Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Recent Advances in the Nano-Catalytic Knoevenagel Condensation

Author(s): Nader Ghaffari Khaligh* and Mohd Rafie Johan

Volume 17, Issue 7, 2020

Page: [828 - 842] Pages: 15

DOI: 10.2174/1570193X17666200102105440

Price: $65

Abstract

α,β-Unsaturated acids are well-known and useful reagents, and they have been applied in different fields due to their fascinating properties. The catalytic Knoevenagel condensation reaction is one of the most remarkable methods for the formation of C=C bonds. The multi-substituted alkenes can be obtained from the reaction of carbonyl and active methylene compounds in the presence of base catalysts, Brönsted catalysts, Lewis acid catalysts, or ionic liquids. In terms of providing both desirable structural diversity and compound libraries, Doebner-Knoevenagel condensation is the most efficient strategy. There is a high demand for an efficient, rapid, environment-friendly, and sustainable catalytic protocol under milder conditions for the stereoselective synthesis of Knoevenagel products, which can tolerate a wide variety of functions. Carrying out the transformations through alternative reagents, catalysts, or methods provides a valuable and broad space for selectivity. Herein, the recent advances in the synthesis of structurally diversified Knoevenagel products using nanocatalysts are reviewed.

Keywords: Active hydrogen compound, carbonyl group, Knoevenagel condensation, nano-catalysts, α, β-unsaturated compound, magnetic nanoparticles.

Graphical Abstract

[1]
Panayotov, I.M.; Tsvetanov, C.B.; Alexandrov, A.C. On some side reactions in the initiation of acrylonitrile, methacrylonitrile and methyl methacrylate anionic polymerization with anion-radicals of aromatic nitriles and ketones. Eur. Polym. J., 1975, 11, 875-879.
[http://dx.doi.org/10.1016/0014-3057(75)90092-0]
[2]
Enders, D.; Muller, S.; Demir, A.S. Enantioselective hantzsch dihydropyridine synthesis via metalated chiral alkyl acetoacetate hydra-zones1. Tetrahedron Lett., 1998, 29, 6437-6440.
[http://dx.doi.org/10.1016/S0040-4039(00)82366-7]
[3]
Tietze, L.F.; Beifuss, U. The Knoevenagel Reaction. In: Comprehensive Organic Synthesis; Trost, B.M.; Fleming, I., Eds.; Pergamon Press: Oxford, 2001; Vol. 2, pp. 341-394.
[4]
Phan, N.T.S.; Jones, C.W. Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles: An alternative to functionalized porous silica catalysts. J. Mol. Catal. Chem., 2006, 253, 123-131.
[http://dx.doi.org/10.1016/j.molcata.2006.03.019]
[5]
Gill, C.S.; Long, W.; Jones, C.W. Magnetic nanoparticle polymer brush catalysts: Alternative hybrid organic/inorganic structures to obtain high, local catalyst loadings for use in organic transformations. Catal. Lett., 2009, 131, 425-431.
[http://dx.doi.org/10.1007/s10562-009-0099-4]
[6]
Zhang, Y.; Xia, C. Magnetic hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous Knoevenagel condensation. Appl. Catal. A Gen., 2009, 366, 141-147.
[http://dx.doi.org/10.1016/j.apcata.2009.06.041]
[7]
Zhang, Y.; Zhao, Y.; Xia, C.C. Basic ionic liquids supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites: An efficient mag-netic and recyclable heterogeneous catalyst for aqueous Knoevenagel condensation. J. Mol. Catal. Chem., 2009, 306, 107-112.
[http://dx.doi.org/10.1016/j.molcata.2009.02.032]
[8]
Kumar, A.; Dewan, M.; Saxena, A.; De, A.; Mozumdar, S. Knoevenagel condensation catalyzed by chemo-selective Ni-nanoparticles in neutral medium. Catal. Commun., 2010, 11, 679-683.
[http://dx.doi.org/10.1016/j.catcom.2010.01.017]
[9]
Postole, G.; Chowdhury, B.; Karmakar, B.; Pinki, K.; Banerji, J.; Auroux, A. Knoevenagel condensation reaction over acid-base bifunc-tional nanocrystalline CexZr1−xO2 solid solutions. J. Catal., 2010, 269, 110-121.
[http://dx.doi.org/10.1016/j.jcat.2009.10.022]
[10]
Senapati, K.K.; Borgohain, C.; Phukan, P. Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for Knoevenagel reaction in aqueous medium. J. Mol. Catal. Chem., 2011, 339, 24-31.
[http://dx.doi.org/10.1016/j.molcata.2011.02.007]
[11]
Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. Engl., 2005, 44(18), 2782-2785.
[http://dx.doi.org/10.1002/anie.200462551] [PMID: 15798982]
[12]
Li, Q.; Wang, X.; Yu, Y.; Chen, Y.; Dai, L. Tailoring a magnetically separable NiFe2O4 nanoparticle catalyst for Knoevenagel condensation. Tetrahedron, 2016, 72, 8358-8363.
[http://dx.doi.org/10.1016/j.tet.2016.11.011]
[13]
Khurana, J.M.; Vij, K. Nickel nanoparticles catalyzed chemoselective Knoevenagel condensation of Meldrum’s acid and tandem enol lactonizations via cascade cyclization sequence. Tetrahedron Lett., 2011, 52, 3666-3669.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.032]
[14]
Rostami, A.; Atashkar, B.; Gholami, H. Novel magnetic nanoparticles Fe3O4-immobilized domino Knoevenagel condensation, Michael addition, and cyclization catalyst. Catal. Commun., 2013, 37, 69-74.
[http://dx.doi.org/10.1016/j.catcom.2013.03.022]
[15]
Moghaddam, F.M.; Mirjafary, Z.; Javan, M.J.; Motamen, S.; Saeidian, H. Facile synthesis of highly substituted 2-pyrone derivatives via a tandem Knoevenagel condensation/lactonization reaction of β-formyl-esters and 1,3-cyclohexadiones. Tetrahedron Lett., 2014, 55, 2908-2911.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.104]
[16]
Ying, A.; Wang, L.; Qiu, F.; Hua, H.; Yang, J. Magnetic nanoparticle supported amine: An efficient and environmental benign catalyst for versatile Knoevenagel condensation under ultrasound irradiation. C. R. Chim., 2015, 18, 223-232.
[http://dx.doi.org/10.1016/j.crci.2014.05.012]
[17]
Ng, E.P.; Lim, G.K.; Khoo, G.L.; Tan, K.H.; Ooi, B.S.; Adam, F.; Ling, T.C.; Wong, K.L. Synthesis of colloidal stable Linde Type J (LTJ) zeolite nanocrystals from rice husk silica and their catalytic performance in Knoevenagel reaction. Mater. Chem. Phys., 2015, 155, 30-35.
[http://dx.doi.org/10.1016/j.matchemphys.2015.01.061]
[18]
Gascon, J.; Aktay, U.; Hernandez-Alonso, M.D.; Klink, G.P.M.V.; Kapteijn, F. Amino-based metal-organic frameworks as stable, highly active basic catalysts. J. Catal., 2009, 261, 75-87.
[http://dx.doi.org/10.1016/j.jcat.2008.11.010]
[19]
Xamena, F.X.L.I.; Cirujano, F.G.; Corma, A. An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous Mesoporous Mater., 2012, 157, 112-117.
[http://dx.doi.org/10.1016/j.micromeso.2011.12.058]
[20]
Burgoyne, A.R.; Meijboom, R. Knoevenagel condensation reactions catalysed by metal-organic frameworks. Catal. Lett., 2013, 143, 563-571.
[http://dx.doi.org/10.1007/s10562-013-0995-5]
[21]
Li, W.; Li, G.; Liu, D. Synthesis and application of core-shell magnetic metal-organic framework composites Fe3O4/IRMOF-3. RSC Adv., 2016, 6, 94113-94118.
[http://dx.doi.org/10.1039/C6RA17824C]
[22]
Zhang, Y.; Zhang, J.; Tian, M.; Chu, G.; Quan, C. Fabrication of amino-functionalized Fe3O4@Cu3(BTC)2 for heterogeneous Knoev-enagel condensation. Chin. J. Catal., 2016, 37, 420-427.
[http://dx.doi.org/10.1016/S1872-2067(15)61013-0]
[23]
Zhang, Y.; Dai, T.; Zhang, F.; Zhang, J.; Chu, G.; Quan, C. Fe3O4@UiO-66-NH2 core-shell nanohybrid as stable heterogeneous catalyst for Knoevenagel condensation. Chin. J. Catal., 2016, 37, 2106-2113.
[http://dx.doi.org/10.1016/S1872-2067(16)62562-7]
[24]
Tuci, G.; Luconi, L.; Rossin, A.; Berretti, E.; Ba, H.; Innocenti, M.; Yakhvarov, D.; Caporali, S.; Pham-Huu, C.; Giambastiani, G. Aziri-dine-functionalized multiwalled carbon nanotubes: Robust and versatile catalysts for the oxygen reduction reaction and Knoevenagel con-densation. ACS Appl. Mater. Interfaces, 2016, 8(44), 30099-30106.
[http://dx.doi.org/10.1021/acsami.6b09033] [PMID: 27768269]
[25]
Tran, V.P.N.; Le, K.K.; Phan, N.T.S. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction. ACS Catal., 2011, 1, 120-127.
[http://dx.doi.org/10.1021/cs1000625]
[26]
Jin, R.; Bian, Z.; Li, J.; Ding, M.; Gao, L. ZIF-8 crystal coatings on a polyimide substrate and their catalytic behaviours for the Knoevenagel reaction. Dalton Trans., 2013, 42(11), 3936-3940.
[http://dx.doi.org/10.1039/c2dt32161k] [PMID: 23329325]
[27]
Cho, H.Y.; Kim, J.; Kim, S.N.; Ahn, W.S. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous Mesoporous Mater., 2013, 169, 180-184.
[http://dx.doi.org/10.1016/j.micromeso.2012.11.012]
[28]
Schejn, A.; Balan, L.; Falk, V.; Aranda, L.; Medjahdi, G.; Schneider, R. Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm, 2014, 16, 4493-4500.
[http://dx.doi.org/10.1039/C3CE42485E]
[29]
Kolmykov, O.; Chebbat, N.; Commenge, J.M.; Medjahdi, G.; Schneider, R. ZIF-8 nanoparticles as an efficient and reusable catalyst for the Knoevenagel synthesis of cyanoacrylates and 3-cyanocoumarins. Tetrahedron Lett., 2016, 57, 5885-5888.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.070]
[30]
Delgado-Gómez, F.J.; Calvino-Casilda, V.; Cerpa-Naranjo, A.; Rojas-Cervantes, M.L. Alkaline-doped multiwall carbon nanotubes as effi-cient catalysts for the Knoevenagel condensation. Mol. Catal, 2017, 443, 101-109.
[http://dx.doi.org/10.1016/j.mcat.2017.09.016]
[31]
Joharian, M.; Abedi, S.; Morsali, A. Sonochemical synthesis and structural characterization of a new nanostructured Co(II) supramolecular coordination polymer with Lewis base sites as a new catalyst for Knoevenagel condensation. Ultrason. Sonochem., 2017, 39, 897-907.
[http://dx.doi.org/10.1016/j.ultsonch.2017.06.009] [PMID: 28733021]
[32]
Şen, B.; Akdere, E.H.; Şavk, A.; Gültekin, E.; Paralı, Ö.; Göksu, H.; Şen, F. A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malo-nonitrile. Appl. Catal. B, 2018, 225, 148-153.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.067]
[33]
Maleki, R.; Koukabi, N.; Kolvari, E. Fe3O4‐Methylene diphenyl diisocyanate‐guanidine (Fe3O4-4,4′‐MDI‐Gn): A novel superparamagnetic powerful basic and recyclable nanocatalyst as an efficient heterogeneous catalyst for the Knoevenagel condensation and tandem Knoevenagel-Michael-cyclocondensation reactions. Appl. Organomet. Chem., 2018, 32e3905
[http://dx.doi.org/10.1002/aoc.3905]
[34]
de Resende Filho, J.B.M.; Pires, G.P.; de Oliveira Ferreira, J.M.G.; Teotonio, E.E.S.; Vale, J.A. Knoevenagel condensation of aldehydes and ketones with malononitrile catalyzed by amine compounds-tethered Fe3O4@SiO2 nanoparticles. Catal. Lett., 2017, 147, 167-180.
[http://dx.doi.org/10.1007/s10562-016-1916-1]
[35]
Maleki, R.; Kolvari, E.; Salehi, M.; Koukabi, N. Fe3O4-cysteamine hydrochloride magnetic nanoparticles: New, efficient and recoverable nanocatalyst for Knoevenagel condensation reaction. Appl. Organomet. Chem., 2017., 31e3795.
[http://dx.doi.org/10.1002/aoc.3795]
[36]
Gilanizadeh, M.; Zeynizadeh, B. Binary copper and iron oxides immobilized on silica-layered magnetite as a new reusable heterogeneous nanostructure catalyst for the Knoevenagel condensation in water. Res. Chem. Intermed., 2018, 44, 6053-6070.
[http://dx.doi.org/10.1007/s11164-018-3475-0]
[37]
Heidari, P.; Cheraghali, R.; Veisi, H. Betti base‐modified magnetic nanoparticles as a novel basic nanocatalyst in Knoevenagel condensa-tion and its related palladium nanocatalyst in Suzuki coupling reactions. Appl. Organomet. Chem., 2016, 30, 991-997.
[http://dx.doi.org/10.1002/aoc.3532]
[38]
Khazaei, A.; Gholami, F.; Khakyzadeh, V.; Moosavi-Zare, A.R.; Afsar, J. Magnetic core-shell titanium dioxide nanoparticles as an efficient catalyst for domino Knoevenagel-Michael-cycloconden-sation reaction of malononitrile, various aldehydes and dimedone. RSC Adv., 2015, 5, 14305-14310.
[http://dx.doi.org/10.1039/C4RA16300A]
[39]
Ying, A.; Qiu, F.; Wu, C.; Hu, H.; Yang, J. Ionic tagged amine supported on magnetic nanoparticles: Synthesis and application for versatile catalytic Knoevenagel condensation in water. RSC Adv., 2014, 4, 33175-33183.
[http://dx.doi.org/10.1039/C4RA05540C]
[40]
Kakesh, N.; Sayyahi, S.; Badri, R. Magnetic nanoparticle coated with ionic organic networks: A robust catalyst for Knoevenagel condensation. C. R. Chim., 2018, 21, 1023-1028.
[http://dx.doi.org/10.1016/j.crci.2018.09.009]
[41]
Markad, D.; Khullar, S.; Mandal, S.K. Engineering a nanoscale primary amide-functionalized 2D coordination polymer as an efficient and recyclable heterogeneous catalyst for the Knoevenagel condensation reaction. ACS Appl. Nano Mater, 2018, 1, 5226-5236.
[http://dx.doi.org/10.1021/acsanm.8b01222]
[42]
Jia, H.; Zhao, Y.; Niu, P.; Lu, N.; Fan, B.; Li, R. Amine-functionalized MgAl LDH nanosheets as efficient solid base catalysts for Knoevenagel condensation. Mol. Catal., 2018, 449, 31-37.
[http://dx.doi.org/10.1016/j.mcat.2018.02.004]
[43]
del Hierro, I.; Pérez, Y.; Fajardo, M. Silanization of iron oxide magnetic nanoparticles with ionic liquids based on amino acids and its application as heterogeneous catalysts for Knoevenagel condensation reactions. Mol. Catal, 2018, 450, 112-120.
[http://dx.doi.org/10.1016/j.mcat.2018.03.008]
[44]
Wang, H.; Wang, Y.; Guo, Y.; Ren, X-K.; Wu, L.; Liu, L.; Shi, Z.; Wang, Y. Pd nanoparticles confined within triazine-based carbon nitride NTs: An efficient catalyst for Knoevenagel condensation-reduction cascade reactions. Catal. Today, 2019, 330, 124-134.
[http://dx.doi.org/10.1016/j.cattod.2018.04.020]
[45]
Arghan, M.; Koukabi, N.; Kolvari, E. Polyvinyl amine as a modified and grafted shell for Fe3O4 nanoparticles: As a strong solid base cata-lyst for the synthesis of various dihydropyrano[2,3-c] pyrazole derivatives and the Knoevenagel condensation. J. Saudi Chem. Soc., 2019, 23, 150-161.
[http://dx.doi.org/10.1016/j.jscs.2018.05.008]
[46]
Puthiaraj, P.; Yu, K.; Baeck, S.H.; Ahn, W.S. Cascade Knoevenagel condensation-chemoselective transfer hydrogenation catalyzed by Pd nanoparticles stabilized on amine-functionalized aromatic porous polymer. Catal. Today, 2020, 352, 298-307.
[http://dx.doi.org/10.1016/j.cattod.2019.09.004]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy