Liu, Y.Z.; Yu, H.Q. A sustainable biogenic route to synthesize quantum dots with tunable fluorescence properties for live cell imaging. Biochem. Eng. J., 2017, 124, 130-137.
[http://dx.doi.org/10.1016/j.bej.2017.05.011]
[94]
Zhang, L.W.; Monteiro-Riviere, N.A. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci., 2009, 110(1), 138-155.
[http://dx.doi.org/10.1093/toxsci/kfp087] [PMID: 19414515]
[95]
Yan, Z-Y.; Qian, J.; Gu, Y-Q.; Su, Y-L.; Ai, X-X.; Wu, S-M. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells. Mater. Res. Express, 2014, 1(1)015401
[http://dx.doi.org/10.1088/2053-1591/1/1/015401]
[96]
Srivastava, P.; Kowshik, M. Fluorescent lead(IV) sulfide nanoparticles synthesized by Idiomarina sp. strain PR58-8 for bioimaging applications. Appl. Environ. Microbiol., 2017, 83(7), e03091-e03016.
[http://dx.doi.org/10.1128/AEM.03091-16] [PMID: 28115387]
[97]
Mukherjee, A.; Shim, Y.; Myong Song, J. Quantum dot as probe for disease diagnosis and monitoring. Biotechnol. J., 2016, 11(1), 31-42.
[http://dx.doi.org/10.1002/biot.201500219] [PMID: 26709963]
[98]
Bradburne, C.E.; Delehanty, J.B.; Boeneman Gemmill, K.; Mei, B.C.; Mattoussi, H.; Susumu, K.; Blanco-Canosa, J.B.; Dawson, P.E.; Medintz, I.L. Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores. Bioconjug. Chem., 2013, 24(9), 1570-1583.
[http://dx.doi.org/10.1021/bc4001917] [PMID: 23879393]
[99]
Oh, E.; Liu, R.; Nel, A.; Gemill, K.B.; Bilal, M.; Cohen, Y.; Medintz, I.L. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol., 2016, 11(5), 479-486.
[http://dx.doi.org/10.1038/nnano.2015.338] [PMID: 26925827]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy