Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Combining Antimicrobial Peptides with Nanotechnology: An Emerging Field in Theranostics

Author(s): Sk Abdul Mohid and Anirban Bhunia*

Volume 21, Issue 4, 2020

Page: [413 - 428] Pages: 16

DOI: 10.2174/1389203721666191231111634

Price: $65

conference banner
Abstract

The emergence of multidrug-resistant pathogens and their rapid adaptation against new antibiotics is a major challenge for scientists and medical professionals. Different approaches have been taken to combat this problem, which includes rationally designed potent antimicrobial peptides (AMPs) and several nanoparticles and quantum dots. AMPs are considered as a new generation of super antibiotics that hold enormous potential to fight against bacterial resistance by the rapidly killing planktonic as well as their biofilm form while keeping low toxicity profile against eukaryotic cells. Various nanoparticles and quantum dots have proved their effectiveness against a vast array of infections and diseases. Conjugation and functionalization of nanoparticles with potentially active antimicrobial peptides have added advantages that widen their applications in the field of drug discovery as well as delivery system including imaging and diagnostics. This article reviews the current progress and implementation of different nanoparticles and quantum dots conjugated antimicrobial peptides in terms of bio-stability, drug delivery, and therapeutic applications.

Keywords: Antimicrobial peptides (AMPs), nanoparticles (NPs), antimcrobial peptide-nanoparticle conjugates, diagnosis, drug delivery, bio-imaging.

Graphical Abstract

[1]
Phelps, M.; Perner, M.L.; Pitzer, V.E.; Andreasen, V.; Jensen, P.K.M.; Simonsen, L. Cholera Epidemics of the Past Offer New Insights Into an Old Enemy. J. Infect. Dis., 2018, 217(4), 641-649.
[http://dx.doi.org/10.1093/infdis/jix602] [PMID: 29165706]
[2]
Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[3]
Tan, S.Y.; Tatsumura, Y. Alexander Fleming (1881-1955): Discoverer of penicillin. Singapore Med. J., 2015, 56(7), 366-367.
[http://dx.doi.org/10.11622/smedj.2015105] [PMID: 26243971]
[4]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[5]
Livermore, D.M. The need for new antibiotics. Clin. Microbiol. Infect., 2004, 10(Suppl. 4), 1-9.
[http://dx.doi.org/10.1111/j.1465-0691.2004.1004.x] [PMID: 15522034]
[6]
da Cunha, N.B.; Cobacho, N.B.; Viana, J.F.C.; Lima, L.A.; Sampaio, K.B.O.; Dohms, S.S.M.; Ferreira, A.C.R.; de la Fuente-Núñez, C.; Costa, F.F.; Franco, O.L.; Dias, S.C. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today, 2017, 22(2), 234-248.
[http://dx.doi.org/10.1016/j.drudis.2016.10.017] [PMID: 27890668]
[7]
Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[8]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.; Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov., 2011, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[9]
Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 2011, 29(9), 464-472.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.001] [PMID: 21680034]
[10]
Haney, E.F.; Mansour, S.C.; Hancock, R.E. Antimicrobial peptides: An introduction. Methods Mol. Biol., 2017, 1548, 3-22.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_1] [PMID: 28013493]
[11]
Nuti, R.; Goud, N.S.; Saraswati, A.P.; Alvala, R.; Alvala, M. Antimicrobial peptides: A promising therapeutic strategy in tackling antimicrobial resistance. Curr. Med. Chem., 2017, 24(38), 4303-4314.
[http://dx.doi.org/10.2174/0929867324666170815102441] [PMID: 28814242]
[12]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[13]
Pirtskhalava, M.; Gabrielian, A.; Cruz, P.; Griggs, H.L.; Squires, R.B.; Hurt, D.E.; Grigolava, M.; Chubinidze, M.; Gogoladze, G.; Vishnepolsky, B.; Alekseyev, V.; Rosenthal, A.; Tartakovsky, M. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res., 2016, 44(D1), D1104-D1112.
[http://dx.doi.org/10.1093/nar/gkv1174] [PMID: 26578581]
[14]
Böttger, R.; Hoffmann, R.; Knappe, D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One, 2017, 12(6), e0178943
[http://dx.doi.org/10.1371/journal.pone.0178943] [PMID: 28575099]
[15]
Bacalum, M.; Radu, M. Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept. Int. J. Pept. Res. Ther., 2015, 21(1), 47-55.
[http://dx.doi.org/10.1007/s10989-014-9430-z]
[16]
Nordström, R.; Malmsten, M. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci., 2017, 242, 17-34.
[http://dx.doi.org/10.1016/j.cis.2017.01.005] [PMID: 28159168]
[17]
Kang, S.J.; Park, S.J.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides: therapeutic potentials. Expert Rev. Anti Infect. Ther., 2014, 12(12), 1477-1486.
[http://dx.doi.org/10.1586/14787210.2014.976613] [PMID: 25371141]
[18]
Dutta, P.; Das, S. Mammalian antimicrobial peptides: Promising therapeutic targets against infection and chronic inflammation. Curr. Top. Med. Chem., 2016, 16(1), 99-129.
[http://dx.doi.org/10.2174/1568026615666150703121819] [PMID: 26139111]
[19]
Malmsten, M. Antimicrobial peptides. Ups. J. Med. Sci., 2014, 119(2), 199-204.
[http://dx.doi.org/10.3109/03009734.2014.899278] [PMID: 24758244]
[20]
Lakshminarayanan, R.; Ye, E.; Young, D.J.; Li, Z.; Loh, X.J. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv. Healthc. Mater., 2018, 7(13), e1701400
[http://dx.doi.org/10.1002/adhm.201701400] [PMID: 29717819]
[21]
Sridhar, R.; Lakshminarayanan, R.; Madhaiyan, K.; Amutha Barathi, V.; Lim, K.H.; Ramakrishna, S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev., 2015, 44(3), 790-814.
[http://dx.doi.org/10.1039/C4CS00226A] [PMID: 25408245]
[22]
Chakraborty, A.; Boer, J.C.; Selomulya, C.; Plebanski, M. Amino acid functionalized inorganic nanoparticles as cutting-edge therapeutic and diagnostic agents. Bioconjug. Chem., 2018, 29(3), 657-671.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00455] [PMID: 28876902]
[23]
Stark, W.J.; Stoessel, P.R.; Wohlleben, W.; Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev., 2015, 44(16), 5793-5805.
[http://dx.doi.org/10.1039/C4CS00362D] [PMID: 25669838]
[24]
Laurentius, L.B.; Owens, N.A.; Park, J.; Crawford, A.C.; Porter, M.D. Advantages and limitations of nanoparticle labeling for early diagnosis of infection. Expert Rev. Mol. Diagn., 2016, 16(8), 883-895.
[http://dx.doi.org/10.1080/14737159.2016.1205489] [PMID: 27337490]
[25]
Brown, K.L.; Hancock, R.E. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol., 2006, 18(1), 24-30.
[http://dx.doi.org/10.1016/j.coi.2005.11.004] [PMID: 16337365]
[26]
Groenink, J.; Walgreen-Weterings, E.; van ’t Hof, W.; Veerman, E.C.; Nieuw Amerongen, A.V. Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. FEMS Microbiol. Lett., 1999, 179(2), 217-222.
[http://dx.doi.org/10.1111/j.1574-6968.1999.tb08730.x] [PMID: 10518718]
[27]
Harris, F.; Dennison, S.R.; Phoenix, D.A. Anionic antimicrobial peptides from eukaryotic organisms. Curr. Protein Pept. Sci., 2009, 10(6), 585-606.
[http://dx.doi.org/10.2174/138920309789630589] [PMID: 19751192]
[28]
Hotchkiss, R.D.; Dubos, R.J. Fractionation of the bactericidal agent from cultures of a soil Bacillus. J. Biol. Chem., 1940, 132, 791-792.
[29]
Dubos, R.J.; Hotchkiss, R.D. THE PRODUCTION OF BACTERICIDAL SUBSTANCES BY AEROBIC SPORULATING BACILLI. J. Exp. Med., 1941, 73(5), 629-640.
[http://dx.doi.org/10.1084/jem.73.5.629] [PMID: 19871101]
[30]
Ohtani, S.; Okada, T.; Yoshizumi, H.; Kagamiyama, H. Complete primary structures of two subunits of purothionin A, a lethal protein for brewer’s yeast from wheat flour. J. Biochem., 1977, 82(3), 753-767.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a131752] [PMID: 914810]
[31]
Hirsch, J.G. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J. Exp. Med., 1956, 103(5), 589-611.
[http://dx.doi.org/10.1084/jem.103.5.589] [PMID: 13319580]
[32]
Kiss, G.M.H. On the venomous skin secretion of the orange speckled frog Bombina variegata. Toxicon, 1962, 1(1), 33-39.
[http://dx.doi.org/10.1016/0041-0101(62)90006-5]
[33]
Groves, M.L.; Peterson, R.F.; Kiddy, C.A. Poliomorphism in the red protein isolated from milk of individual cows. Nature, 1965, 207(5000), 1007-1008.
[http://dx.doi.org/10.1038/2071007a0] [PMID: 5886923]
[34]
Steiner, H.; Hultmark, D.; Engström, A.; Bennich, H.; Boman, H.G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981, 292(5820), 246-248.
[http://dx.doi.org/10.1038/292246a0] [PMID: 7019715]
[35]
Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5449-5453.
[http://dx.doi.org/10.1073/pnas.84.15.5449] [PMID: 3299384]
[36]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[37]
Sohlenkamp, C.; Geiger, O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol. Rev., 2016, 40(1), 133-159.
[http://dx.doi.org/10.1093/femsre/fuv008] [PMID: 25862689]
[38]
Wang, G. Antimicrobial peptides: Discovery, design, and novel therapeutic strategies; CABI Publishing, 2010, p. 230.
[http://dx.doi.org/10.1079/9781845936570.0000]
[39]
Khamis, A.M.; Essack, M.; Gao, X.; Bajic, V.B. Distinct profiling of antimicrobial peptide families. Bioinformatics, 2015, 31(6), 849-856.
[http://dx.doi.org/10.1093/bioinformatics/btu738] [PMID: 25388148]
[40]
Bechinger, B.; Gorr, S.U. Antimicrobial Peptides: Mechanisms of Action and Resistance. J. Dent. Res., 2017, 96(3), 254-260.
[http://dx.doi.org/10.1177/0022034516679973] [PMID: 27872334]
[41]
Lee, T.H.; Hall, K.N.; Aguilar, M.I. Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr. Top. Med. Chem., 2016, 16(1), 25-39.
[http://dx.doi.org/10.2174/1568026615666150703121700] [PMID: 26139112]
[42]
Kosikowska, P.; Lesner, A. Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003-2015). Expert Opin. Ther. Pat., 2016, 26(6), 689-702.
[http://dx.doi.org/10.1080/13543776.2016.1176149] [PMID: 27063450]
[43]
Rivas-Santiago, B.; Rivas Santiago, C.E.; Castañeda-Delgado, J.E.; León-Contreras, J.C.; Hancock, R.E.; Hernandez-Pando, R. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents, 2013, 41(2), 143-148.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.09.015] [PMID: 23141114]
[44]
Myhrman, E.; Håkansson, J.; Lindgren, K.; Björn, C.; Sjöstrand, V.; Mahlapuu, M. The novel antimicrobial peptide PXL150 in the local treatment of skin and soft tissue infections. Appl. Microbiol. Biotechnol., 2013, 97(7), 3085-3096.
[http://dx.doi.org/10.1007/s00253-012-4439-8] [PMID: 23053090]
[45]
Savini, F.; Luca, V.; Bocedi, A.; Massoud, R.; Park, Y.; Mangoni, M.L.; Stella, L. Cell-density dependence of host-defense peptide activity and selectivity in the presence of host cells. ACS Chem. Biol., 2017, 12(1), 52-56.
[http://dx.doi.org/10.1021/acschembio.6b00910] [PMID: 27935673]
[46]
Datta, A.; Yadav, V.; Ghosh, A.; Choi, J.; Bhattacharyya, D.; Kar, R.K.; Ilyas, H.; Dutta, A.; An, E.; Mukhopadhyay, J.; Lee, D.; Sanyal, K.; Ramamoorthy, A.; Bhunia, A. Mode of action of a designed antimicrobial peptide: High Potency against Cryptococcus neoformans. Biophys. J., 2016, 111(8), 1724-1737.
[http://dx.doi.org/10.1016/j.bpj.2016.08.032] [PMID: 27760359]
[47]
Björn, C.; Noppa, L.; Näslund Salomonsson, E.; Johansson, A.L.; Nilsson, E.; Mahlapuu, M.; Håkansson, J. Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds. Int. J. Antimicrob. Agents, 2015, 45(5), 519-524.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.12.015] [PMID: 25649371]
[48]
Zelezetsky, I.; Tossi, A. Alpha-helical antimicrobial peptides--using a sequence template to guide structure-activity relationship studies. Biochim. Biophys. Acta, 2006, 1758(9), 1436-1449.
[http://dx.doi.org/10.1016/j.bbamem.2006.03.021] [PMID: 16678118]
[49]
Falagas, M.E.; Kasiakou, S.K. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit. Care, 2006, 10(1), R27.
[http://dx.doi.org/10.1186/cc3995] [PMID: 16507149]
[50]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[http://dx.doi.org/10.1016/j.drudis.2009.10.009] [PMID: 19879957]
[51]
Malmsten, M.; Kasetty, G.; Pasupuleti, M.; Alenfall, J.; Schmidtchen, A. Highly selective end-tagged antimicrobial peptides derived from PRELP. PLoS One, 2011, 6(1), e16400
[http://dx.doi.org/10.1371/journal.pone.0016400] [PMID: 21298015]
[52]
Brinckerhoff, L.H.; Kalashnikov, V.V.; Thompson, L.W.; Yamshchikov, G.V.; Pierce, R.A.; Galavotti, H.S.; Engelhard, V.H.; Slingluff, C.L., Jr Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1(27-35) peptide: implications for peptide vaccines. Int. J. Cancer, 1999, 83(3), 326-334.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19991029)83:3<326::AID-IJC7>3.0.CO;2-X] [PMID: 10495424]
[53]
Rink, R.; Arkema-Meter, A.; Baudoin, I.; Post, E.; Kuipers, A.; Nelemans, S.A.; Akanbi, M.H.; Moll, G.N. To protect peptide pharmaceuticals against peptidases. J. Pharmacol. Toxicol. Methods, 2010, 61(2), 210-218.
[http://dx.doi.org/10.1016/j.vascn.2010.02.010] [PMID: 20176117]
[54]
Chowdhury, R.; Ilyas, H.; Ghosh, A.; Ali, H.; Ghorai, A.; Midya, A.; Jana, N.R.; Das, S.; Bhunia, A. Multivalent gold nanoparticle-peptide conjugates for targeting intracellular bacterial infections. Nanoscale, 2017, 9(37), 14074-14093.
[http://dx.doi.org/10.1039/C7NR04062H] [PMID: 28901372]
[55]
Pal, I.; Bhattacharyya, D.; Kar, R.K.; Zarena, D.; Bhunia, A.; Atreya, H.S. A peptide-nanoparticle system with improved efficacy against multidrug resistant bacteria. Sci. Rep., 2019, 9(1), 4485.
[http://dx.doi.org/10.1038/s41598-019-41005-7] [PMID: 30872680]
[56]
Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-strategies to fight multidrug resistant bacteria-“A battle of the titans". Front. Microbiol., 2018, 9, 1441.
[http://dx.doi.org/10.3389/fmicb.2018.01441] [PMID: 30013539]
[57]
Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; Lima, T.M.T.; Delbem, A.C.B.; Monteiro, D.R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel), 2018, 7(2), E46
[http://dx.doi.org/10.3390/antibiotics7020046] [PMID: 29890753]
[58]
Vinzant, N.; Scholl, J.L.; Wu, C.M.; Kindle, T.; Koodali, R.; Forster, G.L. Iron oxide nanoparticle delivery of peptides to the brain: Reversal of anxiety during drug withdrawal. Front. Neurosci., 2017, 11, 608.
[http://dx.doi.org/10.3389/fnins.2017.00608] [PMID: 29163012]
[59]
Kim, I.T.; Nunnery, G.A.; Jacob, K.; Schwartz, J.; Liu, X.; Tannenbaum, R. Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles. J. Phys. Chem. C, 2010, 114(15), 6944-6951.
[http://dx.doi.org/10.1021/jp9118925]
[60]
Hartgerink, J.D.; Granja, J.R.; Milligan, R.A.; Ghadiri, M.R. Self-assembling peptide nanotubes. J. Am. Chem. Soc., 1996, 118(1), 43-50.
[http://dx.doi.org/10.1021/ja953070s]
[61]
Liu, L.; Xu, K.; Wang, H.; Tan, P.K.; Fan, W.; Venkatraman, S.S.; Li, L.; Yang, Y.Y. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol., 2009, 4(7), 457-463.
[http://dx.doi.org/10.1038/nnano.2009.153] [PMID: 19581900]
[62]
Wang, H.; Xu, K.; Liu, L.; Tan, J.P.; Chen, Y.; Li, Y.; Fan, W.; Wei, Z.; Sheng, J.; Yang, Y.Y.; Li, L. The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials, 2010, 31(10), 2874-2881.
[http://dx.doi.org/10.1016/j.biomaterials.2009.12.042] [PMID: 20044131]
[63]
Lam, S.J.; Wong, E.H.; O’Brien-Simpson, N.M.; Pantarat, N.; Blencowe, A.; Reynolds, E.C.; Qiao, G.G. Bionano interaction study on antimicrobial star-shaped peptide polymer nanoparticles. Bionano interaction study on antimicrobial star-shaped peptide polymer nanoparticles. ACS Appl. Mater. Interfaces, 2016, 8(49), 33446-33456.
[http://dx.doi.org/10.1021/acsami.6b11402] [PMID: 27960388]
[64]
Mi, G.; Shi, D.; Herchek, W.; Webster, T.J. Self-assembled arginine-rich peptides as effective antimicrobial agents. J. Biomed. Mater. Res. A, 2017, 105(4), 1046-1054.
[http://dx.doi.org/10.1002/jbm.a.35979] [PMID: 27977886]
[65]
Schneider, A.; Garlick, J.A.; Egles, C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One, 2008, 3(1), e1410
[http://dx.doi.org/10.1371/journal.pone.0001410] [PMID: 18183291]
[66]
Almaaytah, A.; Mohammed, G.K.; Abualhaijaa, A.; Al-Balas, Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des. Devel. Ther., 2017, 11, 3159-3170.
[http://dx.doi.org/10.2147/DDDT.S147450] [PMID: 29138537]
[67]
Lauster, D.; Glanz, M.; Bardua, M.; Ludwig, K.; Hellmund, M.; Hoffmann, U.; Hamann, A.; Böttcher, C.; Haag, R.; Hackenberger, C.P.R.; Herrmann, A. Multivalent peptide-nanoparticle conjugates for influenza-virus inhibition. Angew. Chem. Int. Ed. Engl., 2017, 56(21), 5931-5936.
[http://dx.doi.org/10.1002/anie.201702005] [PMID: 28444849]
[68]
Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Volceanov, A.; Teleanu, R.I. Impact of nanoparticles on brain health: An up to date overview. J. Clin. Med., 2018, 7(12), E490
[http://dx.doi.org/10.3390/jcm7120490] [PMID: 30486404]
[69]
Vignoni, M.; de Alwis Weerasekera, H.; Simpson, M.J.; Phopase, J.; Mah, T.F.; Griffith, M.; Alarcon, E.I.; Scaiano, J.C. LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control. Nanoscale, 2014, 6(11), 5725-5728.
[http://dx.doi.org/10.1039/C4NR01284D] [PMID: 24789474]
[70]
Pal, I.; Brahmkhatri, V.P.; Bera, S.; Bhattacharyya, D.; Quirishi, Y.; Bhunia, A.; Atreya, H.S. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. J. Colloid Interface Sci., 2016, 483, 385-393.
[http://dx.doi.org/10.1016/j.jcis.2016.08.043] [PMID: 27585423]
[71]
Wadhwani, P.; Heidenreich, N.; Podeyn, B.; Bürck, J.; Ulrich, A.S. Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomater. Sci., 2017, 5(4), 817-827.
[http://dx.doi.org/10.1039/C7BM00069C] [PMID: 28275774]
[72]
Casciaro, B.; d’Angelo, I.; Zhang, X.; Loffredo, M.R.; Conte, G.; Cappiello, F.; Quaglia, F.; Di, Y.P.; Ungaro, F.; Mangoni, M.L. Poly(lactide- co-glycolide) nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial Peptides against Pseudomonas aeruginosa lung infection: In vitro and in vivo studies. Biomacromolecules, 2019, 20(5), 1876-1888.
[http://dx.doi.org/10.1021/acs.biomac.8b01829] [PMID: 31013061]
[73]
Maleki, H.; Rai, A.; Pinto, S.; Evangelista, M.; Cardoso, R.M.; Paulo, C.; Carvalheiro, T.; Paiva, A.; Imani, M.; Simchi, A.; Durães, L.; Portugal, A.; Ferreira, L. High antimicrobial activity and low human cell cytotoxicity of core-shell magnetic nanoparticles functionalized with an antimicrobial peptide. ACS Appl. Mater. Interfaces, 2016, 8(18), 11366-11378.
[http://dx.doi.org/10.1021/acsami.6b03355] [PMID: 27074633]
[74]
Tan, X.W.; Lakshminarayanan, R.; Liu, S.P.; Goh, E.; Tan, D.; Beuerman, R.W.; Mehta, J.S. Dual functionalization of titanium with vascular endothelial growth factor and β-defensin analog for potential application in keratoprosthesis. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(8), 2090-2100.
[http://dx.doi.org/10.1002/jbm.b.32774] [PMID: 22821845]
[75]
Tan, X.W.; Goh, T.W.; Saraswathi, P.; Nyein, C.L.; Setiawan, M.; Riau, A.; Lakshminarayanan, R.; Liu, S.; Tan, D.; Beuerman, R.W.; Mehta, J.S. Effectiveness of antimicrobial peptide immobilization for preventing perioperative cornea implant-associated bacterial infection. Antimicrob. Agents Chemother., 2014, 58(9), 5229-5238.
[http://dx.doi.org/10.1128/AAC.02859-14] [PMID: 24957820]
[76]
Rahimi, H.; Roudbarmohammadi, S.; Delavari H, H.; Roudbary, M. Antifungal effects of indolicidin-conjugated gold nanoparticles against fluconazole-resistant strains of Candida albicans isolated from patients with burn infection. Int. J. Nanomedicine, 2019, 14, 5323-5338.
[http://dx.doi.org/10.2147/IJN.S207527] [PMID: 31409990]
[77]
Bucki, R.; Niemirowicz-Laskowska, K.; Deptuła, P.; Wilczewska, A.Z.; Misiak, P.; Durnaś, B.; Fiedoruk, K.; Piktel, E.; Mystkowska, J.; Janmey, P.A. Susceptibility of microbial cells to the modified PIP2-binding sequence of gelsolin anchored on the surface of magnetic nanoparticles. J. Nanobiotechnology, 2019, 17(1), 81.
[http://dx.doi.org/10.1186/s12951-019-0511-1] [PMID: 31286976]
[78]
Zheng, Y.; Liu, W.; Chen, Y.; Li, C.; Jiang, H.; Wang, X. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy. J. Colloid Interface Sci., 2019, 546, 1-10.
[http://dx.doi.org/10.1016/j.jcis.2019.03.052] [PMID: 30901687]
[79]
Mei, L.; Lu, Z.; Zhang, W.; Wu, Z.; Zhang, X.; Wang, Y.; Luo, Y.; Li, C.; Jia, Y. Bioconjugated nanoparticles for attachment and penetration into pathogenic bacteria. Biomaterials, 2013, 34(38), 10328-10337.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.045] [PMID: 24090838]
[80]
Torres, L.M.F.C.; Almeida, M.T.; Santos, T.L.; Marinho, L.E.S.; de Mesquita, J.P.; da Silva, L.M.; Dos Santos, W.T.P.; Martins, H.R.; Kato, K.C.; Alves, E.S.F.; Liao, L.M.; de Magalhães, M.T.Q.; de Mendonça, F.G.; Pereira, F.V.; Resende, J.M.; Bemquerer, M.P.; Rodrigues, M.A.; Verly, R.M. Antimicrobial alumina nanobiostructures of disulfide- and triazole-linked peptides: Synthesis, characterization, membrane interactions and biological activity. Colloids Surf. B Biointerfaces, 2019, 177, 94-104.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.052] [PMID: 30711763]
[81]
Niemirowicz, K.; Surel, U.; Wilczewska, A.Z.; Mystkowska, J.; Piktel, E.; Gu, X.; Namiot, Z.; Kułakowska, A.; Savage, P.B.; Bucki, R. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J. Nanobiotechnology, 2015, 13, 32.
[http://dx.doi.org/10.1186/s12951-015-0093-5] [PMID: 25929281]
[82]
Sharma, R.; Raghav, R.; Priyanka, K.; Rishi, P.; Sharma, S.; Srivastava, S.; Verma, I. Exploiting chitosan and gold nanoparticles for antimycobacterial activity of in silico identified antimicrobial motif of human neutrophil peptide-1. Sci. Rep., 2019, 9(1), 7866.
[http://dx.doi.org/10.1038/s41598-019-44256-6] [PMID: 31133658]
[83]
Palmieri, G.; Tatè, R.; Gogliettino, M.; Balestrieri, M.; Rea, I.; Terracciano, M.; Proroga, Y.T.; Capuano, F.; Anastasio, A.; De Stefano, L. Small synthetic peptides bioconjugated to hybrid gold nanoparticles destroy potentially deadly bacteria at submicromolar concentrations. Bioconjug. Chem., 2018, 29(11), 3877-3885.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00706] [PMID: 30352512]
[84]
Alghrair, Z.K.; Fernig, D.G.; Ebrahimi, B. Enhanced inhibition of influenza virus infection by peptide-noble-metal nanoparticle conjugates. Beilstein J. Nanotechnol., 2019, 10, 1038-1047.
[http://dx.doi.org/10.3762/bjnano.10.104] [PMID: 31165030]
[85]
Silva, N.C.; Silva, S.; Sarmento, B.; Pintado, M. Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis. Drug Deliv., 2015, 22(7), 885-893.
[http://dx.doi.org/10.3109/10717544.2013.858195] [PMID: 24266551]
[86]
de Alteriis, E.; Maselli, V.; Falanga, A.; Galdiero, S.; Di Lella, F.M.; Gesuele, R.; Guida, M.; Galdiero, E. Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infect. Drug Resist., 2018, 11, 915-925.
[http://dx.doi.org/10.2147/IDR.S164262] [PMID: 30013374]
[87]
Sun, T.; Zhan, B.; Zhang, W.; Qin, D.; Xia, G.; Zhang, H.; Peng, M.; Li, S.A.; Zhang, Y.; Gao, Y.; Lee, W.H. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int. J. Nanomedicine, 2018, 13, 5771-5786.
[http://dx.doi.org/10.2147/IJN.S156206] [PMID: 30310280]
[88]
Cuellar, M.; Cifuentes, J.; Perez, J.; Suarez-Arnedo, A.; Serna, J.A.; Groot, H.; Muñoz-Camargo, C.; Cruz, J.C. Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int. J. Nanomedicine, 2018, 13, 8087-8094.
[http://dx.doi.org/10.2147/IJN.S188074] [PMID: 30568447]
[89]
Vijayan, A.; James, P.P.; Nanditha, C.K.; Kumar, G.S.V. Multiple cargo deliveries of growth factors and antimicrobial peptide using biodegradable nanopolymer as a potential wound healing system. Int. J. Nanomedicine, 2019, 14, 2253-2263.
[http://dx.doi.org/10.2147/IJN.S190321] [PMID: 30992665]
[90]
Fan, D.; Yao, C.; Zhou, W.; Li, X. Ultrashort lipopeptides self-assembled with gold nanoparticles as potent antimicrobial agents. J. Nanosci. Nanotechnol., 2018, 18(12), 8124-8132.
[http://dx.doi.org/10.1166/jnn.2018.16411] [PMID: 30189929]
[91]
Wilson, D.; Materón, E.; Ibáñez-Redín, G.; Faria, R.C.; Correa, D.S.; Oliveira, O.N. Jr Erratum to “Electrical detection of pathogenic bacteria in food samples using information visualization methods with a sensor based on magnetic nanoparticles functionalized with antimicrobial peptides”. [Talanta 194 (2019) 611-618].. Talanta, 2019, 200, 562.
[http://dx.doi.org/10.1016/j.talanta.2019.03.085] [PMID: 31036223]
[92]
Tenland, E.; Pochert, A.; Krishnan, N.; Umashankar Rao, K.; Kalsum, S.; Braun, K.; Glegola-Madejska, I.; Lerm, M.; Robertson, B.D.; Lindén, M.; Godaly, G. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS One, 2019, 14(2), e0212858
[http://dx.doi.org/10.1371/journal.pone.0212858] [PMID: 30807612]
[93]
Zhou, Y.; Dai, Z. New strategies in the design of nanomedicines to oppose uptake by the mononuclear phagocyte system and enhance cancer therapeutic efficacy. Chem. Asian J., 2018, 13(22), 3333-3340.
[http://dx.doi.org/10.1002/asia.201800149] [PMID: 29441706]
[94]
Lamprecht, A.; Ubrich, N.; Yamamoto, H.; Schäfer, U.; Takeuchi, H.; Maincent, P.; Kawashima, Y.; Lehr, C.M. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J. Pharmacol. Exp. Ther., 2001, 299(2), 775-781.
[PMID: 11602694]
[95]
Wnętrzak, A.; Makyła-Juzak, K.; Chachaj-Brekiesz, A.; Lipiec, E.; Romeu, N.V.; Dynarowicz-Latka, P. Cyclosporin A distribution in cholesterol-sphingomyelin artificial membranes modeled as Langmuir monolayers. Colloids Surf. B Biointerfaces, 2018, 166, 286-294.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.031] [PMID: 29604571]
[96]
Romero, G.B.; Arntjen, A.; Keck, C.M.; Müller, R.H. Amorphous cyclosporin A nanoparticles for enhanced dermal bioavailability. Int. J. Pharm., 2016, 498(1-2), 217-224.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.019] [PMID: 26688038]
[97]
El-Shabouri, M.H. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int. J. Pharm., 2002, 249(1-2), 101-108.
[http://dx.doi.org/10.1016/S0378-5173(02)00461-1] [PMID: 12433438]
[98]
Kamarajan, P.; Hayami, T.; Matte, B.; Liu, Y.; Danciu, T.; Ramamoorthy, A.; Worden, F.; Kapila, S.; Kapila, Y.; Nisin, Z.P. Nisin Z.P. A bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS One, 2015, 10(7), e0131008
[http://dx.doi.org/10.1371/journal.pone.0131008] [PMID: 26132406]
[99]
de Abreu, L.C.; Todaro, V.; Sathler, P.C.; da Silva, L.C.; do Carmo, F.A.; Costa, C.M.; Toma, H.K.; Castro, H.C.; Rodrigues, C.R.; de Sousa, V.P.; Cabral, L.M. Development and characterization of nisin nanoparticles as potential alternative for the recurrent vaginal candidiasis treatment. AAPS PharmSciTech, 2016, 17(6), 1421-1427.
[http://dx.doi.org/10.1208/s12249-016-0477-3] [PMID: 26810491]
[100]
Wang, H.; She, Y.; Chu, C.; Liu, H.; Jiang, S.; Sun, M.; Jiang, S. Preparation, antimicrobial and release behaviors of nisin-poly (vinyl alcohol)/wheat gluten/ZrO2 nanofibrous membranes. 2015, 50
[http://dx.doi.org/10.1007/s10853-015-9059-0]
[101]
Kinik, H.; Karaduman, M. Cierny-Mader Type III chronic osteomyelitis: the results of patients treated with debridement, irrigation, vancomycin beads and systemic antibiotics. Int. Orthop., 2008, 32(4), 551-558.
[http://dx.doi.org/10.1007/s00264-007-0342-9] [PMID: 17375299]
[102]
Yousry, C.; Elkheshen, S.A.; El-Laithy, H.M.; Essam, T.; Fahmy, R.H. Studying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery. Eur. J. Pharm. Sci., 2017, 100, 142-154.
[http://dx.doi.org/10.1016/j.ejps.2017.01.013] [PMID: 28089661]
[103]
Iooss, P.; Le Ray, A.M.; Grimandi, G.; Daculsi, G.; Merle, C. A new injectable bone substitute combining poly(epsilon-caprolactone) microparticles with biphasic calcium phosphate granules. Biomaterials, 2001, 22(20), 2785-2794.
[http://dx.doi.org/10.1016/S0142-9612(01)00022-9] [PMID: 11545313]
[104]
Yang, Z.; Liu, J.; Gao, J.; Chen, S.; Huang, G. Chitosan coated vancomycin hydrochloride liposomes: Characterizations and evaluation. Int. J. Pharm., 2015, 495(1), 508-515.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.085] [PMID: 26325316]
[105]
Severino, P.; Silveira, E.F.; Loureiro, K.; Chaud, M.V.; Antonini, D.; Lancellotti, M.; Sarmento, V.H.; da Silva, C.F.; Santana, M.H.A.; Souto, E.B. Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy. Eur. J. Pharm. Sci., 2017, 106, 177-184.
[http://dx.doi.org/10.1016/j.ejps.2017.05.063] [PMID: 28576561]
[106]
Alipour, M.; Halwani, M.; Omri, A.; Suntres, Z.E. Antimicrobial effectiveness of liposomal polymyxin B against resistant Gram-negative bacterial strains. Int. J. Pharm., 2008, 355(1-2), 293-298.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.035] [PMID: 18164881]
[107]
Peng, L.H.; Huang, Y.F.; Zhang, C.Z.; Niu, J.; Chen, Y.; Chu, Y.; Jiang, Z.H.; Gao, J.Q.; Mao, Z.W. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials, 2016, 103, 137-149.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.057] [PMID: 27376562]
[108]
Liu, C.; Kou, Y.; Zhang, X.; Cheng, H.; Chen, X.; Mao, S. Strategies and industrial perspectives to improve oral absorption of biological macromolecules. Expert Opin. Drug Deliv., 2018, 15(3), 223-233.
[http://dx.doi.org/10.1080/17425247.2017.1395853] [PMID: 29111841]
[109]
Rao, Y.; Kwok, S.J.; Lombardi, J.; Turro, N.J.; Eisenthal, K.B. Label-free probe of HIV-1 TAT peptide binding to mimetic membranes. Proc. Natl. Acad. Sci. USA, 2014, 111(35), 12684-12688.
[http://dx.doi.org/10.1073/pnas.1411817111] [PMID: 25136100]
[110]
He, B.; Ma, S.; Peng, G.; He, D. TAT-modified self-assembled cationic peptide nanoparticles as an efficient antibacterial agent. Nanomedicine (Lond.), 2018, 14(2), 365-372.
[http://dx.doi.org/10.1016/j.nano.2017.11.002] [PMID: 29170111]
[111]
Bera, S.; Kar, R.K.; Mondal, S.; Pahan, K.; Bhunia, A. Structural elucidation of the cell-penetrating penetratin peptide in model membranes at the atomic level: Probing hydrophobic interactions in the blood-brain barrier. Biochemistry, 2016, 55(35), 4982-4996.
[http://dx.doi.org/10.1021/acs.biochem.6b00518] [PMID: 27532224]
[112]
Kwon, E.J.; Skalak, M.; Bertucci, A.; Braun, G.; Ricci, F.; Ruoslahti, E.; Sailor, M.J.; Bhatia, S.N. Porous silicon nanoparticle delivery of tandem peptide anti-infectives for the treatment of Pseudomonas aeruginosa lung infections. Adv. Mater., 2017, 29(35)
[http://dx.doi.org/10.1002/adma.201701527] [PMID: 28699173]
[113]
Water, J.J.; Smart, S.; Franzyk, H.; Foged, C.; Nielsen, H.M. Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells. Eur. J. Pharm. Biopharm., 2015, 92, 65-73.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.009] [PMID: 25701808]
[114]
Yeom, J.H.; Lee, B.; Kim, D.; Lee, J.K.; Kim, S.; Bae, J.; Park, Y.; Lee, K. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials, 2016, 104, 43-51.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.009] [PMID: 27424215]
[115]
Zhao, Z.; Yan, R.; Yi, X.; Li, J.; Rao, J.; Guo, Z.; Yang, Y.; Li, W.; Li, Y.Q.; Chen, C. Bacteria-activated theranostic nanoprobes against Methicillin-resistant Staphylococcus aureus infection. ACS Nano, 2017, 11(5), 4428-4438.
[http://dx.doi.org/10.1021/acsnano.7b00041] [PMID: 28350437]
[116]
Jin, Y.; Kim, D.; Roh, H.; Kim, S.; Hussain, S.; Kang, J.; Pack, C.G.; Kim, J.K.; Myung, S.J.; Ruoslahti, E.; Sailor, M.J.; Kim, S.C.; Joo, J. Tracking the fate of porous silicon nanoparticles delivering a peptide payload by intrinsic photoluminescence lifetime. Adv. Mater., 2018, 30(35), e1802878
[http://dx.doi.org/10.1002/adma.201802878] [PMID: 30003620]
[117]
Yu, X.; Wang, J.; Liu, J.; Shen, S.; Cao, Z.; Pan, J.; Zhou, S.; Pang, Z.; Geng, D.; Zhang, J. A multimodal Pepstatin A peptide-based nanoagent for the molecular imaging of P-glycoprotein in the brains of epilepsy rats. Biomaterials, 2016, 76, 173-186.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.050] [PMID: 26524537]
[118]
Walther, C.; Meyer, K.; Rennert, R.; Neundorf, I. Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug. Chem., 2008, 19(12), 2346-2356.
[http://dx.doi.org/10.1021/bc800172q] [PMID: 18991369]
[119]
Mohid, S.A.; Ghorai, A.; Ilyas, H.; Mroue, K.H.; Narayanan, G.; Sarkar, A.; Ray, S.K.; Biswas, K.; Bera, A.K.; Malmsten, M.; Midya, A.; Bhunia, A. Application of tungsten disulfide quantum dot-conjugated antimicrobial peptides in bio-imaging and antimicrobial therapy. Colloids Surf. B Biointerfaces, 2019, 176, 360-370.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.020] [PMID: 30658284]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy