Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Quantitative Determination and Validation of Four Phenolic Acids in Salvia Miltiorrhiza Bunge using 1H-NMR Spectroscopy

Author(s): Zhuoni Hou, Zongsuo Liang*, Yuanyuan Li, Feng Su, Jipeng Chen, Xiaodan Zhang and Dongfeng Yang

Volume 17, Issue 4, 2021

Published on: 31 December, 2019

Page: [509 - 519] Pages: 11

DOI: 10.2174/1573412916666191231104909

open access plus

Abstract

Background: Although chromatography and spectrometry-based methods have been used to analyse phenolic acids in Chinese traditional medicine Salvia miltiorrhiza Bunge (SMB), quantitative nuclear magnetic resonance (qNMR) has never previously been used to analyse fresh SMB root extracts.

Objective: To establish a fast and simple method of quantitating danshensu, lithospermic acid, rosmarinic acid, and salvianolic acid B content in fresh SMB root using 1H-NMR spectroscopy.

Method: Fresh SMB root was extracted using a 70% methanol aqueous solution and quantitatively analysed for danshensu, lithospermic acid, rosmarinic acid, and salvianolic acid B using 1H-NMR spectroscopy. Different internal standards were compared and the results were validated using highperformance liquid chromatography.

Results: The established method was accurate and precise with good recovery. The LOD and LOQ indicated the excellent sensitivity of the method. The robustness was testified by the modification of four different parameters, and the differences among each parameter were all less than 2%.

Conclusion: qNMR offers a fast, reliable, and accurate method of identifying and quantifying danshensu, lithospermic acid, rosmarinic acid, and salvianolic acid B in fresh SMB root extracts.

Keywords: qNMR, Salvia Miltiorrhiza Bunge, danshensu, lithospermic acid, rosmarinic acid, salvianolic acid B.

Graphical Abstract

[1]
Wang, L.; Li, Y.; Deng, W.; Dong, Z.; Li, X.; Liu, D.; Zhao, L.; Fu, W.; Cho, K.; Niu, H.; Guo, D.; Cheng, J.; Jiang, B. Cardio-protection of ultrafine granular powder for Salvia miltiorrhiza Bunge against myocardial infarction. J. Ethnopharmacol., 2018, 222, 99-106.
[http://dx.doi.org/10.1016/j.jep.2018.04.029] [PMID: 29694847]
[2]
Fang, L.H.; Chen, Y.C.; Yuan, T.Y.; Lyu, Y.; Du, G.H. Salvianolic acid A attenuates vascular remodeling in pulmonary arterial hypertension rats induced by monocrotaline. Zhongguo Yaolixue Yu Dulixue Zazhi, 2018, 32(4), 47-48.
[3]
Chen, W.; Chen, G. Danshen (Salvia miltiorrhiza Bunge): A prospective healing sage for cardiovascular diseases. Curr. Pharm. Des., 2017, 23(34), 5125-5135.
[PMID: 28828985]
[4]
Wang, L.; Ma, R.; Liu, C.; Liu, H.; Zhu, R.; Guo, S.; Tang, M.; Li, Y.; Niu, J.; Fu, M.; Gao, S.; Zhang, D. Salvia miltiorrhiza: A potential red light to the development of cardiovascular diseases. Curr. Pharm. Des., 2017, 23(7), 1077-1097.
[http://dx.doi.org/10.2174/1381612822666161010105242] [PMID: 27748194]
[5]
Gao, H.; Huang, L.; Ding, F.; Yang, K.; Feng, Y.; Tang, H.; Xu, Q.M.; Feng, J.; Yang, S. Simultaneous purification of dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA from Salvia miltiorrhiza and their anti-inflammatory activities investigation. Sci. Rep., 2018, 8(1), 8460.
[http://dx.doi.org/10.1038/s41598-018-26828-0] [PMID: 29855534]
[6]
Wu, X.; Gao, H.; Hou, Y.; Yu, J.; Sun, W.; Wang, Y.; Chen, X.; Feng, Y.; Xu, Q.M.; Chen, X. Dihydronortanshinone, a natural product, alleviates LPS-induced inflammatory response through NF-κB, mitochondrial ROS, and MAPK pathways. Toxicol. Appl. Pharmacol., 2018, 355(15), 1-8.
[http://dx.doi.org/10.1016/j.taap.2018.06.007] [PMID: 29906494]
[7]
Di Cesare Mannelli, L.; Piccolo, M.; Maione, F.; Ferraro, M.G.; Irace, C.; De Feo, V.; Ghelardini, C.; Mascolo, N. Tanshinones from Salvia miltiorrhiza Bunge revert chemotherapy-induced neuropathic pain and reduce glioblastoma cells malignancy. Biomed. Pharmacother., 2018, 105, 1042-1049.
[http://dx.doi.org/10.1016/j.biopha.2018.06.047] [PMID: 30021339]
[8]
Saroya, A.S.; Singh, J. Neuropharmacology of Salvia miltiorrhiza Bunge (Danshen); Springer: Germany, 2018.
[http://dx.doi.org/10.1007/978-981-13-0289-3_15]
[9]
Hu, F.; Koon, C.M.; Chan, J.Y.W.; Lau, K.M.; Fung, K.P. The cardioprotective effect of danshen and gegen decoction on rat hearts and cardiomyocytes with post-ischemia reperfusion injury. BMC Complement. Altern. Med., 2012, 12, 249.
[http://dx.doi.org/10.1186/1472-6882-12-249]
[10]
Weng, Y.S.; Kuo, W.W.; Lin, Y.M.; Kuo, C.H.; Tzang, B.S.; Tsai, F.J.J.; Tsai, C.H.; Lin, J.A.; Hsieh, D.J.; Huang, C.Y. Danshen mediates through estrogen receptors to activate Akt and inhibit apoptosis effect of Leu27IGF-II-induced IGF-II receptor signaling activation in cardiomyoblasts. Food Chem. Toxicol., 2013, 56, 28-39.
[http://dx.doi.org/10.1016/j.fct.2013.01.008] [PMID: 23419388]
[11]
Uto, T.; Tung, N.H.; Ohta, T.; Juengsanguanpornsuk, W.; Hung, L.Q.; Hai, N.T.; Long, D.D.; Thuong, P.T.; Okubo, S.; Hirata, S.; Shoyama, Y. Antiproliferative activity and apoptosis induction by trijuganone C isolated from the root of Salvia miltiorrhiza Bunge (Danshen). Phytother. Res., 2018, 32(4), 657-666.
[http://dx.doi.org/10.1002/ptr.6013] [PMID: 29464799]
[12]
Qiu, Y.; Li, C.; Wang, Q.; Zeng, X.; Ji, P. Tanshinone IIA induces cell death via Beclin-1-dependent autophagy in oral squamous cell carcinoma SCC-9 cell line. Cancer Med., 2018, 7(2), 397-407.
[http://dx.doi.org/10.1002/cam4.1281] [PMID: 29316373]
[13]
Wang, X.; Gao, A.; Jiao, Y.; Zhao, Y.; Yang, X. Antitumor effect and molecular mechanism of antioxidant polysaccharides from Salvia miltiorrhiza Bunge in human colorectal carcinoma LoVo cells. Int. J. Biol. Macromol., 2018, 108, 625-634.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.006] [PMID: 29233711]
[14]
Hsieh, F.S.; Hung, M.H.; Wang, C.Y.; Chen, Y.L.; Hsiao, Y.J. Tsai, M.H.; Li, J.R.; Chen, L.J.; Shih, C.T.; Chao, T.I.; Chen, K.F. Corrigendum to “Inhibition of protein phosphatase 5 suppresses non-small cell lung cancer through AMP-activated kinase activation”. Lung Cancer, 2018, 119, 127-128. [Lung Cancer 112, (October) (2017) 81–89
[http://dx.doi.org/10.1016/j.lungcan.2018.03.012] [PMID: 29567377]
[15]
Ma, P.; Liu, J.; Zhang, C.; Liang, Z. Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl. Biochem. Biotechnol., 2013, 170(6), 1253-1262.
[http://dx.doi.org/10.1007/s12010-013-0265-4] [PMID: 23673485]
[16]
Kim, H.K.; Woo, E.R.; Lee, H.W.; Park, H.R.; Kim, H.N.; Jung, Y.K.; Choi, J.Y.; Chae, S.W.; Kim, H.R.; Chae, H.J. The correlation of Salvia miltiorrhiza extract-induced regulation of osteoclastogenesis with the amount of components tanshinone I, tanshinone IIA, cryptotanshinone, and dihydrotanshinone. Immunopharmacol. Immunotoxicol., 2008, 30(2), 347-364.
[http://dx.doi.org/10.1080/08923970801949133] [PMID: 18569089]
[17]
Yang, D.; Yang, S.; Zhang, Y.; Liu, Y.; Meng, X.; Liang, Z. Metabolic profiles of three related Salvia species. Fitoterapia, 2009, 80(5), 274-278.
[http://dx.doi.org/10.1016/j.fitote.2009.03.004] [PMID: 19289159]
[18]
Liang, Z.; Ma, Y.; Xu, T.; Cui, B.; Liu, Y.; Guo, Z.; Yang, D. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots. PLoS One, 2013, 8(9)e72806
[http://dx.doi.org/10.1371/journal.pone.0072806] [PMID: 24023778]
[19]
Yang, B.; Zheng, C.; Yu, H.; Zhang, R.; Zhao, C.; Cai, S. Cardio-protective effects of salvianolic acid B on oxygen and glucose deprivation (OGD)-treated H9c2 cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2274-2281.
[http://dx.doi.org/10.1080/21691401.2019.1621885] [PMID: 31184214]
[20]
Quan, G.Q.; Chen, W.W.; Wen, Y.T.; Yan, Y.P.; Gu, M.L.; Pan, Y.Z. Chemoprotective efficacy of salvianolic acid B via triggering apoptosis in MCF-7 human breast cancer cells. Int. J. Pharmacol., 2019, 15(1), 110-115.
[http://dx.doi.org/10.3923/ijp.2019.110.115]
[21]
Zhou, R.; Long, H.; Zhang, B.; Lao, Z.; Zheng, Q.; Wang, T.; Zhang, Y.; Wu, Q.; Lai, X.; Li, G.; Lin, L. Salvianolic acid B, an antioxidant derived from Salvia militarize, protects mice against γ radiation induced damage through Nrf2/Bach1. Mol. Med. Rep., 2019, 19(2), 1309-1317.
[PMID: 30535483]
[22]
Kuete, V.; Alibert-Franco, S.; Eyong, K.O.; Ngameni, B.; Folefoc, G.N.; Nguemeving, J.R.; Tangmouo, J.G.; Fotso, G.W.; Komguem, J.; Ouahouo, B.M.W.; Bolla, J-M.; Chevalier, J.; Ngadjui, B.T.; Nkengfack, A.E.; Pagès, J-M. Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int. J. Antimicrob. Agents, 2011, 37(2), 156-161.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.10.020] [PMID: 21163632.]
[23]
Mythri, R.B.; Bharath, M.M. Curcumin: a potential neuroprotective agent in Parkinson’s disease. Curr. Pharm. Des., 2012, 18(1), 91-99.
[http://dx.doi.org/10.2174/138161212798918995] [PMID: 22211691]
[24]
Zhao, G.R.; Zhang, H.M.; Ye, T.X.; Xiang, Z.J.; Yuan, Y.J.; Guo, Z.X.; Zhao, L.B. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem. Toxicol., 2008, 46(1), 73-81.
[http://dx.doi.org/10.1016/j.fct.2007.06.034] [PMID: 17719161]
[25]
Zhu, F.; Wang, J.; Takano, H.; Xu, Z.; Nishiwaki, H.; Yonekura, L.; Yang, R.; Tamura, H. Rosmarinic acid and its ester derivatives for enhancing antibacterial, α-glucosidase inhibitory, and lipid accumulation suppression activities. J. Food Biochem., 2019, 43(2)e12719
[http://dx.doi.org/10.1111/jfbc.12719] [PMID: 31353663]
[26]
Bittner Fialová, S.; Kello, M.; Čoma, M.; Slobodníková, L.; Drobná, E.; Holková, I.; Garajová, M.; Mrva, M.; Zachar, V.; Lukáč, M. Slobodnikova, Livia.; Dorbna, E.; Holkova, I.; Garajova, M.; Mrva, M.; Zachar, V.; Lukac, M. Derivatization of rosmarinic acid enhances its in vitro antitumor, antimicrobial and antiprotozoal properties. Molecules, 2019, 24(6), 1078.
[http://dx.doi.org/10.3390/molecules24061078] [PMID: 30893808]
[27]
Kai, G.Y.; Liu, S.C.; Shi, M.; Han, B.; Hao, X.L.; Liu, Z.X. The Salvia miltiorrhiza genome; Lu., Shanfa, Ed.; Springer, 2019, 11, pp. 141-162..
[28]
Liu, H.; Ma, S.; Xia, H.; Lou, H.; Zhu, F.; Sun, L. Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages. J. Ethnopharmacol., 2018, 222, 201-207.
[http://dx.doi.org/10.1016/j.jep.2018.05.008] [PMID: 29751125]
[29]
Ma, L.; Zhang, X.; Guo, H.; Gan, Y. Determination of four water-soluble compounds in Salvia miltiorrhiza Bunge by high-performance liquid chromatography with a coulometric electrode array system. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 833(2), 260-263.
[http://dx.doi.org/10.1016/j.jchromb.2006.01.021] [PMID: 16500160]
[30]
Xie, W.; Zhang, H.; Zeng, J.; Chen, H.; Zhao, Z.; Liang, Z. Tissues-based chemical profiling and semi-quantitative analysis of bioactive components in the root of Salvia miltiorrhiza Bunge by using laser microdissection system combined with UPLC-q-TOF-MS. Chem. Cent. J., 2016, 10(10), 42-55.
[http://dx.doi.org/10.1186/s13065-016-0187-7] [PMID: 27418946]
[31]
Dai, H.; Xiao, C.; Liu, H.; Hao, F.; Tang, H. Combined NMR and LC-DAD-MS analysis reveals comprehensive metabonomic variations for three phenotypic cultivars of Salvia Miltiorrhiza Bunge. J. Proteome Res., 2010, 9(3), 1565-1578.
[http://dx.doi.org/10.1021/pr901045c] [PMID: 20067324]
[32]
Dai, H.; Xiao, C.; Liu, H.; Tang, H. Combined NMR and LC-MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion. J. Proteome Res., 2010, 9(3), 1460-1475.
[http://dx.doi.org/10.1021/pr900995m] [PMID: 20044832]
[33]
Yan, K.J.; Chu, Y.; Huang, J.H.; Jiang, M.M.; Li, W.; Wang, Y.F.; Huang, H.Y.; Qin, Y.H.; Ma, X.H.; Zhou, S.P.; Sun, H.; Wang, W. Qualitative and quantitative analyses of Compound Danshen extract based on 1H NMR method and its application for quality control. J. Pharm. Biomed. Anal., 2016, 131, 183-187.
[http://dx.doi.org/10.1016/j.jpba.2016.08.017] [PMID: 27596830]
[34]
Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc., 2010, 5(3), 536-549.
[http://dx.doi.org/10.1038/nprot.2009.237] [PMID: 20203669]
[35]
Xiao, Z.; Ge, C.; Zhou, G.; Zhang, W.; Liao, G. 1H NMR-based metabolic characterization of Chinese Wuding chicken meat. Food Chem., 2019, 274, 574-582.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.008] [PMID: 30372981]
[36]
Owczarek, A.; Kłys, A.; Olszewska, M.A. A validated 1H qNMR method for direct and simultaneous quantification of esculin, fraxin and (-)-epicatechin in Hippocastani cortex. Talanta, 2019, 192, 263-269.
[http://dx.doi.org/10.1016/j.talanta.2018.09.036] [PMID: 30348388]
[37]
Malz, F.; Jancke, H. Validation of quantitative NMR. J. Pharm. Biomed. Anal., 2005, 38(5), 813-823.
[http://dx.doi.org/10.1016/j.jpba.2005.01.043] [PMID: 15893442]
[38]
Gadape, H.; Parikh, K. Quantitative determination and validation of Carvedilol in pharmaceuticals using quantitative nuclear magnetic resonance spectroscopy. Anal. Methods, 2011, 3(10), 2341-2347.
[http://dx.doi.org/10.1039/c1ay05247k]
[39]
Cheng, X.M.; Zhao, T.; Yang, T.; Wang, C.H.; Bligh, S.W.A.; Wang, Z.T. HPLC fingerprints combined with principal component analysis, hierarchical cluster analysis and linear discriminant analysis for the classification and differentiation of Peganum sp. indigenous to China. Phytochem. Anal., 2010, 21(3), 279-289.
[http://dx.doi.org/10.1002/pca.1198] [PMID: 20020435]
[40]
Ardila, J.A.; Funari, C.S.; Andrade, A.M.; Cavalheiro, A.J.; Carneiro, R.L. Cluster analysis of commercial samples of Bauhinia spp. using HPLC-UV/PDA and MCR-ALS/PCA without peak alignment procedure. Phytochem. Anal., 2015, 26(5), 367-373.
[http://dx.doi.org/10.1002/pca.2571] [PMID: 26047147]
[41]
Lin, S.; Liu, N.; Yang, Z.; Song, W.; Wang, P.; Chen, H.; Lucio, M.; Schmitt-Kopplin, P.; Chen, G.; Cai, Z. GC/MS-based metabolomics reveals fatty acid biosynthesis and cholesterol metabolism in cell lines infected with influenza A virus. Talanta, 2010, 83(1), 262-268.
[http://dx.doi.org/10.1016/j.talanta.2010.09.019] [PMID: 21035673]
[42]
Souza Silva, É.A.; Saboia, G.; Jorge, N.C.; Hoffmann, C.; Dos Santos Isaias, R.M.; Soares, G.L.G.; Zini, C.A. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens. Talanta, 2017, 175, 9-20.
[http://dx.doi.org/10.1016/j.talanta.2017.06.063] [PMID: 28842040]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy