Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Lysine Methyltransferases Signaling: Histones are Just the Tip of the Iceberg

Author(s): Valentina Lukinović, Alexandre G. Casanova, Gael S. Roth, Florent Chuffart and Nicolas Reynoird*

Volume 21, Issue 7, 2020

Page: [655 - 674] Pages: 20

DOI: 10.2174/1871527319666200102101608

Price: $65

Abstract

Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression.

Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7β-strandcontaining human lysine methyltransferases.

Recent evidence suggests that what has been observed so far regarding lysine methylation’s implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the “methylome network” raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.

Keywords: Lysine methylation, protein lysine methyltransferases, KMT, cancer, histone, signalling.

Graphical Abstract

[1]
Green, K.D.; Garneau-Tsodikova, S. 5.15 Posttranslational Modification of Proteins, 1st ed; Elsevier: Amsterdam, 2010.
[2]
Wu, Z.; Connolly, J.; Biggar, K.K. Beyond histones - the expanding roles of protein lysine methylation. FEBS J., 2017, 284(17), 2732-2744.
[http://dx.doi.org/10.1111/febs.14056] [PMID: 28294537]
[3]
Seo, J.; Lee, K-J. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J. Biochem. Mol. Biol., 2004, 37(1), 35-44.
[PMID: 14761301]
[4]
Singh, V.; Ram, M.; Kumar, R.; Prasad, R.; Roy, B.K.; Singh, K.K. Phosphorylation: Implications in Cancer. Protein J., 2017, 36(1), 1-6.
[http://dx.doi.org/10.1007/s10930-017-9696-z] [PMID: 28108801]
[5]
Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. (Review) Int. J. Mol. Med., 2017, 40(2), 271-280.
[http://dx.doi.org/10.3892/ijmm.2017.3036] [PMID: 28656226]
[6]
Murn, J.; Shi, Y. The winding path of protein methylation research: milestones and new frontiers. Nat. Rev. Mol. Cell Biol., 2017, 18(8), 517-527.
[http://dx.doi.org/10.1038/nrm.2017.35] [PMID: 28512349]
[7]
Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet., 2016, 17(8), 487-500.
[http://dx.doi.org/10.1038/nrg.2016.59] [PMID: 27346641]
[8]
Lee, J-S.; Smith, E.; Shilatifard, A. The language of histone crosstalk. Cell, 2010, 142(5), 682-685.
[http://dx.doi.org/10.1016/j.cell.2010.08.011] [PMID: 20813257]
[9]
Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature, 2000, 403(6765), 41-45.
[http://dx.doi.org/10.1038/47412] [PMID: 10638745]
[10]
Chen, Y.; Zhu, W-G. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage. Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(7), 603-616.
[http://dx.doi.org/10.1093/abbs/gmw050] [PMID: 27217472]
[11]
Petrossian, T.C.; Clarke, S.G. Uncovering the human methyltransferasome. Mol. Cell. Proteomics, 2011, 10(1)000976
[http://dx.doi.org/10.1074/mcp.M110.000976] [PMID: 20930037]
[12]
Herz, H-M.; Garruss, A.; Shilatifard, A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem. Sci., 2013, 38(12), 621-639.
[http://dx.doi.org/10.1016/j.tibs.2013.09.004] [PMID: 24148750]
[13]
Carlson, S.M.; Gozani, O. Nonhistone Lysine Methylation in the Regulation of Cancer Pathways. Cold Spring Harb. Perspect. Med., 2016, 6(11), 16.
[http://dx.doi.org/10.1101/cshperspect.a026435] [PMID: 27580749]
[14]
Biggar, K.K.; Li, S.S-C. Non-histone protein methylation as a regulator of cellular signalling and function. Nat. Rev. Mol. Cell Biol., 2015, 16(1), 5-17.
[http://dx.doi.org/10.1038/nrm3915] [PMID: 25491103]
[15]
Hamamoto, R.; Saloura, V.; Nakamura, Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat. Rev. Cancer, 2015, 15(2), 110-124.
[http://dx.doi.org/10.1038/nrc3884] [PMID: 25614009]
[16]
Biggar, K.K.; Ruiz-Blanco, Y.B.; Charih, F.; Fang, Q.; Connolly, J.; Frensemier, K.; Adhikary, H.; Li, S.S.C.; Green, J.R. MethylSight: Taking a Wider View of Lysine Methylation through Computer-Aided Discovery to Provide Insight into the Human Methyl-Lysine Proteome. Biochemistry, 2019.
[http://dx.doi.org/10.1101/274688]
[17]
Lanouette, S.; Mongeon, V.; Figeys, D.; Couture, J-F. The functional diversity of protein lysine methylation. Mol. Syst. Biol., 2014, 10(4), 724-724.
[http://dx.doi.org/10.1002/msb.134974] [PMID: 24714364]
[18]
Copeland, R.A.; Solomon, M.E.; Richon, V.M. Protein methyltransferases as a target class for drug discovery. Nat. Rev. Drug Discov., 2009, 8(9), 724-732.
[http://dx.doi.org/10.1038/nrd2974] [PMID: 19721445]
[19]
Morera, L.; Lübbert, M.; Jung, M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin. Epigenetics, 2016, 8(57), 57.
[http://dx.doi.org/10.1186/s13148-016-0223-4] [PMID: 27222667]
[20]
Hamamoto, R.; Nakamura, Y. Dysregulation of protein methyltransferases in human cancer: An emerging target class for anticancer therapy. Cancer Sci., 2016, 107(4), 377-384.
[http://dx.doi.org/10.1111/cas.12884] [PMID: 26751963]
[21]
Dimitrova, E.; Turberfield, A.H.; Klose, R.J. Histone demethylases in chromatin biology and beyond. EMBO Rep., 2015, 16(12), 1620-1639.
[http://dx.doi.org/10.15252/embr.201541113] [PMID: 26564907]
[22]
Majello, B.; Gorini, F.; Saccà, C.D.; Amente, S. Expanding the Role of the Histone Lysine-Specific Demethylase LSD1 in Cancer. Cancers (Basel), 2019, 11(3), 15.
[http://dx.doi.org/10.3390/cancers11030324] [PMID: 30866496]
[23]
He, R.; Kidder, B.L. H3K4 demethylase KDM5B regulates global dynamics of transcription elongation and alternative splicing in embryonic stem cells. Nucleic Acids Res., 2017, 45(11), 6427-6441.
[http://dx.doi.org/10.1093/nar/gkx251] [PMID: 28402433]
[24]
Lesch, B.J.; Page, D.C. Poised chromatin in the mammalian germ line. Development, 2014, 141(19), 3619-3626.
[http://dx.doi.org/10.1242/dev.113027] [PMID: 25249456]
[25]
Rada-Iglesias, A.; Bajpai, R.; Swigut, T.; Brugmann, S.A.; Flynn, R.A.; Wysocka, J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature, 2011, 470(7333), 279-283.
[http://dx.doi.org/10.1038/nature09692] [PMID: 21160473]
[26]
Zentner, G.E.; Tesar, P.J.; Scacheri, P.C. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res., 2011, 21(8), 1273-1283.
[http://dx.doi.org/10.1101/gr.122382.111] [PMID: 21632746]
[27]
Suzuki, S.; Murakami, Y.; Takahata, S. H3K36 methylation state and associated silencing mechanisms. Transcription, 2017, 8(1), 26-31.
[http://dx.doi.org/10.1080/21541264.2016.1246076] [PMID: 27723431]
[28]
Han, D.; Huang, M.; Wang, T.; Li, Z.; Chen, Y.; Liu, C.; Lei, Z.; Chu, X. Lysine methylation of transcription factors in cancer. Cell Death Dis., 2019, 10(4), 290.
[http://dx.doi.org/10.1038/s41419-019-1524-2] [PMID: 30926778]
[29]
Sze, C.C.; Cao, K.; Collings, C.K.; Marshall, S.A.; Rendleman, E.J.; Ozark, P.A.; Chen, F.X.; Morgan, M.A.; Wang, L.; Shilatifard, A. Histone H3K4 methylation-dependent and -independent functions of Set1A/COMPASS in embryonic stem cell self-renewal and differentiation. Genes Dev., 2017, 31(17), 1732-1737.
[http://dx.doi.org/10.1101/gad.303768.117] [PMID: 28939616]
[30]
Fang, L.; Teng, H.; Wang, Y.; Liao, G.; Weng, L.; Li, Y.; Wang, X.; Jin, J.; Jiao, C.; Chen, L.; Peng, X.; Chen, J.; Yang, Y.; Fang, H.; Han, D.; Li, C.; Jin, X.; Zhang, S.; Liu, Z.; Liu, M.; Wei, Q.; Liao, L.; Ge, X.; Zhao, B.; Zhou, D.; Qin, H-L.; Zhou, J.; Wang, P. SET1A-Mediated Mono-Methylation at K342 Regulates YAP Activation by Blocking Its Nuclear Export and Promotes Tumorigenesis. Cancer Cell, 2018, 34(1), 103-118.e9.
[http://dx.doi.org/10.1016/j.ccell.2018.06.002] [PMID: 30008322]
[31]
Tsusaka, T.; Kikuchi, M.; Shimazu, T.; Suzuki, T.; Sohtome, Y.; Akakabe, M.; Sodeoka, M.; Dohmae, N.; Umehara, T.; Shinkai, Y. Tri-methylation of ATF7IP by G9a/GLP recruits the chromodomain protein MPP8. Epigenetics Chromatin, 2018, 11(1), 56.
[http://dx.doi.org/10.1186/s13072-018-0231-z] [PMID: 30286792]
[32]
Ferry, L.; Fournier, A.; Tsusaka, T.; Adelmant, G.; Shimazu, T.; Matano, S.; Kirsh, O.; Amouroux, R.; Dohmae, N.; Suzuki, T.; Filion, G.J.; Deng, W.; de Dieuleveult, M.; Fritsch, L.; Kudithipudi, S.; Jeltsch, A.; Leonhardt, H.; Hajkova, P.; Marto, J.A.; Arita, K.; Shinkai, Y.; Defossez, P-A. Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation. Mol. Cell, 2017, 67(4), 550-565.e5.
[http://dx.doi.org/10.1016/j.molcel.2017.07.012] [PMID: 28803780]
[33]
Milite, C.; Feoli, A.; Viviano, M.; Rescigno, D.; Cianciulli, A.; Balzano, A.L.; Mai, A.; Castellano, S.; Sbardella, G. The emerging role of lysine methyltransferase SETD8 in human diseases. Clin. Epigenetics, 2016, 8(102), 102.
[http://dx.doi.org/10.1186/s13148-016-0268-4] [PMID: 27688818]
[34]
Brown, M.A.; Sims, R.J., III; Gottlieb, P.D.; Tucker, P.W. Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol. Cancer, 2006, 5, 26.
[http://dx.doi.org/10.1186/1476-4598-5-26] [PMID: 16805913]
[35]
Hamamoto, R.; Furukawa, Y.; Morita, M.; Iimura, Y.; Silva, F.P.; Li, M.; Yagyu, R.; Nakamura, Y. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol., 2004, 6(8), 731-740.
[http://dx.doi.org/10.1038/ncb1151] [PMID: 15235609]
[36]
Olsen, J.B.; Cao, X-J.; Han, B.; Chen, L.H.; Horvath, A.; Richardson, T.I.; Campbell, R.M.; Garcia, B.A.; Nguyen, H. Quantitative Profiling of the Activity of Protein Lysine Methyltransferase SMYD2 Using SILAC-Based Proteomics. Mol. Cell. Proteomics, 2016, 15(3), 892-905.
[http://dx.doi.org/10.1074/mcp.M115.053280] [PMID: 26750096]
[37]
Sarris, M.E.; Moulos, P.; Haroniti, A.; Giakountis, A.; Talianidis, I. Smyd3 Is a Transcriptional Potentiator of Multiple Cancer-Promoting Genes and Required for Liver and Colon Cancer Development. Cancer Cell, 2016, 29(3), 354-366.
[http://dx.doi.org/10.1016/j.ccell.2016.01.013] [PMID: 26908355]
[38]
Proserpio, V.; Fittipaldi, R.; Ryall, J.G.; Sartorelli, V.; Caretti, G. The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev., 2013, 27(11), 1299-1312.
[http://dx.doi.org/10.1101/gad.217240.113] [PMID: 23752591]
[39]
Cock-Rada, A.M.; Medjkane, S.; Janski, N.; Yousfi, N.; Perichon, M.; Chaussepied, M.; Chluba, J.; Langsley, G.; Weitzman, J.B. SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res., 2012, 72(3), 810-820.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1052] [PMID: 22194464]
[40]
Kwiatkowski, S.; Seliga, A.K.; Vertommen, D.; Terreri, M.; Ishikawa, T.; Grabowska, I.; Tiebe, M.; Teleman, A.A.; Jagielski, A.K.; Veiga-da-Cunha, M.; Drozak, J. SETD3 protein is the actin-specific histidine N-methyltransferase. eLife, 2018, 7(e37921), 42.
[PMID: 30526847]
[41]
Wilkinson, A.W.; Diep, J.; Dai, S.; Liu, S.; Ooi, Y.S.; Song, D.; Li, T-M.; Horton, J.R.; Zhang, X.; Liu, C.; Trivedi, D.V.; Ruppel, K.M.; Vilches-Moure, J.G.; Casey, K.M.; Mak, J.; Cowan, T.; Elias, J.E.; Nagamine, C.M.; Spudich, J.A.; Cheng, X.; Carette, J.E.; Gozani, O. SETD3 is an actin histidine methyltransferase that prevents primary dystocia. Nature, 2019, 565(7739), 372-376.
[http://dx.doi.org/10.1038/s41586-018-0821-8] [PMID: 30626964]
[42]
Mazur, P.K.; Reynoird, N.; Khatri, P.; Jansen, P.W.T.C.; Wilkinson, A.W.; Liu, S.; Barbash, O.; Van Aller, G.S.; Huddleston, M.; Dhanak, D.; Tummino, P.J.; Kruger, R.G.; Garcia, B.A.; Butte, A.J.; Vermeulen, M.; Sage, J.; Gozani, O. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature, 2014, 510(7504), 283-287.
[http://dx.doi.org/10.1038/nature13320] [PMID: 24847881]
[43]
Reynoird, N.; Mazur, P.K.; Stellfeld, T.; Flores, N.M.; Lofgren, S.M.; Carlson, S.M.; Brambilla, E.; Hainaut, P.; Kaznowska, E.B.; Arrowsmith, C.H.; Khatri, P.; Stresemann, C.; Gozani, O.; Sage, J. Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev., 2016, 30(7), 772-785.
[http://dx.doi.org/10.1101/gad.275529.115] [PMID: 26988419]
[44]
Yoshioka, Y.; Suzuki, T.; Matsuo, Y.; Nakakido, M.; Tsurita, G.; Simone, C.; Watanabe, T.; Dohmae, N.; Nakamura, Y.; Hamamoto, R. SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1. Oncotarget, 2016, 7(46), 75023-75037.
[http://dx.doi.org/10.18632/oncotarget.11898] [PMID: 27626683]
[45]
Guo, J.; Dai, X.; Laurent, B.; Zheng, N.; Gan, W.; Zhang, J.; Guo, A.; Yuan, M.; Liu, P.; Asara, J.M.; Toker, A.; Shi, Y.; Pandolfi, P.P.; Wei, W. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat. Cell Biol., 2019, 21(2), 226-237.
[http://dx.doi.org/10.1038/s41556-018-0261-6] [PMID: 30692625]
[46]
Nakakido, M.; Deng, Z.; Suzuki, T.; Dohmae, N.; Nakamura, Y.; Hamamoto, R. Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN. Neoplasia, 2015, 17(4), 367-373.
[http://dx.doi.org/10.1016/j.neo.2015.03.002] [PMID: 25925379]
[47]
Wang, R.; Deng, X.; Yoshioka, Y.; Vougiouklakis, T.; Park, J-H.; Suzuki, T.; Dohmae, N.; Ueda, K.; Hamamoto, R.; Nakamura, Y. Effects of SMYD2-mediated EML4-ALK methylation on the signaling pathway and growth in non-small-cell lung cancer cells. Cancer Sci., 2017, 108(6), 1203-1209.
[http://dx.doi.org/10.1111/cas.13245] [PMID: 28370702]
[48]
Gao, S.; Wang, Z.; Wang, W.; Hu, X.; Chen, P.; Li, J.; Feng, X.; Wong, J.; Du, J.X. The lysine methyltransferase SMYD2 methylates the kinase domain of type II receptor BMPR2 and stimulates bone morphogenetic protein signaling. J. Biol. Chem., 2017, 292(30), 12702-12712.
[http://dx.doi.org/10.1074/jbc.M117.776278] [PMID: 28588028]
[49]
Elkouris, M.; Kontaki, H.; Stavropoulos, A.; Antonoglou, A.; Nikolaou, K.C.; Samiotaki, M.; Szantai, E.; Saviolaki, D.; Brown, P.J.; Sideras, P.; Panayotou, G.; Talianidis, I. SET9-Mediated Regulation of TGF-β Signaling Links Protein Methylation to Pulmonary Fibrosis. Cell Rep., 2016, 15(12), 2733-2744.
[http://dx.doi.org/10.1016/j.celrep.2016.05.051] [PMID: 27292644]
[50]
Fenizia, C.; Bottino, C.; Corbetta, S.; Fittipaldi, R.; Floris, P.; Gaudenzi, G.; Carra, S.; Cotelli, F.; Vitale, G.; Caretti, G. SMYD3 promotes the epithelial-mesenchymal transition in breast cancer. Nucleic Acids Res., 2019, 47(3), 1278-1293.
[http://dx.doi.org/10.1093/nar/gky1221] [PMID: 30544196]
[51]
Kunizaki, M.; Hamamoto, R.; Silva, F.P.; Yamaguchi, K.; Nagayasu, T.; Shibuya, M.; Nakamura, Y.; Furukawa, Y. The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3. Cancer Res., 2007, 67(22), 10759-10765.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1132] [PMID: 18006819]
[52]
Yoshioka, Y.; Suzuki, T.; Matsuo, Y.; Tsurita, G.; Watanabe, T.; Dohmae, N.; Nakamura, Y.; Hamamoto, R. Protein lysine methyltransferase SMYD3 is involved in tumorigenesis through regulation of HER2 homodimerization. Cancer Med., 2017, 6(7), 1665-1672.
[http://dx.doi.org/10.1002/cam4.1099] [PMID: 28639750]
[53]
West, L.E.; Gozani, O. Regulation of p53 function by lysine methylation. Epigenomics, 2011, 3(3), 361-369.
[http://dx.doi.org/10.2217/epi.11.21] [PMID: 21826189]
[54]
West, L.E.; Roy, S.; Lachmi-Weiner, K.; Hayashi, R.; Shi, X.; Appella, E.; Kutateladze, T.G.; Gozani, O. The MBT repeats of L3MBTL1 link SET8-mediated p53 methylation at lysine 382 to target gene repression. J. Biol. Chem., 2010, 285(48), 37725-37732.
[http://dx.doi.org/10.1074/jbc.M110.139527] [PMID: 20870725]
[55]
Dhami, G.K.; Liu, H.; Galka, M.; Voss, C.; Wei, R.; Muranko, K.; Kaneko, T.; Cregan, S.P.; Li, L.; Li, S.S-C. Dynamic methylation of Numb by Set8 regulates its binding to p53 and apoptosis. Mol. Cell, 2013, 50(4), 565-576.
[http://dx.doi.org/10.1016/j.molcel.2013.04.028] [PMID: 23706821]
[56]
Huang, J.; Perez-Burgos, L.; Placek, B.J.; Sengupta, R.; Richter, M.; Dorsey, J.A.; Kubicek, S.; Opravil, S.; Jenuwein, T.; Berger, S.L. Repression of p53 activity by Smyd2-mediated methylation. Nature, 2006, 444(7119), 629-632.
[http://dx.doi.org/10.1038/nature05287] [PMID: 17108971]
[57]
Kachirskaia, I.; Shi, X.; Yamaguchi, H.; Tanoue, K.; Wen, H.; Wang, E.W.; Appella, E.; Gozani, O. Role for 53BP1 Tudor domain recognition of p53 dimethylated at lysine 382 in DNA damage signaling. J. Biol. Chem., 2008, 283(50), 34660-34666.
[http://dx.doi.org/10.1074/jbc.M806020200] [PMID: 18840612]
[58]
Huang, J.; Sengupta, R.; Espejo, A.B.; Lee, M.G.; Dorsey, J.A.; Richter, M.; Opravil, S.; Shiekhattar, R.; Bedford, M.T.; Jenuwein, T.; Berger, S.L. p53 is regulated by the lysine demethylase LSD1. Nature, 2007, 449(7158), 105-108.
[http://dx.doi.org/10.1038/nature06092] [PMID: 17805299]
[59]
Kurash, J.K.; Lei, H.; Shen, Q.; Marston, W.L.; Granda, B.W.; Fan, H.; Wall, D.; Li, E.; Gaudet, F. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol. Cell, 2008, 29(3), 392-400.
[http://dx.doi.org/10.1016/j.molcel.2007.12.025] [PMID: 18280244]
[60]
Rada, M.; Vasileva, E.; Lezina, L.; Marouco, D.; Antonov, A.V.; Macip, S.; Melino, G.; Barlev, N.A. Human EHMT2/G9a activates p53 through methylation-independent mechanism. Oncogene, 2017, 36(7), 922-932.
[http://dx.doi.org/10.1038/onc.2016.258] [PMID: 27452519]
[61]
Huang, J.; Dorsey, J.; Chuikov, S.; Pérez-Burgos, L.; Zhang, X.; Jenuwein, T.; Reinberg, D.; Berger, S.L. G9a and Glp methylate lysine 373 in the tumor suppressor p53. J. Biol. Chem., 2010, 285(13), 9636-9641.
[http://dx.doi.org/10.1074/jbc.M109.062588] [PMID: 20118233]
[62]
Saddic, L.A.; West, L.E.; Aslanian, A.; Yates, J.R., III; Rubin, S.M.; Gozani, O.; Sage, J. Methylation of the retinoblastoma tumor suppressor by SMYD2. J. Biol. Chem., 2010, 285(48), 37733-37740.
[http://dx.doi.org/10.1074/jbc.M110.137612] [PMID: 20870719]
[63]
Munro, S.; Khaire, N.; Inche, A.; Carr, S.; La Thangue, N.B. Lysine methylation regulates the pRb tumour suppressor protein. Oncogene, 2010, 29(16), 2357-2367.
[http://dx.doi.org/10.1038/onc.2009.511] [PMID: 20140018]
[64]
Cho, H-S.; Suzuki, T.; Dohmae, N.; Hayami, S.; Unoki, M.; Yoshimatsu, M.; Toyokawa, G.; Takawa, M.; Chen, T.; Kurash, J.K.; Field, H.I.; Ponder, B.A.J.; Nakamura, Y.; Hamamoto, R. Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells. Cancer Res., 2011, 71(3), 655-660.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2446] [PMID: 21115810]
[65]
He, A.; Shen, X.; Ma, Q.; Cao, J.; von Gise, A.; Zhou, P.; Wang, G.; Marquez, V.E.; Orkin, S.H.; Pu, W.T. PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev., 2012, 26(1), 37-42.
[http://dx.doi.org/10.1101/gad.173930.111] [PMID: 22215809]
[66]
Kim, E.; Kim, M.; Woo, D-H.; Shin, Y.; Shin, J.; Chang, N.; Oh, Y.T.; Kim, H.; Rheey, J.; Nakano, I.; Lee, C.; Joo, K.M.; Rich, J.N.; Nam, D-H.; Lee, J. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell, 2013, 23(6), 839-852.
[http://dx.doi.org/10.1016/j.ccr.2013.04.008] [PMID: 23684459]
[67]
Dasgupta, M.; Dermawan, J.K.T.; Willard, B.; Stark, G.R. STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proc. Natl. Acad. Sci. USA, 2015, 112(13), 3985-3990.
[http://dx.doi.org/10.1073/pnas.1503152112] [PMID: 25767098]
[68]
Yang, J.; Huang, J.; Dasgupta, M.; Sears, N.; Miyagi, M.; Wang, B.; Chance, M.R.; Chen, X.; Du, Y.; Wang, Y.; An, L.; Wang, Q.; Lu, T.; Zhang, X.; Wang, Z.; Stark, G.R. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21499-21504.
[http://dx.doi.org/10.1073/pnas.1016147107] [PMID: 21098664]
[69]
Li, L.X.; Zhou, J.X.; Calvet, J.P.; Godwin, A.K.; Jensen, R.A.; Li, X. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression. Cell Death Dis., 2018, 9(3), 326.
[http://dx.doi.org/10.1038/s41419-018-0347-x] [PMID: 29487338]
[70]
Zeng, Y.; Qiu, R.; Yang, Y.; Gao, T.; Zheng, Y.; Huang, W.; Gao, J.; Zhang, K.; Liu, R.; Wang, S.; Hou, Y.; Yu, W.; Leng, S.; Feng, D.; Liu, W.; Zhang, X.; Wang, Y. Regulation of EZH2 by SMYD2-Mediated Lysine Methylation Is Implicated in Tumorigenesis. Cell Rep., 2019, 29(6), 1482-1498.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.10.004] [PMID: 31693890]
[71]
Liu, Y.; Deng, J.; Luo, X.; Pan, Y.; Zhang, L.; Zhang, R.; Liang, H. Overexpression of SMYD3 was associated with increased STAT3 activation in gastric cancer. Med. Oncol., 2015, 32(1), 404.
[http://dx.doi.org/10.1007/s12032-014-0404-y] [PMID: 25471787]
[72]
Yang, X-D.; Huang, B.; Li, M.; Lamb, A.; Kelleher, N.L.; Chen, L-F. Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J., 2009, 28(8), 1055-1066.
[http://dx.doi.org/10.1038/emboj.2009.55] [PMID: 19262565]
[73]
Vougiouklakis, T.; Hamamoto, R.; Nakamura, Y.; Saloura, V. The NSD family of protein methyltransferases in human cancer. Epigenomics, 2015, 7(5), 863-874.
[http://dx.doi.org/10.2217/epi.15.32] [PMID: 25942451]
[74]
Lu, T.; Jackson, M.W.; Wang, B.; Yang, M.; Chance, M.R.; Miyagi, M.; Gudkov, A.V.; Stark, G.R. Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 46-51.
[http://dx.doi.org/10.1073/pnas.0912493107] [PMID: 20080798]
[75]
Levy, D.; Kuo, A.J.; Chang, Y.; Schaefer, U.; Kitson, C.; Cheung, P.; Espejo, A.; Zee, B.M.; Liu, C.L.; Tangsombatvisit, S.; Tennen, R.I.; Kuo, A.Y.; Tanjing, S.; Cheung, R.; Chua, K.F.; Utz, P.J.; Shi, X.; Prinjha, R.K.; Lee, K.; Garcia, B.A.; Bedford, M.T.; Tarakhovsky, A.; Cheng, X.; Gozani, O. SETD6 Lysine Methylation of RelA Couples GLP Activity at Chromatin to Tonic Repression of NF-KB Signaling. Nat. Immunol., 2011, 12(1), 29-36.
[http://dx.doi.org/10.1038/ni.1968] [PMID: 21131967]
[76]
Kim, Y.; Nam, H.J.; Lee, J.; Park, D.Y.; Kim, C.; Yu, Y.S.; Kim, D.; Park, S.W.; Bhin, J.; Hwang, D.; Lee, H.; Koh, G.Y.; Baek, S.H. Methylation-Dependent Regulation of HIF-1α Stability Restricts Retinal and Tumour Angiogenesis. Nat. Commun., 2016, 7(10347), 14.
[http://dx.doi.org/10.1038/ncomms10347]
[77]
Bao, L.; Chen, Y.; Lai, H-T.; Wu, S-Y.; Wang, J.E.; Hatanpaa, K.J.; Raisanen, J.M.; Fontenot, M.; Lega, B.; Chiang, C-M.; Semenza, G.L.; Wang, Y.; Luo, W. Methylation of hypoxia-inducible factor (HIF)-1α by G9a/GLP inhibits HIF-1 transcriptional activity and cell migration. Nucleic Acids Res., 2018, 46(13), 6576-6591.
[http://dx.doi.org/10.1093/nar/gky449] [PMID: 29860315]
[78]
Rathert, P.; Dhayalan, A.; Murakami, M.; Zhang, X.; Tamas, R.; Jurkowska, R.; Komatsu, Y.; Shinkai, Y.; Cheng, X.; Jeltsch, A. Protein lysine methyltransferase G9a acts on non-histone targets. Nat. Chem. Biol., 2008, 4(6), 344-346.
[http://dx.doi.org/10.1038/nchembio.88] [PMID: 18438403]
[79]
Estève, P-O.; Chin, H.G.; Benner, J.; Feehery, G.R.; Samaranayake, M.; Horwitz, G.A.; Jacobsen, S.E.; Pradhan, S. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc. Natl. Acad. Sci. USA, 2009, 106(13), 5076-5081.
[http://dx.doi.org/10.1073/pnas.0810362106] [PMID: 19282482]
[80]
Chang, Y.; Sun, L.; Kokura, K.; Horton, J.R.; Fukuda, M.; Espejo, A.; Izumi, V.; Koomen, J.M.; Bedford, M.T.; Zhang, X.; Shinkai, Y.; Fang, J.; Cheng, X. MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat. Commun., 2011, 2(533), 533.
[http://dx.doi.org/10.1038/ncomms1549] [PMID: 22086334]
[81]
Takawa, M.; Cho, H-S.; Hayami, S.; Toyokawa, G.; Kogure, M.; Yamane, Y.; Iwai, Y.; Maejima, K.; Ueda, K.; Masuda, A.; Dohmae, N.; Field, H.I.; Tsunoda, T.; Kobayashi, T.; Akasu, T.; Sugiyama, M.; Ohnuma, S.; Atomi, Y.; Ponder, B.A.J.; Nakamura, Y.; Hamamoto, R. Histone lysine methyltransferase SETD8 promotes carcinogenesis by deregulating PCNA expression. Cancer Res., 2012, 72(13), 3217-3227.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3701] [PMID: 22556262]
[82]
Shoaib, M.; Walter, D.; Gillespie, P.J.; Izard, F.; Fahrenkrog, B.; Lleres, D.; Lerdrup, M.; Johansen, J.V.; Hansen, K.; Julien, E.; Blow, J.J.; Sørensen, C.S. Histone H4K20 methylation mediated chromatin compaction threshold ensures genome integrity by limiting DNA replication licensing. Nat. Commun., 2018, 9(1), 3704.
[http://dx.doi.org/10.1038/s41467-018-06066-8] [PMID: 30209253]
[83]
Thandapani, P.; Couturier, A.M.; Yu, Z.; Li, X.; Couture, J-F.; Li, S.; Masson, J-Y.; Richard, S. Lysine methylation of FEN1 by SET7 is essential for its cellular response to replicative stress. Oncotarget, 2017, 8(39), 64918-64931.
[http://dx.doi.org/10.18632/oncotarget.18070] [PMID: 29029401]
[84]
Piao, L.; Fujioka, K.; Nakakido, M.; Hamamoto, R. Regulation of poly(ADP-Ribose) polymerase 1 functions by post-translational modifications. Front. Biosci., 2018, 23(1), 13-26.
[http://dx.doi.org/10.2741/4578] [PMID: 28930534]
[85]
Vershinin, Z.; Feldman, M.; Chen, A.; Levy, D. PAK4 Methylation by SETD6 Promotes the Activation of the Wnt/β-Catenin Pathway. J. Biol. Chem., 2016, 291(13), 6786-6795.
[http://dx.doi.org/10.1074/jbc.M115.697292] [PMID: 26841865]
[86]
Deng, X.; Hamamoto, R.; Vougiouklakis, T.; Wang, R.; Yoshioka, Y.; Suzuki, T.; Dohmae, N.; Matsuo, Y.; Park, J-H.; Nakamura, Y. Critical roles of SMYD2-mediated β-catenin methylation for nuclear translocation and activation of Wnt signaling. Oncotarget, 2017, 8(34), 55837-55847.
[http://dx.doi.org/10.18632/oncotarget.19646] [PMID: 28915556]
[87]
Batista, I.A.A.; Helguero, L.A. Biological processes and signal transduction pathways regulated by the protein methyltransferase SETD7 and their significance in cancer. Signal Transduct. Target. Ther., 2018, 3(19), 19.
[http://dx.doi.org/10.1038/s41392-018-0017-6] [PMID: 30013796]
[88]
Zhang, X.; Tanaka, K.; Yan, J.; Li, J.; Peng, D.; Jiang, Y.; Yang, Z.; Barton, M.C.; Wen, H.; Shi, X. Regulation of estrogen receptor α by histone methyltransferase SMYD2-mediated protein methylation. Proc. Natl. Acad. Sci. USA, 2013, 110(43), 17284-17289.
[http://dx.doi.org/10.1073/pnas.1307959110] [PMID: 24101509]
[89]
Zhang, X.; Peng, D.; Xi, Y.; Yuan, C.; Sagum, C.A.; Klein, B.J.; Tanaka, K.; Wen, H.; Kutateladze, T.G.; Li, W.; Bedford, M.T.; Shi, X. G9a-Mediated Methylation of ERα Links the PHF20/MOF Histone Acetyltransferase Complex to Hormonal Gene Expression. Nat. Commun., 2016, 7(10810), 12.
[http://dx.doi.org/10.1038/ncomms10810]
[90]
Zhang, X.; Huang, Y.; Shi, X. Emerging roles of lysine methylation on non-histone proteins. Cell. Mol. Life Sci., 2015, 72(22), 4257-4272.
[http://dx.doi.org/10.1007/s00018-015-2001-4] [PMID: 26227335]
[91]
Moore, K.E.; Carlson, S.M.; Camp, N.D.; Cheung, P.; James, R.G.; Chua, K.F.; Wolf-Yadlin, A.; Gozani, O. A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Mol. Cell, 2013, 50(3), 444-456.
[http://dx.doi.org/10.1016/j.molcel.2013.03.005] [PMID: 23583077]
[92]
Cao, X-J.; Arnaudo, A.M.; Garcia, B.A. Large-scale global identification of protein lysine methylation in vivo. Epigenetics, 2013, 8(5), 477-485.
[http://dx.doi.org/10.4161/epi.24547] [PMID: 23644510]
[93]
Guo, A.; Gu, H.; Zhou, J.; Mulhern, D.; Wang, Y.; Lee, K.A.; Yang, V.; Aguiar, M.; Kornhauser, J.; Jia, X.; Ren, J.; Beausoleil, S.A.; Silva, J.C.; Vemulapalli, V.; Bedford, M.T.; Comb, M.J. Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol. Cell. Proteomics, 2014, 13(1), 372-387.
[http://dx.doi.org/10.1074/mcp.O113.027870] [PMID: 24129315]
[94]
Cho, H-S.; Hayami, S.; Toyokawa, G.; Maejima, K.; Yamane, Y.; Suzuki, T.; Dohmae, N.; Kogure, M.; Kang, D.; Neal, D.E.; Ponder, B.A.J.; Yamaue, H.; Nakamura, Y.; Hamamoto, R. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia, 2012, 14(6), 476-486.
[http://dx.doi.org/10.1593/neo.12656] [PMID: 22787429]
[95]
Jakobsson, M.E.; Moen, A.; Bousset, L.; Egge-Jacobsen, W.; Kernstock, S.; Melki, R.; Falnes, P.Ø. Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation. J. Biol. Chem., 2013, 288(39), 27752-27763.
[http://dx.doi.org/10.1074/jbc.M113.483248] [PMID: 23921388]
[96]
Hamamoto, R.; Toyokawa, G.; Nakakido, M.; Ueda, K.; Nakamura, Y. SMYD2-dependent HSP90 methylation promotes cancer cell proliferation by regulating the chaperone complex formation. Cancer Lett., 2014, 351(1), 126-133.
[http://dx.doi.org/10.1016/j.canlet.2014.05.014] [PMID: 24880080]
[97]
Donlin, L.T.; Andresen, C.; Just, S.; Rudensky, E.; Pappas, C.T.; Kruger, M.; Jacobs, E.Y.; Unger, A.; Zieseniss, A.; Dobenecker, M-W.; Voelkel, T.; Chait, B.T.; Gregorio, C.C.; Rottbauer, W.; Tarakhovsky, A.; Linke, W.A. Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev., 2012, 26(2), 114-119.
[http://dx.doi.org/10.1101/gad.177758.111] [PMID: 22241783]
[98]
Fujii, T.; Tsunesumi, S.; Sagara, H.; Munakata, M.; Hisaki, Y.; Sekiya, T.; Furukawa, Y.; Sakamoto, K.; Watanabe, S. Smyd5 plays pivotal roles in both primitive and definitive hematopoiesis during zebrafish embryogenesis. Sci. Rep., 2016, 6(29157), 29157.
[http://dx.doi.org/10.1038/srep29157] [PMID: 27377701]
[99]
Tracy, C.; Warren, J.S.; Szulik, M.; Wang, L.; Garcia, J.; Makaju, A.; Russell, K.; Miller, M.; Franklin, S. The Smyd Family of Methyltransferases: Role in Cardiac and Skeletal Muscle Physiology and Pathology. Curr Opin Physiol, 2018, 1, 140-152.
[http://dx.doi.org/10.1016/j.cophys.2017.10.001] [PMID: 29435515]
[100]
Du, S.J.; Tan, X.; Zhang, J. SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat. Rec. (Hoboken), 2014, 297(9), 1650-1662.
[http://dx.doi.org/10.1002/ar.22972] [PMID: 25125178]
[101]
Warren, J.S.; Tracy, C.M.; Miller, M.R.; Makaju, A.; Szulik, M.W.; Oka, S.I.; Yuzyuk, T.N.; Cox, J.E.; Kumar, A.; Lozier, B.K.; Wang, L.; Llana, J.G.; Sabry, A.D.; Cawley, K.M.; Barton, D.W.; Han, Y.H.; Boudina, S.; Fiehn, O.; Tucker, H.O.; Zaitsev, A.V.; Franklin, S. Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc. Natl. Acad. Sci. USA, 2018, 115(33), E7871-E7880.
[http://dx.doi.org/10.1073/pnas.1800680115] [PMID: 30061404]
[102]
Faria, J.A.; Corrêa, N.C.; de Andrade, C.; de Angelis Campos, A.C.; Dos Santos Samuel de Almeida, R.; Rodrigues, T.S.; de Goes, A.M.; Gomes, D.A.; Silva, F.P. SET domain-containing Protein 4 (SETD4) is a Newly Identified Cytosolic and Nuclear Lysine Methyltransferase involved in Breast Cancer Cell Proliferation. J. Cancer Sci. Ther., 2013, 5(2), 58-65.
[PMID: 24738023]
[103]
Yoo, C.B.; Jones, P.A. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov., 2006, 5(1), 37-50.
[http://dx.doi.org/10.1038/nrd1930] [PMID: 16485345]
[104]
Gan, L.; Yang, Y.; Li, Q.; Feng, Y.; Liu, T.; Guo, W. Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomark. Res., 2018, 6(1), 10.
[http://dx.doi.org/10.1186/s40364-018-0122-2] [PMID: 29556394]
[105]
Riquelme, E.; Behrens, C.; Lin, H.Y.; Simon, G.; Papadimitrakopoulou, V.; Izzo, J.; Moran, C.; Kalhor, N.; Lee, J.J.; Minna, J.D.; Wistuba, I.I. Modulation of EZH2 Expression by MEK-ERK or PI3K-AKT Signaling in Lung Cancer Is Dictated by Different KRAS Oncogene Mutations. Cancer Res., 2016, 76(3), 675-685.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1141] [PMID: 26676756]
[106]
Wang, Y.; Hou, N.; Cheng, X.; Zhang, J.; Tan, X.; Zhang, C.; Tang, Y.; Teng, Y.; Yang, X. Ezh2 Acts as a Tumor Suppressor in Kras-driven Lung Adenocarcinoma. Int. J. Biol. Sci., 2017, 13(5), 652-659.
[http://dx.doi.org/10.7150/ijbs.19108] [PMID: 28539837]
[107]
Huang, L.; Xu, A-M. SET and MYND domain containing protein 3 in cancer. Am. J. Transl. Res., 2017, 9(1), 1-14.
[PMID: 28123630]
[108]
Min, J.; Feng, Q.; Li, Z.; Zhang, Y.; Xu, R-M. Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell, 2003, 112(5), 711-723.
[http://dx.doi.org/10.1016/S0092-8674(03)00114-4] [PMID: 12628190]
[109]
Falnes, P.O.; Jakobsson, M.E.; Davydova, E.; Ho, A.; Małecki, J. Protein lysine methylation by seven-β-strand methyltransferases. Biochem. J., 2016, 473(14), 1995-2009.
[http://dx.doi.org/10.1042/BCJ20160117] [PMID: 27407169]
[110]
Jakobsson, M.E.; Małecki, J.; Falnes, P.Ø. Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation. RNA Biol., 2018, 15(3), 314-319.
[http://dx.doi.org/10.1080/15476286.2018.1440875] [PMID: 29447067]
[111]
Hamey, J.J.; Wilkins, M.R. Methylation of Elongation Factor 1A: Where, Who, and Why? Trends Biochem. Sci., 2018, 43(3), 211-223.
[http://dx.doi.org/10.1016/j.tibs.2018.01.004] [PMID: 29398204]
[112]
Hamey, J.J.; Wienert, B.; Quinlan, K.G.R.; Wilkins, M.R. METTL21B Is a Novel Human Lysine Methyltransferase of Translation Elongation Factor 1A: Discovery by CRISPR/Cas9 Knockout. Mol. Cell. Proteomics, 2017, 16(12), 2229-2242.
[http://dx.doi.org/10.1074/mcp.M116.066308] [PMID: 28663172]
[113]
Małecki, J.; Aileni, V.K.; Ho, A.Y.Y.; Schwarz, J.; Moen, A.; Sørensen, V.; Nilges, B.S.; Jakobsson, M.E.; Leidel, S.A.; Falnes, P.Ø. The novel lysine specific methyltransferase METTL21B affects mRNA translation through inducible and dynamic methylation of Lys-165 in human eukaryotic elongation factor 1 alpha (eEF1A). Nucleic Acids Res., 2017, 45(8), 4370-4389.
[PMID: 28108655]
[114]
Hamey, J.J.; Winter, D.L.; Yagoub, D.; Overall, C.M.; Hart-Smith, G.; Wilkins, M.R. Novel N-terminal and Lysine Methyltransferases That Target Translation Elongation Factor 1A in Yeast and Human. Mol. Cell. Proteomics, 2016, 15(1), 164-176.
[http://dx.doi.org/10.1074/mcp.M115.052449] [PMID: 26545399]
[115]
Shimazu, T.; Barjau, J.; Sohtome, Y.; Sodeoka, M.; Shinkai, Y. Selenium-based S-adenosylmethionine analog reveals the mammalian seven-beta-strand methyltransferase METTL10 to be an EF1A1 lysine methyltransferase. PLoS One, 2014, 9(8)e105394
[http://dx.doi.org/10.1371/journal.pone.0105394] [PMID: 25144183]
[116]
Jakobsson, M.E.; Małecki, J.; Nilges, B.S.; Moen, A.; Leidel, S.A.; Falnes, P.Ø. Methylation of human eukaryotic elongation factor alpha (eEF1A) by a member of a novel protein lysine methyltransferase family modulates mRNA translation. Nucleic Acids Res., 2017, 45(14), 8239-8254.
[http://dx.doi.org/10.1093/nar/gkx432] [PMID: 28520920]
[117]
Jakobsson, M.E.; Małecki, J.M.; Halabelian, L.; Nilges, B.S.; Pinto, R.; Kudithipudi, S.; Munk, S.; Davydova, E.; Zuhairi, F.R.; Arrowsmith, C.H.; Jeltsch, A.; Leidel, S.A.; Olsen, J.V.; Falnes, P.Ø. The dual methyltransferase METTL13 targets N terminus and Lys55 of eEF1A and modulates codon-specific translation rates. Nat. Commun., 2018, 9(1), 3411.
[http://dx.doi.org/10.1038/s41467-018-05646-y] [PMID: 30143613]
[118]
Liu, S.; Hausmann, S.; Carlson, S.M.; Fuentes, M.E.; Francis, J.W.; Pillai, R.; Lofgren, S.M.; Hulea, L.; Tandoc, K.; Lu, J.; Li, A.; Nguyen, N.D.; Caporicci, M.; Kim, M.P.; Maitra, A.; Wang, H.; Wistuba, I.I.; Porco, J.A., Jr; Bassik, M.C.; Elias, J.E.; Song, J.; Topisirovic, I.; Van Rechem, C.; Mazur, P.K.; Gozani, O. METTL13 Methylation of eEF1A Increases Translational Output to Promote Tumorigenesis. Cell, 2019, 176(3), 491-504.e21.
[http://dx.doi.org/10.1016/j.cell.2018.11.038] [PMID: 30612740]
[119]
Davydova, E.; Ho, A.Y.Y.; Malecki, J.; Moen, A.; Enserink, J.M.; Jakobsson, M.E.; Loenarz, C.; Falnes, P.Ø. Identification and characterization of a novel evolutionarily conserved lysine-specific methyltransferase targeting eukaryotic translation elongation factor 2 (eEF2). J. Biol. Chem., 2014, 289(44), 30499-30510.
[http://dx.doi.org/10.1074/jbc.M114.601658] [PMID: 25231979]
[120]
Cloutier, P.; Lavallée-Adam, M.; Faubert, D.; Blanchette, M.; Coulombe, B. A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet., 2013, 9(1)e1003210
[http://dx.doi.org/10.1371/journal.pgen.1003210] [PMID: 23349634]
[121]
Kernstock, S.; Davydova, E.; Jakobsson, M.; Moen, A.; Pettersen, S.; Mælandsmo, G.M.; Egge-Jacobsen, W.; Falnes, P.Ø. Lysine methylation of VCP by a member of a novel human protein methyltransferase family. Nat. Commun., 2012, 3(1038), 1038.
[http://dx.doi.org/10.1038/ncomms2041] [PMID: 22948820]
[122]
Wiederstein, J.L.; Nolte, H.; Günther, S.; Piller, T.; Baraldo, M.; Kostin, S.; Bloch, W.; Schindler, N.; Sandri, M.; Blaauw, B.; Braun, T.; Hölper, S.; Krüger, M. Skeletal Muscle-Specific Methyltransferase METTL21C Trimethylates p97 and Regulates Autophagy-Associated Protein Breakdown. Cell Rep., 2018, 23(5), 1342-1356.
[http://dx.doi.org/10.1016/j.celrep.2018.03.136] [PMID: 29719249]
[123]
Wang, C.; Lazarides, E.; O’Connor, C.M.; Clarke, S. Methylation of chicken fibroblast heat shock proteins at lysyl and arginyl residues. J. Biol. Chem., 1982, 257(14), 8356-8362.
[PMID: 6806295]
[124]
Wang, C.; Arrington, J.; Ratliff, A.C.; Chen, J.; Horton, H.E.; Nie, Y.; Yue, F.; Hrycyna, C.A.; Tao, W.A.; Kuang, S. Methyltransferase-like 21c methylates and stabilizes the heat shock protein Hspa8 in type I myofibers in mice. J. Biol. Chem., 2019, 294(37), 13718-13728.
[http://dx.doi.org/10.1074/jbc.RA119.008430] [PMID: 31346037]
[125]
Cho, H-S.; Shimazu, T.; Toyokawa, G.; Daigo, Y.; Maehara, Y.; Hayami, S.; Ito, A.; Masuda, K.; Ikawa, N.; Field, H.I.; Tsuchiya, E.; Ohnuma, S.; Ponder, B.A.J.; Yoshida, M.; Nakamura, Y.; Hamamoto, R. Enhanced HSP70 lysine methylation promotes proliferation of cancer cells through activation of Aurora kinase B. Nat. Commun., 2012, 3(1072), 1072.
[http://dx.doi.org/10.1038/ncomms2074] [PMID: 22990868]
[126]
Jakobsson, M.E.; Moen, A.; Falnes, P.Ø. Correspondence: On the enzymology and significance of HSPA1 lysine methylation. Nat. Commun., 2016, 7(11464), 11464.
[http://dx.doi.org/10.1038/ncomms11464] [PMID: 27321414]
[127]
Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol., 2016, 212(4), 379-387.
[http://dx.doi.org/10.1083/jcb.201511036] [PMID: 26858267]
[128]
Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol., 2008, 18(4), 165-173.
[http://dx.doi.org/10.1016/j.tcb.2008.01.006] [PMID: 18296052]
[129]
He, S.; Owen, D.R.; Jelinsky, S.A.; Lin, L-L. Lysine Methyltransferase SETD7 (SET7/9) Regulates ROS Signaling through mitochondria and NFE2L2/ARE pathway. Sci. Rep., 2015, 5(14368), 14368.
[http://dx.doi.org/10.1038/srep14368] [PMID: 26435321]
[130]
Rhein, V.F.; Carroll, J.; He, J.; Ding, S.; Fearnley, I.M.; Walker, J.E. Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria. J. Biol. Chem., 2014, 289(35), 24640-24651.
[http://dx.doi.org/10.1074/jbc.M114.580464] [PMID: 25023281]
[131]
Małecki, J.; Ho, A.Y.Y.; Moen, A.; Dahl, H-A.; Falnes, P.Ø. Human METTL20 is a mitochondrial lysine methyltransferase that targets the β subunit of electron transfer flavoprotein (ETFβ) and modulates its activity. J. Biol. Chem., 2015, 290(1), 423-434.
[http://dx.doi.org/10.1074/jbc.M114.614115] [PMID: 25416781]
[132]
Shimazu, T.; Furuse, T.; Balan, S.; Yamada, I.; Okuno, S.; Iwanari, H.; Suzuki, T.; Hamakubo, T.; Dohmae, N.; Yoshikawa, T.; Wakana, S.; Shinkai, Y. Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions. Sci. Rep., 2018, 8(1), 1179.
[http://dx.doi.org/10.1038/s41598-018-19615-4] [PMID: 29352221]
[133]
Małecki, J.; Jakobsson, M.E.; Ho, A.Y.Y.; Moen, A.; Rustan, A.C.; Falnes, P.Ø. Uncovering human METTL12 as a mitochondrial methyltransferase that modulates citrate synthase activity through metabolite-sensitive lysine methylation. J. Biol. Chem., 2017, 292(43), 17950-17962.
[http://dx.doi.org/10.1074/jbc.M117.808451] [PMID: 28887308]
[134]
Rhein, V.F.; Carroll, J.; Ding, S.; Fearnley, I.M.; Walker, J.E. Human METTL12 is a mitochondrial methyltransferase that modifies citrate synthase. FEBS Lett., 2017, 591(12), 1641-1652.
[http://dx.doi.org/10.1002/1873-3468.12649] [PMID: 28391595]
[135]
Małecki, J.M.; Willemen, H.L.D.M.; Pinto, R.; Ho, A.Y.Y.; Moen, A.; Kjønstad, I.F.; Burgering, B.M.T.; Zwartkruis, F.; Eijkelkamp, N.; Falnes, P.Ø. Lysine methylation by the mitochondrial methyltransferase FAM173B optimizes the function of mitochondrial ATP synthase. J. Biol. Chem., 2019, 294(4), 1128-1141.
[http://dx.doi.org/10.1074/jbc.RA118.005473] [PMID: 30530489]
[136]
Małecki, J.M.; Willemen, H.L.D.M.; Pinto, R.; Ho, A.Y.Y.; Moen, A.; Eijkelkamp, N.; Falnes, P.Ø. Human FAM173A is a mitochondrial lysine-specific methyltransferase that targets adenine nucleotide translocase and affects mitochondrial respiration. J. Biol. Chem., 2019, 294(31), 11654-11664.
[http://dx.doi.org/10.1074/jbc.RA119.009045] [PMID: 31213526]
[137]
Magnani, R.; Dirk, L.M.A.; Trievel, R.C.; Houtz, R.L. Calmodulin methyltransferase is an evolutionarily conserved enzyme that trimethylates Lys-115 in calmodulin. Nat. Commun., 2010, 1(43), 43.
[http://dx.doi.org/10.1038/ncomms1044] [PMID: 20975703]
[138]
Banerjee, J.; Magnani, R.; Nair, M.; Dirk, L.M.; DeBolt, S.; Maiti, I.B.; Houtz, R.L. Calmodulin-mediated signal transduction pathways in Arabidopsis are fine-tuned by methylation. Plant Cell, 2013, 25(11), 4493-4511.
[http://dx.doi.org/10.1105/tpc.113.119115] [PMID: 24285794]
[139]
Haziza, S.; Magnani, R.; Lan, D.; Keinan, O.; Saada, A.; Hershkovitz, E.; Yanay, N.; Cohen, Y.; Nevo, Y.; Houtz, R.L.; Sheffield, V.C.; Golan, H.; Parvari, R. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function. PLoS Genet., 2015, 11(8)e1005388
[http://dx.doi.org/10.1371/journal.pgen.1005388] [PMID: 26247364]
[140]
Metzger, E.; Wang, S.; Urban, S.; Willmann, D.; Schmidt, A.; Offermann, A.; Allen, A.; Sum, M.; Obier, N.; Cottard, F.; Ulferts, S.; Preca, B-T.; Hermann, B.; Maurer, J.; Greschik, H.; Hornung, V.; Einsle, O.; Perner, S.; Imhof, A.; Jung, M.; Schüle, R. KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Nat. Struct. Mol. Biol., 2019, 26(5), 361-371.
[http://dx.doi.org/10.1038/s41594-019-0219-9] [PMID: 31061526]
[141]
Pinheiro, I.; Margueron, R.; Shukeir, N.; Eisold, M.; Fritzsch, C.; Richter, F.M.; Mittler, G.; Genoud, C.; Goyama, S.; Kurokawa, M.; Son, J.; Reinberg, D.; Lachner, M.; Jenuwein, T. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell, 2012, 150(5), 948-960.
[http://dx.doi.org/10.1016/j.cell.2012.06.048] [PMID: 22939622]
[142]
Scheer, S.; Ackloo, S.; Medina, T.S.; Schapira, M.; Li, F.; Ward, J.A.; Lewis, A.M.; Northrop, J.P.; Richardson, P.L.; Kaniskan, H.Ü.; Shen, Y.; Liu, J.; Smil, D.; McLeod, D.; Zepeda-Velazquez, C.A.; Luo, M.; Jin, J.; Barsyte-Lovejoy, D.; Huber, K.V.M.; De Carvalho, D.D.; Vedadi, M.; Zaph, C.; Brown, P.J.; Arrowsmith, C.H. A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nat. Commun., 2019, 10(1), 19.
[http://dx.doi.org/10.1038/s41467-018-07905-4] [PMID: 30604761]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy