Mini-Review Article

β细胞簇中主要的microRNA用于胰岛素调节和糖尿病控制。

卷 21, 期 7, 2020

页: [722 - 734] 页: 13

弟呕挨: 10.2174/1389450121666191230145848

价格: $65

摘要

微小(mi)-RNA是多个过程的重要调节剂,包括胰岛素信号传导途径和葡萄糖代谢。胰腺β细胞的功能取决于某些miRNA及其靶mRNA,它们共同形成一个复杂的调节网络。已知有几种miRNA直接参与β细胞功能,例如胰岛素表达和分泌。这些小RNA也可能在β细胞的命运中发挥重要作用,例如增殖,分化,存活和凋亡。在miRNA中,由于在这些细胞中高表达,miR-7,miR-9,miR-375,miR-130和miR-124引起了人们的特别关注。在糖尿病条件下,尽管未观察到特定的miRNA谱,但转录后机制改变了某些miRNA及其靶mRNA的表达,在各种糖尿病并发症的病理生物学过程中发挥了不同的作用。这篇综述文章的目的是讨论参与干细胞分化为β细胞的过程中的miRNA,从而导致针对糖尿病疾病的β细胞功能增强。本文还将探讨miRNA表达模式对β细胞体外增殖和分化的影响。还将讨论计算基因组学和生化分析将干细胞衍生的β细胞的miRNA表达谱变化与治疗相关输出联系起来的功效。

关键词: β细胞功能,糖尿病,microRNA,分化,胰岛素,IPC。

« Previous
图形摘要

[1]
Bartel DP. Bartel DP. MicroRNAs: target recognition and regulatory functions. cell. 2009; 136(2): 215-33
[2]
Dumortier O, Hinault C, Gautier N, Patouraux S, Casamento V, Van Obberghen E. Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes 2014; 63(10): 3416-27.
[http://dx.doi.org/10.2337/db13-1431] [PMID: 24834976]
[3]
Hashimoto N, Tanaka T. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. J Hum Genet 2017; 62(2): 141-50.
[http://dx.doi.org/10.1038/jhg.2016.150] [PMID: 27928162]
[4]
Rajewsky N. microRNA target predictions in animals. Nat Genet 2006; 38(6s)(Suppl.): S8-S13.
[http://dx.doi.org/10.1038/ng1798] [PMID: 16736023]
[5]
Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 2012; 13(4): 239-50.
[http://dx.doi.org/10.1038/nrm3313] [PMID: 22436747]
[6]
Kredo-Russo S, Ness A, Mandelbaum AD, Walker MD, Hornstein E. Regulation of pancreatic microRNA-7 expression. Experimentaldiabetes research 2012; 2012
[http://dx.doi.org/10.1155/2012/695214]
[7]
Vasa-Nicotera M, Chen H, Tucci P, et al. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis 2011; 217(2): 326-30.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.03.034] [PMID: 21511256]
[8]
Hennessy E, Clynes M, Jeppesen PB, O’Driscoll L. Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells. Biochem Biophys Res Commun 2010; 396(2): 457-62.
[http://dx.doi.org/10.1016/j.bbrc.2010.04.116] [PMID: 20417623]
[9]
Bravo-Egana V, Rosero S, Molano RD, et al. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun 2008; 366(4): 922-6.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.052] [PMID: 18086561]
[10]
Correa-Medina M, Bravo-Egana V, Rosero S, et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 2009; 9(4): 193-9.
[http://dx.doi.org/10.1016/j.gep.2008.12.003] [PMID: 19135553]
[11]
Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 2009; 9(2): 109-13.
[http://dx.doi.org/10.1016/j.gep.2008.10.001] [PMID: 18977315]
[12]
Esguerra JLS, Bolmeson C, Cilio CM, Eliasson L. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 2011; 6(4)e18613
[http://dx.doi.org/10.1371/journal.pone.0018613] [PMID: 21490936]
[13]
Filios SR, Shalev A. β-Cell MicroRNAs: Small but Powerful. Diabetes 2015; 64(11): 3631-44.
[http://dx.doi.org/10.2337/db15-0831] [PMID: 26494215]
[14]
Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 2011; 31(15): 3182-94.
[http://dx.doi.org/10.1128/MCB.01433-10] [PMID: 21646425]
[15]
Lovis P, Roggli E, Laybutt DR, et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes 2008; 57(10): 2728-36.
[http://dx.doi.org/10.2337/db07-1252] [PMID: 18633110]
[16]
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10(5): 593-601.
[http://dx.doi.org/10.1038/ncb1722] [PMID: 18376396]
[17]
Filios SR, Xu G, Chen J, Hong K, Jing G, Shalev A. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J Biol Chem 2014; 289(52): 36275-83.
[http://dx.doi.org/10.1074/jbc.M114.592360] [PMID: 25391656]
[18]
Jacovetti C, Abderrahmani A, Parnaud G, et al. MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity. J Clin Invest 2012; 122(10): 3541-51.
[http://dx.doi.org/10.1172/JCI64151] [PMID: 22996663]
[19]
Latreille M, Hausser J, Stützer I, et al. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest 2014; 124(6): 2722-35.
[http://dx.doi.org/10.1172/JCI73066] [PMID: 24789908]
[20]
Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 2007; 311(2): 603-12.
[http://dx.doi.org/10.1016/j.ydbio.2007.09.008] [PMID: 17936263]
[21]
Lee CS, Sund NJ, Vatamaniuk MZ, Matschinsky FM, Stoffers DA, Kaestner KH. Foxa2 controls Pdx1 gene expression in pancreatic β-cells in vivo. Diabetes 2002; 51(8): 2546-51.
[http://dx.doi.org/10.2337/diabetes.51.8.2546] [PMID: 12145169]
[22]
Rosero S, Bravo-Egana V, Jiang Z, et al. MicroRNA signature of the human developing pancreas. BMC Genomics 2010; 11(1): 509.
[http://dx.doi.org/10.1186/1471-2164-11-509] [PMID: 20860821]
[23]
Guay C, Regazzi R. New emerging tasks for microRNAs in the control of β-cell activities. Biochim Biophys Acta 2016; 1861(12 Pt B): 2121-9.
[http://dx.doi.org/10.1016/j.bbalip.2016.05.003] [PMID: 27178175]
[24]
Babon JJ, Nicola NA. The biology and mechanism of action of suppressor of cytokine signaling 3. Growth Factors 2012; 30(4): 207-19.
[http://dx.doi.org/10.3109/08977194.2012.687375] [PMID: 22574771]
[25]
Joglekar MV, Parekh VS, Hardikar AA. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab 2007; 18(10): 393-400.
[http://dx.doi.org/10.1016/j.tem.2007.10.001] [PMID: 18023200]
[26]
Wang Y, Liu J, Liu C, Naji A, Stoffers DA. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes 2013; 62(3): 887-95.
[http://dx.doi.org/10.2337/db12-0451] [PMID: 23223022]
[27]
Zhang Z-W, Zhang L-Q, Ding L, et al. MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1. FEBS Lett 2011; 585(16): 2592-8.
[http://dx.doi.org/10.1016/j.febslet.2011.06.039] [PMID: 21781967]
[28]
Backe MB, Novotny GW, Christensen DP, Grunnet LG, Mandrup-Poulsen T. Altering β-cell number through stable alteration of miR-21 and miR-34a expression. Islets 2014; 6(1)e27754
[http://dx.doi.org/10.4161/isl.27754] [PMID: 25483877]
[29]
Kaviani M, Azarpira N, Karimi MH, Al-Abdullah I. The role of microRNAs in islet β-cell development. Cell Biol Int 2016; 40(12): 1248-55.
[http://dx.doi.org/10.1002/cbin.10691] [PMID: 27743454]
[30]
Keller DM, McWeeney S, Arsenlis A, et al. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J Biol Chem 2007; 282(44): 32084-92.
[http://dx.doi.org/10.1074/jbc.M700899200] [PMID: 17761679]
[31]
Domínguez-Bendala J, Klein D, Pastori RL. MicroRNAs in pancreas and islet development MicroRNA in Regenerative Medicine. Elsevier 2015; pp. 401-18.
[32]
Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J 2011; 278(7): 1167-74.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08042.x] [PMID: 21288303]
[33]
Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006; 281(37): 26932-42.
[http://dx.doi.org/10.1074/jbc.M601225200] [PMID: 16831872]
[34]
Sun L-L, Jiang B-G, Li W-T, Zou J-J, Shi Y-Q, Liu Z-M. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 2011; 91(1): 94-100.
[http://dx.doi.org/10.1016/j.diabres.2010.11.006] [PMID: 21146880]
[35]
Kim J-W, You Y-H, Jung S, et al. miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 2013; 56(4): 847-55.
[http://dx.doi.org/10.1007/s00125-012-2812-x] [PMID: 23338554]
[36]
Tang X, Muniappan L, Tang G, Özcan S. Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription. RNA 2009; 15(2): 287-93.
[http://dx.doi.org/10.1261/rna.1211209] [PMID: 19096044]
[37]
Wijesekara N, Zhang LH, Kang MH, et al. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 2012; 61(3): 653-8.
[http://dx.doi.org/10.2337/db11-0944] [PMID: 22315319]
[38]
Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 2008; 389(3): 305-12.
[http://dx.doi.org/10.1515/BC.2008.026] [PMID: 18177263]
[39]
Aizawa T, Komatsu M. Rab27a: a new face in β cell metabolism-secretion coupling. J Clin Invest 2005; 115(2): 227-30.
[PMID: 15690078]
[40]
Eliasson L. The small RNA miR-375 - a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function. Mol Cell Endocrinol 2017; 456: 95-101.
[http://dx.doi.org/10.1016/j.mce.2017.02.043] [PMID: 28254488]
[41]
Association AD. American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care 2016; 39(Suppl. 1): S13-22.
[http://dx.doi.org/10.2337/dc16-S005] [PMID: 26696675]
[42]
Pociot F, McDermott MF. Genetics of type 1 diabetes mellitus. Genes Immun 2002; 3(5): 235-49.
[http://dx.doi.org/10.1038/sj.gene.6363875] [PMID: 12140742]
[43]
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52(1): 102-10.
[http://dx.doi.org/10.2337/diabetes.52.1.102] [PMID: 12502499]
[44]
Gaulton KJ, Ferreira T, Lee Y, et al. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium . Genetic fine. mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet 2015; 47(12): 1415-25.
[http://dx.doi.org/10.1038/ng.3437] [PMID: 26551672]
[45]
Halban PA, Polonsky KS, Bowden DW, et al. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. J Clin Endocrinol Metab 2014; 99(6): 1983-92.
[http://dx.doi.org/10.1210/jc.2014-1425] [PMID: 24712577]
[46]
Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432(7014): 226-30.
[http://dx.doi.org/10.1038/nature03076] [PMID: 15538371]
[47]
Poy MN, Hausser J, Trajkovski M, et al. miR-375 maintains normal pancreatic α- and β-cell mass. Proc Natl Acad Sci USA 2009; 106(14): 5813-8.
[http://dx.doi.org/10.1073/pnas.0810550106] [PMID: 19289822]
[48]
Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 2007; 5(8)e203
[http://dx.doi.org/10.1371/journal.pbio.0050203] [PMID: 17676975]
[49]
Nieto M, Hevia P, Garcia E, et al. Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant 2012; 21(8): 1761-74.
[http://dx.doi.org/10.3727/096368911X612521] [PMID: 22186137]
[50]
Fukuda M. Rab27 and its effectors in secretory granule exocytosis: a novel docking machinery composed of a Rab27· effector complex. Portland Press Limited 2006.
[51]
Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol 2006; 4(2)e31
[http://dx.doi.org/10.1371/journal.pbio.0040031] [PMID: 16366736]
[52]
Lee J-H, Song M-Y, Song E-K, et al. Overexpression of SIRT1 protects pancreatic β-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes 2009; 58(2): 344-51.
[http://dx.doi.org/10.2337/db07-1795] [PMID: 19008341]
[53]
Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005; 2(2): 105-17.
[http://dx.doi.org/10.1016/j.cmet.2005.07.001] [PMID: 16098828]
[54]
Bagge A, Clausen TR, Larsen S, et al. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion. Biochem Biophys Res Commun 2012; 426(2): 266-72.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.082] [PMID: 22940552]
[55]
Gomes PR, Graciano MF, Pantaleão LC, et al. Long-term disruption of maternal glucose homeostasis induced by prenatal glucocorticoid treatment correlates with miR-29 upregulation. Am J Physiol Endocrinol Metab 2014; 306(1): E109-20.
[http://dx.doi.org/10.1152/ajpendo.00364.2013] [PMID: 24253049]
[56]
Bagge A, Dahmcke CM, Dalgaard LT. Syntaxin-1a is a direct target of miR-29a in insulin-producing β-cells. Horm Metab Res 2013; 45(6): 463-6.
[http://dx.doi.org/10.1055/s-0032-1333238] [PMID: 23315993]
[57]
Otonkoski T, Kaminen N, Ustinov J, et al. Physical exercise-induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes 2003; 52(1): 199-204.
[http://dx.doi.org/10.2337/diabetes.52.1.199] [PMID: 12502513]
[58]
Roggli E, Gattesco S, Caille D, et al. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 2012; 61(7): 1742-51.
[http://dx.doi.org/10.2337/db11-1086] [PMID: 22537941]
[59]
Silva VA, Polesskaya A, Sousa TA, et al. Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis 2011; 17: 2228-40.
[PMID: 21897745]
[60]
Wang G, Kwan BC-H, Lai FM-M, Chow K-M, Li PK-T, Szeto C-C. Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis. Am J Nephrol 2012; 36(5): 412-8.
[http://dx.doi.org/10.1159/000343452] [PMID: 23108026]
[61]
Dooley J, Garcia-Perez JE, Sreenivasan J, et al. The microRNA-29 family dictates the balance between homeostatic and pathological glucose handling in diabetes and obesity. Diabetes 2016; 65(1): 53-61.
[http://dx.doi.org/10.2337/db15-0770] [PMID: 26696639]
[62]
Bai C, Li X, Gao Y, et al. Role of microRNA-21 in the formation of insulin-producing cells from pancreatic progenitor cells. Biochim Biophys Acta 2016; 1859(2): 280-93.
[http://dx.doi.org/10.1016/j.bbagrm.2015.12.001] [PMID: 26655730]
[63]
Huang JC, Babak T, Corson TW, et al. Using expression profiling data to identify human microRNA targets. Nat Methods 2007; 4(12): 1045-9.
[http://dx.doi.org/10.1038/nmeth1130] [PMID: 18026111]
[64]
Roggli E, Britan A, Gattesco S, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells. Diabetes 2010; 59(4): 978-86.
[http://dx.doi.org/10.2337/db09-0881] [PMID: 20086228]
[65]
Fujimoto K, Shibasaki T, Yokoi N, et al. Piccolo, a Ca2+ sensor in pancreatic β-cells. Involvement of cAMP-GEFII.Rim2. Piccolo complex in cAMP-dependent exocytosis. J Biol Chem 2002; 277(52): 50497-502.
[http://dx.doi.org/10.1074/jbc.M210146200] [PMID: 12401793]
[66]
Ruan Q, Wang T, Kameswaran V, et al. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic β cell death. Proc Natl Acad Sci USA 2011; 108(29): 12030-5.
[http://dx.doi.org/10.1073/pnas.1101450108] [PMID: 21730150]
[67]
Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines. J Biol Chem 2007; 282(27): 19575-88.
[http://dx.doi.org/10.1074/jbc.M611841200] [PMID: 17462994]
[68]
Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5): 495-500.
[http://dx.doi.org/10.1038/ng1536] [PMID: 15806104]
[69]
Sebastiani G, Po A, Miele E, et al. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 2015; 52(3): 523-30.
[http://dx.doi.org/10.1007/s00592-014-0675-y] [PMID: 25408296]
[70]
Friedman JR, Kaestner KH. The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci 2006; 63(19-20): 2317-28.
[http://dx.doi.org/10.1007/s00018-006-6095-6] [PMID: 16909212]
[71]
Jing G, Westwell-Roper C, Chen J, Xu G, Verchere CB, Shalev A. Thioredoxin-interacting protein promotes islet amyloid polypeptide expression through miR-124a and FoxA2. J Biol Chem 2014; 289(17): 11807-15.
[http://dx.doi.org/10.1074/jbc.M113.525022] [PMID: 24627476]
[72]
Minn AH, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces β-cell apoptosis. Endocrinology 2005; 146(5): 2397-405.
[http://dx.doi.org/10.1210/en.2004-1378] [PMID: 15705778]
[73]
Melkman-Zehavi T, Oren R, Kredo-Russo S, et al. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO J 2011; 30(5): 835-45.
[http://dx.doi.org/10.1038/emboj.2010.361] [PMID: 21285947]
[74]
Bouzakri K, Ribaux P, Halban PA. Silencing mitogen-activated protein 4 kinase 4 (MAP4K4) protects beta cells from tumor necrosis factor-α-induced decrease of IRS-2 and inhibition of glucose-stimulated insulin secretion. J Biol Chem 2009; 284(41): 27892-8.
[http://dx.doi.org/10.1074/jbc.M109.048058] [PMID: 19690174]
[75]
Zhao X, Mohan R, Özcan S, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells. J Biol Chem 2012; 287(37): 31155-64.
[http://dx.doi.org/10.1074/jbc.M112.362632] [PMID: 22733810]
[76]
Kaneto H, Miyatsuka T, Fujitani Y, et al. Role of PDX-1 and MafA as a potential therapeutic target for diabetes. Diabetes Res Clin Pract 2007; 77(3)(Suppl. 1): S127-37.
[http://dx.doi.org/10.1016/j.diabres.2007.01.046] [PMID: 17449132]
[77]
Kaneto H, Matsuoka TA, Kawashima S, et al. Role of MafA in pancreatic beta-cells. Adv Drug Deliv Rev 2009; 61(7-8): 489-96.
[http://dx.doi.org/10.1016/j.addr.2008.12.015] [PMID: 19393272]
[78]
Nesca V, Guay C, Jacovetti C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 2013; 56(10): 2203-12.
[http://dx.doi.org/10.1007/s00125-013-2993-y] [PMID: 23842730]
[79]
Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 2013; 19(9): 1141-6.
[http://dx.doi.org/10.1038/nm.3287] [PMID: 23975026]
[80]
Zheng Y, Wang Z, Tu Y, et al. miR-101a and miR-30b contribute to inflammatory cytokine-mediated β-cell dysfunction. Lab Invest 2015; 95(12): 1387-97.
[http://dx.doi.org/10.1038/labinvest.2015.112] [PMID: 26367486]
[81]
Dou L, Zhao T, Wang L, et al. miR-200s contribute to interleukin-6 (IL-6)-induced insulin resistance in hepatocytes. J Biol Chem 2013; 288(31): 22596-606.
[http://dx.doi.org/10.1074/jbc.M112.423145] [PMID: 23798681]
[82]
Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 2002; 129(10): 2447-57.
[PMID: 11973276]
[83]
Lee CS, De León DD, Kaestner KH, Stoffers DA. Regeneration of pancreatic islets after partial pancreatectomy in mice does not involve the reactivation of neurogenin-3. Diabetes 2006; 55(2): 269-72.
[PMID: 16361411]
[84]
Bao L, Fu X, Si M, et al. MicroRNA-185 targets SOCS3 to inhibit beta-cell dysfunction in diabetes. PLoS One 2015; 10(2)e0116067
[http://dx.doi.org/10.1371/journal.pone.0116067] [PMID: 25658748]
[85]
Wei R, Yang J, Liu GQ, et al. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 2013; 518(2): 246-55.
[http://dx.doi.org/10.1016/j.gene.2013.01.038] [PMID: 23370336]
[86]
Bai C, Gao Y, Zhang X, Yang W, Guan W. MicroRNA-34c acts as a bidirectional switch in the maturation of insulin-producing cells derived from mesenchymal stem cells. Oncotarget 2017; 8(63): 106844-57.
[http://dx.doi.org/10.18632/oncotarget.21883] [PMID: 29290993]
[87]
Jafarian A, Taghikani M, Abroun S, et al. The generation of insulin producing cells from human mesenchymal stem cells by MiR-375 and Anti-MiR-9. PLoS One 2015; 10(6)e0128650
[http://dx.doi.org/10.1371/journal.pone.0128650] [PMID: 26047014]
[88]
Kato T, Shimano H, Yamamoto T, et al. Granuphilin is activated by SREBP-1c and involved in impaired insulin secretion in diabetic mice. Cell Metab 2006; 4(2): 143-54.
[http://dx.doi.org/10.1016/j.cmet.2006.06.009] [PMID: 16890542]
[89]
Sebastiani G, Valentini M, Grieco GE, et al. MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells. Acta Diabetol 2017; 54(3): 265-81.
[http://dx.doi.org/10.1007/s00592-016-0955-9] [PMID: 28039581]
[90]
Shaer A, Azarpira N, Karimi MH, Soleimani M, Dehghan S. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters by microRNA-7. Exp Clin Transplant 2016; 14(5): 555-63.
[PMID: 26103160]
[91]
Kato M, Castro NE, Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med 2013; 64: 85-94.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.009] [PMID: 23770198]
[92]
Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 2012; 18(1): 59-68.
[http://dx.doi.org/10.1016/j.molmed.2011.07.010] [PMID: 21889406]
[93]
He A, Zhu L, Gupta N, Chang Y, Fang F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 2007; 21(11): 2785-94.
[http://dx.doi.org/10.1210/me.2007-0167] [PMID: 17652184]
[94]
Newsholme P, Keane D, Welters HJ, Morgan NG. Life and death decisions of the pancreatic β-cell: the role of fatty acids. Clin Sci (Lond) 2007; 112(1): 27-42.
[http://dx.doi.org/10.1042/CS20060115] [PMID: 17132138]
[95]
Leiter LA. β-cell preservation: a potential role for thiazolidinediones to improve clinical care in Type 2 diabetes. Diabet Med 2005; 22(8): 963-72.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01605.x] [PMID: 16026359]
[96]
Weir GC, Marselli L, Marchetti P, Katsuta H, Jung MH, Bonner-Weir S. Towards better understanding of the contributions of overwork and glucotoxicity to the β-cell inadequacy of type 2 diabetes. Diabetes Obes Metab 2009; 11(Suppl. 4): 82-90.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01113.x] [PMID: 19817791]
[97]
Kovacs B, Lumayag S, Cowan C, Xu S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 2011; 52(7): 4402-9.
[http://dx.doi.org/10.1167/iovs.10-6879] [PMID: 21498619]
[98]
McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S. MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes 2011; 60(4): 1314-23.
[http://dx.doi.org/10.2337/db10-1557] [PMID: 21357793]
[99]
Ito T, Yang M, May WS. RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J Biol Chem 1999; 274(22): 15427-32.
[http://dx.doi.org/10.1074/jbc.274.22.15427] [PMID: 10336432]
[100]
Zhang L, Yu J, Ye M, Zhao H. Upregulation of CKIP-1 inhibits high-glucose induced inflammation and oxidative stress in HRECs and attenuates diabetic retinopathy by modulating Nrf2/ARE signaling pathway: an in vitro study. Cell Biosci 2019; 9(1): 67.
[http://dx.doi.org/10.1186/s13578-019-0331-x] [PMID: 31462987]
[101]
Shan Z-X, Lin Q-X, Deng C-Y, et al. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett 2010; 584(16): 3592-600.
[http://dx.doi.org/10.1016/j.febslet.2010.07.027] [PMID: 20655308]
[102]
Shao Y, Dong LJ, Takahashi Y, et al. miRNA451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy. Am J Physiol Endocrinol Metab 2019; 316(3): 443-452. 30576241
[103]
Horie T, Ono K, Nishi H, et al. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun 2009; 389(2): 315-20.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.136] [PMID: 19720047]
[104]
Shen E, Diao X, Wang X, Chen R, Hu B. MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. Am J Pathol 2011; 179(2): 639-50.
[http://dx.doi.org/10.1016/j.ajpath.2011.04.034] [PMID: 21704010]
[105]
Zhong X, Chung ACK, Chen H-Y, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 2013; 56(3): 663-74.
[http://dx.doi.org/10.1007/s00125-012-2804-x] [PMID: 23292313]
[106]
Dey N, Das F, Mariappan MM, et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem 2011; 286(29): 25586-603.
[http://dx.doi.org/10.1074/jbc.M110.208066] [PMID: 21613227]
[107]
Conserva F, Barozzino M, Pesce F, et al. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of Kidney Fibrosis in Diabetic Nephropathy. Sci Rep 2019; 9(1): 11357.
[http://dx.doi.org/10.1038/s41598-019-47778-1] [PMID: 31388051]
[108]
Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation 2003; 107(7): 929-34.
[http://dx.doi.org/10.1161/01.CIR.0000057525.13182.24] [PMID: 12600901]
[109]
Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N. Pancreatic islet differentiation of human embryonic stem cells by microRNA overexpression. J Tissue Eng Regen Med 2016; 10(6): 527-34.
[http://dx.doi.org/10.1002/term.1787] [PMID: 23897763]
[110]
Ong S-G, Lee WH, Kodo K, Wu JC. MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells. Adv Drug Deliv Rev 2015; 88: 3-15.
[http://dx.doi.org/10.1016/j.addr.2015.04.004] [PMID: 25887992]
[111]
Jun Y, Kim MJ, Hwang YH, et al. Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials 2013; 34(33): 8122-30.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.079] [PMID: 23927952]
[112]
Walczak MP, Drozd AM, Stoczynska-Fidelus E, Rieske P, Grzela DP. Directed differentiation of human iPSC into insulin producing cells is improved by induced expression of PDX1 and NKX6.1 factors in IPC progenitors. J Transl Med 2016; 14(1): 341.
[http://dx.doi.org/10.1186/s12967-016-1097-0] [PMID: 27998294]
[113]
Piran M, Enderami SE, Piran M, Sedeh HS, Seyedjafari E, Ardeshirylajimi A. Insulin producing cells generation by overexpression of miR-375 in adipose-derived mesenchymal stem cells from diabetic patients. Biologicals 2017; 46: 23-8.
[http://dx.doi.org/10.1016/j.biologicals.2016.12.004] [PMID: 28017506]
[114]
Yau WWY, Rujitanaroj PO, Lam L, Chew SY. Directing stem cell fate by controlled RNA interference. Biomaterials 2012; 33(9): 2608-28.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.021] [PMID: 22209557]
[115]
Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release 2013; 172(3): 962-74.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.015] [PMID: 24075926]
[116]
Schade A, Delyagina E, Scharfenberg D, et al. Innovative strategy for microRNA delivery in human mesenchymal stem cells via magnetic nanoparticles. Int J Mol Sci 2013; 14(6): 10710-26.
[http://dx.doi.org/10.3390/ijms140610710] [PMID: 23702843]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy