Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

UPLC-Q-TOF/MS based Untargeted Metabolite and Lipid Analysis on Premature Ovarian Insufficiency Plasma Samples

Author(s): Yasemin Taşcı, Rahime Bedir Fındık, Meryem Kuru Pekcan, Ozan Kaplan and Mustafa Celebier*

Volume 17, Issue 4, 2021

Published on: 02 January, 2020

Page: [474 - 483] Pages: 10

DOI: 10.2174/1573412916666200102112339

Price: $65

Abstract

Background: Metabolomics is one of the main areas to understand cellular process at molecular level by analyzing metabolites. In recent years metabolomics has emerged as a key tool to understand molecular basis of diseases, to find diagnostic and prognostic biomarkers and develop new treatment opportunities and drug molecules.

Objective: In this study, untargeted metabolite and lipid analysis were performed to identify potential biomarkers on premature ovarian insufficiency plasma samples. 43 POI subject plasma samples were compared with 32 healthy subject plasma samples.

Methods: Plasma samples were pooled and extracted using chloroform:methanol:water (3:3:1 v/v/v) mixture. Agilent 6530 LC/MS Q-TOF instrument equipped with ESI source was used for analysis. A C18 column (Agilent Zorbax 1.8 μM, 50 x 2.1 mm) was used for separation of the metabolites and lipids. XCMS, an “R software” based freeware program, was used for peak picking, grouping and comparing the findings. Isotopologue Parameter Optimization (IPO) software was used to optimize XCMS parameters. The analytical methodology and data mining process were validated according to the literature.

Results: 83 metabolite peaks and 213 lipid peaks were found to be in semi-quantitatively and statistically different (fold change >1.5, p <0.05) between the POI plasma samples and control subjects.

Conclusion: According to the results, two groups were successfully separated through principal component analysis. Among the peaks, phenyl alanine, decanoyl-L-carnitine, 1-palmitoyl lysophosphatidylcholine and PC(O-16:0/2:0) were identified through auto MS/MS and matched with human metabolome database and proposed as plasma biomarker for POI and monitoring the patients in treatment period.

Keywords: Liquid chromatography mass spectrometry, ultra performance liquid chromatography, metabolomics, lipidomics, premature ovarian insufficiency, cardiovascular morbidity.

Graphical Abstract

[1]
Coulam, C.B.; Adamson, S.C.; Annegers, J.F. Incidence of premature ovarian failure. Obstet. Gynecol., 1986, 67(4), 604-606.
[PMID: 3960433]
[2]
van Kasteren, Y.M.; Schoemaker, J. Premature ovarian failure: a systematic review on therapeutic interventions to restore ovarian function and achieve pregnancy. Hum. Reprod. Update, 1999, 5(5), 483-492.
[http://dx.doi.org/10.1093/humupd/5.5.483] [PMID: 10582785]
[3]
Nelson, L.M. Clinical practice. Primary ovarian insufficiency. N. Engl. J. Med., 2009, 360(6), 606-614.
[http://dx.doi.org/10.1056/NEJMcp0808697] [PMID: 19196677.]
[4]
Beck-Peccoz, P.; Persani, L. Premature ovarian failure. Orphanet J. Rare Dis., 2006, 6, 1.
[http://dx.doi.org/10.1186/1750-1172-1-9]
[5]
Welt, C.K. Primary ovarian insufficiency: A more accurate term for premature ovarian failure. Clin. Endocrinol. (Oxf.), 2008, 68(4), 499-509.
[http://dx.doi.org/10.1111/j.1365-2265.2007.03073.x]
[6]
Alzubaidi, N.H.; Chapin, H.L.; Vanderhoof, V.H.; Calis, K.A.; Nelson, L.M. Meeting the needs of young women with secondary amenorrhea and spontaneous premature ovarian failure. Obstet. Gynecol., 2002, 99(5 Pt 1), 720-725.
[PMID: 11978278]
[7]
Beger, R.D. A review of applications of metabolomics in cancer. Metabolites, 2013, 3(3), 552-574.
[http://dx.doi.org/10.3390/metabo3030552] [PMID: 24958139]
[8]
Yang, K.; Han, X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem. Sci., 2016, 41(11), 954-969.
[http://dx.doi.org/10.1016/j.tibs.2016.08.010]
[9]
Köfeler, H.C.; Fauland, A.; Rechberger, G.N.; Trötzmüller, M. Mass spectrometry based lipidomics: An overview of technological platforms. Metabolites, 2012, 2(1), 19-38.
[http://dx.doi.org/10.3390/metabo2010019]
[10]
Hu, C.; van der Heijden, R.; Wang, M.; van der Greef, J.; Hankemeier, T.; Xu, G. Analytical strategies in lipidomics and applications in disease biomarker discovery. J Chromatogr. B. 2009, 877(26) 2836-2846..
[http://dx.doi.org/10.1016/j.jchromb.2009.01.038]
[11]
Holmes, E.; Wilson, I.D.; Nicholson, J.K. Metabolic phenotyping in health and disease. Cell, 2008, 134(5), 714-717.
[http://dx.doi.org/10.1016/j.cell.2008.08.026] [PMID: 18775301]
[12]
O’Gorman, A.; Wallace, M.; Cottell, E.; Gibney, M.J.; McAuliffe, F.M.; Wingfield, M.; Brennan, L. Metabolic profiling of human follicular fluid identifies potential biomarkers of oocyte developmental competence. Reproduction, 2013, 146(4), 389-395.
[http://dx.doi.org/10.1530/REP-13-0184] [PMID: 23886995]
[13]
Liu, L.; Yin, T.L.; Chen, Y.; Li, Y.; Yin, L.; Ding, J.; Yang, J.; Feng, H-L. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J. Steroid Biochem. Mol. Biol., 2019, 185, 142-149.
[http://dx.doi.org/10.1016/j.jsbmb.2018.08.008] [PMID: 30121347]
[14]
Omabe, M.; Elom, S.; Omabe, K.N. Emerging metabolomics biomarkers of polycystic ovarian syndrome; targeting the master metabolic disrupters for diagnosis and treatment. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(3), 221-229.
[15]
Xia, L.; Zhao, X.; Sun, Y.; Hong, Y.; Gao, Y.; Hu, S. Metabolomic profiling of human follicular fluid from patients with repeated failure of in vitro fertilization using gas chromatography/mass spectrometry. Int. J. Clin. Exp. Pathol., 2014, 7(10), 7220-7229.
[PMID: 25400819]
[16]
Jové, M.; Maté, I.; Naudí, A.; Mota-Martorell, N.; Portero-Otín, M.; De la Fuente, M.; Pamplona, R. Human aging is a metabolome-related matter of gender. J. Gerontol. A Biol. Sci. Med. Sci., 2016, 71(5), 578-585.
[http://dx.doi.org/10.1093/gerona/glv074] [PMID: 26019184]
[17]
Patti, G.J. Separation strategies for untargeted metabolomics. J. Sep. Sci., 2011, 34(24), 3460-3469.
[http://dx.doi.org/10.1002/jssc.201100532] [PMID: 21972197]
[18]
Lu, W.; Bennett, B.D.; Rabinowitz, J.D. Analytical strategies for LC-MS-based targeted metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 871(2), 236-242.
[http://dx.doi.org/10.1016/j.jchromb.2008.04.031] [PMID: 18502704]
[19]
Zhang, A.; Sun, H.; Wang, X. Serum metabolomics as a novel diagnostic approach for disease: A systematic review. Anal. Bioanal. Chem., 2012, 404(4), 1239-1245.
[http://dx.doi.org/10.1007/s00216-012-6117-1] [PMID: 22648167]
[20]
Xia, J.; Broadhurst, D.I.; Wilson, M.; Wishart, D.S. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics, 2013, 9(2), 280-299.
[http://dx.doi.org/10.1007/s11306-012-0482-9] [PMID: 23543913]
[21]
Holman, J. D.; Tabb, D. L.; Mallick, P. Employing ProteoWizard to convert raw mass spectrometry data., 2014.
[http://dx.doi.org/10.1002/0471250953.bi1324s46]
[22]
Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A web-based platform to process untargeted metabolomic data. Anal. Chem., 2012, 84(11), 5035-5039.
[http://dx.doi.org/10.1021/ac300698c] [PMID: 22533540]
[23]
Libiseller, G.; Dvorzak, M.; Kleb, U.; Gander, E.; Eisenberg, T.; Madeo, F.; Neumann, S.; Trausinger, G.; Sinner, F.; Pieber, T.; Magnes, C. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics, 2015, 16(1), 118.
[http://dx.doi.org/10.1186/s12859-015-0562-8] [PMID: 25888443]
[24]
Eliasson, M.; Rännar, S.; Madsen, R.; Donten, M.A.; Marsden-Edwards, E.; Moritz, T.; Shockcor, J.P.; Johansson, E.; Trygg, J. Strategy for optimizing LC-MS data processing in metabolomics: a design of experiments approach. Anal. Chem., 2012, 84(15), 6869-6876.
[http://dx.doi.org/10.1021/ac301482k] [PMID: 22823568]
[25]
Sysi-Aho, M.; Katajamaa, M.; Yetukuri, L.; Orešič, M. Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics, 2007, 8(1), 93.
[http://dx.doi.org/10.1186/1471-2105-8-93] [PMID: 17362505]
[26]
Verbić, T.; Dorkó, Z.; Horvai, G. Selectivity in analytical chemistry. Rev. Roum. Chim., 2013, 58(7-8), 569-575.
[27]
Weiss, N.A.; Hassett, M.J. Introductory statistics; Addison-Wesley Boston, 1999.
[28]
Dunn, W.B.; Wilson, I.D.; Nicholls, A.W.; Broadhurst, D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis, 2012, 4(18), 2249-2264.
[http://dx.doi.org/10.4155/bio.12.204] [PMID: 23046267]
[29]
Al Hafid, N.; Christodoulou, J. Phenylketonuria: a review of current and future treatments. Transl. Pediatr., 2015, 4(4), 304-317.
[PMID: 26835392]
[30]
Ormstad, H.; Verkerk, R.; Sandvik, L. Serum phenylalanine, tyrosine, and their ratio in acute ischemic stroke: on the trail of a biomarker? J. Mol. Neurosci., 2016, 58(1), 102-108.
[http://dx.doi.org/10.1007/s12031-015-0659-6] [PMID: 26423306]
[31]
Okun, J.G.; Kölker, S.; Schulze, A.; Kohlmüller, D.; Olgemöller, K.; Lindner, M.; Hoffmann, G.F.; Wanders, R.J.; Mayatepek, E. A method for quantitative acylcarnitine profiling in human skin fibroblasts using unlabelled palmitic acid: diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. Biochim. Biophys. Acta, 2002, 1584(2-3), 91-98.
[http://dx.doi.org/10.1016/S1388-1981(02)00296-2] [PMID: 12385891]
[32]
Oliveira, P.J.; Carvalho, R.A.; Portincasa, P.; Bonfrate, L.; Sardao, V.A. Fatty acid oxidation and cardiovascular risk during menopause: a mitochondrial connection? J. Lipids, 2012.2012365798
[http://dx.doi.org/10.1155/2012/365798] [PMID: 22496981]
[33]
Kalantaridou, S.N.; Naka, K.K.; Bechlioulis, A.; Makrigiannakis, A.; Michalis, L.; Chrousos, G.P. Premature ovarian failure, endothelial dysfunction and estrogen-progestogen replacement. Trends Endocrinol. Metab., 2006, 17(3), 101-109.
[http://dx.doi.org/10.1016/j.tem.2006.02.003] [PMID: 16515863]
[34]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10, S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]

© 2025 Bentham Science Publishers | Privacy Policy