Research Article

MIR-143HG基因多态性是中国汉族人群胃癌发生的危险因素

卷 20, 期 7, 2020

页: [536 - 547] 页: 12

弟呕挨: 10.2174/1566524020666191227103144

价格: $65

摘要

背景:MicroRNA(miRNA)是各种癌症的发生和发展的关键调节器。胃癌(GC)是世界上最常见和致命的癌症之一。这项研究的目的是探讨microRNA-143宿主基因(miR-143HG)多态性是否与GC风险相关。 方法:在中国汉族人群的506例患者和500例健康对照中对5个单核苷酸多态性(SNP)进行基因分型。通过计算比值比(OR),95%置信区间(CI),使用多种遗传模型,分层分析和单倍型分析来评估miR-143HG多态性与GC风险之间的关联。 结果:我们的结果表明,在共显性模型下(OR = 0.67,95%CI = 0.52-0.88,p = 0.003)和在显性模型下,rs11168100与GC风险降低相关(OR = 0.72,95%CI = 0.56-0.92,p = 0.009)。在隐性模型下,Rs353300与GC风险增加有关(OR = 1.41,95%CI = 1.06-1.87,p = 0.017)。此外,rs11168100和rs353300与GC的易感性(年龄> 60岁)相关,三个SNP(rs12654195,rs353303和rs353300)与GC的风险(≤60岁)相关。此外,发现两个SNP(rs12654195和rs11168100)与女性亚组的GC敏感性降低有关。 Rs353300代表女性GC发生和发展的两个方面。最后,在多层淋巴结转移分析中,rs3533003与降低GC的风险有关。 结论:我们的结果首次为中国汉族人群中miR-143HG多态性与GC风险相关提供了一些证据。

关键词: 病例对照研究,中国汉族人群,单核苷酸多态性,胃癌,miR-143宿主基因。

[1]
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127(12): 2893-917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[2]
Zhu X, Li J. Gastric carcinoma in China: Current status and future perspectives. (Review) Oncol Lett 2010; 1(3): 407-12.
[http://dx.doi.org/10.3892/ol_00000071] [PMID: 22966316]
[3]
Song Z, Wu Y, Yang J, Yang D, Fang X. Progress in the treatment of advanced gastric cancer. Tumour Biol 2017; 39(7)1010428317714626
[http://dx.doi.org/10.1177/1010428317714626] [PMID: 28671042]
[4]
Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev 2014; 23(5): 700-13.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-1057] [PMID: 24618998]
[5]
Lin S, Liu J, Jiang W, et al. METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Med (Wars) 2019; 14: 25-31.
[http://dx.doi.org/10.1515/med-2019-0005] [PMID: 30886897]
[6]
Sheh A, Ge Z, Parry NM, et al. 17β-estradiol and tamoxifen prevent gastric cancer by modulating leukocyte recruitment and oncogenic pathways in Helicobacter pylori-infected INS-GAS male mice. Cancer Prev Res (Phila) 2011; 4(9): 1426-35.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0219] [PMID: 21680705]
[7]
Derakhshan MH, Liptrot S, Paul J, Brown IL, Morrison D, McColl KE. Oesophageal and gastric intestinal-type adenocarcinomas show the same male predominance due to a 17 year delayed development in females. Gut 2009; 58(1): 16-23.
[http://dx.doi.org/10.1136/gut.2008.161331] [PMID: 18838486]
[8]
Ladeiras-Lopes R, Pereira AK, Nogueira A, et al. Smoking and gastric cancer: systematic review and meta-analysis of cohort studies. Cancer Causes Control 2008; 19(7): 689-701.
[http://dx.doi.org/10.1007/s10552-008-9132-y] [PMID: 18293090]
[9]
Cook MB, Kamangar F, Whiteman DC, et al. Cigarette smoking and adenocarcinomas of the esophagus and esophagogastric junction: a pooled analysis from the international BEACON consortium. J Natl Cancer Inst 2010; 102(17): 1344-53.
[http://dx.doi.org/10.1093/jnci/djq289] [PMID: 20716718]
[10]
Freedman ND, Abnet CC, Leitzmann MF, et al. A prospective study of tobacco, alcohol, and the risk of esophageal and gastric cancer subtypes. Am J Epidemiol 2007; 165(12): 1424-33.
[http://dx.doi.org/10.1093/aje/kwm051] [PMID: 17420181]
[11]
Kim J, Park S, Nam BH. Gastric cancer and salt preference: a population-based cohort study in Korea. Am J Clin Nutr 2010; 91(5): 1289-93.
[http://dx.doi.org/10.3945/ajcn.2009.28732] [PMID: 20219954]
[12]
Hoyo C, Cook MB, Kamangar F, et al. Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the International BEACON Consortium. Int J Epidemiol 2012; 41(6): 1706-18.
[http://dx.doi.org/10.1093/ije/dys176] [PMID: 23148106]
[13]
Lagergren J, Bergström R, Lindgren A, Nyrén O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 1999; 340(11): 825-31.
[http://dx.doi.org/10.1056/NEJM199903183401101] [PMID: 10080844]
[14]
Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 2011; 377(9759): 31-41.
[http://dx.doi.org/10.1016/S0140-6736(10)62110-1] [PMID: 21144578]
[15]
Sakamoto H, Yoshimura K, Saeki N, et al. Study Group of Millennium Genome Project for Cancer. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat Genet 2008; 40(6): 730-40.
[http://dx.doi.org/10.1038/ng.152] [PMID: 18488030]
[16]
Shi Y, Hu Z, Wu C, et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat Genet 2011; 43(12): 1215-8.
[http://dx.doi.org/10.1038/ng.978] [PMID: 22037551]
[17]
Shekari N, Baradaran B, Shanehbandi D, Kazemi T. Circulating MicroRNAs: Valuable Biomarkers for the Diagnosis and Prognosis of Gastric Cancer. Curr Med Chem 2018; 25(6): 698-714.
[PMID: 28971758]
[18]
Li C, Dong J, Han Z, Zhang K. MicroRNA-219-5p Represses the Proliferation, Migration, and Invasion of Gastric Cancer Cells by Targeting the LRH-1/Wnt/β-Catenin Signaling Pathway. Oncol Res 2017; 25(4): 617-27.
[http://dx.doi.org/10.3727/096504016X14768374457986] [PMID: 27983934]
[19]
Ren J, Kuang TH, Chen J, Yang JW, Liu YX. The diagnostic and prognostic values of microRNA-21 in patients with gastric cancer: a meta-analysis. Eur Rev Med Pharmacol Sci 2017; 21(1): 120-30.
[PMID: 28121346]
[20]
Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466(7308): 835-40.
[http://dx.doi.org/10.1038/nature09267] [PMID: 20703300]
[21]
He C, Yu T, Shi Y, et al. MicroRNA 301A Promotes Intestinal Inflammation and Colitis-Associated Cancer Development by Inhibiting BTG1. Gastroenterol 2017; 152(6): 1434-1448.e15.
[http://dx.doi.org/10.1053/j.gastro.2017.01.049] [PMID: 28193514]
[22]
Sun HL, Cui R, Zhou J, et al. ERK Activation Globally Downregulates miRNAs through Phosphorylating Exportin-5. Cancer Cell 2016; 30(5): 723-36.
[http://dx.doi.org/10.1016/j.ccell.2016.10.001] [PMID: 27846390]
[23]
Shin VY, Chu KM. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 2014; 20(30): 10432-9.
[http://dx.doi.org/10.3748/wjg.v20.i30.10432] [PMID: 25132759]
[24]
Guan H, Li W, Li Y, et al. MicroRNA-93 promotes proliferation and metastasis of gastric cancer via targeting TIMP2. PLoS One 2017; 12(12)e0189490
[http://dx.doi.org/10.1371/journal.pone.0189490] [PMID: 29220395]
[25]
Song J, Guan Z, Li M, et al. MicroRNA-154 inhibits the growth and invasion of gastric cancer cells by targeting DIXDC1/WNT signaling. Oncol Res 2018; 26(6): 847-56.
[http://dx.doi.org/10.3727/096504017X15016337254632] [PMID: 28800791]
[26]
Chen HB, Zheng HT. MicroRNA-200c represses migration and invasion of gastric cancer SGC-7901 cells by inhibiting expression of fibronectin 1. Eur Rev Med Pharmacol Sci 2017; 21(8): 1753-8.
[PMID: 28485806]
[27]
Noguchi S, Yasui Y, Iwasaki J, et al. Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett 2013; 328(2): 353-61.
[http://dx.doi.org/10.1016/j.canlet.2012.10.017] [PMID: 23104321]
[28]
Yan X, Chen X, Liang H, et al. miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Mol Cancer 2014; 13(220): 220.
[http://dx.doi.org/10.1186/1476-4598-13-220] [PMID: 25248370]
[29]
Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ, Rodrigues CMP. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J 2009; 276(22): 6689-700.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07383.x] [PMID: 19843160]
[30]
Wu XL, Cheng B, Li PY, et al. MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2. World J Gastroenterol 2013; 19(43): 7758-65.
[http://dx.doi.org/10.3748/wjg.v19.i43.7758] [PMID: 24616567]
[31]
Chen JJ, Cai WY, Liu XW, et al. Reverse Correlation between MicroRNA-145 and FSCN1 Affecting Gastric Cancer Migration and Invasion. PLoS One 2015; 10(5)e0126890
[http://dx.doi.org/10.1371/journal.pone.0126890] [PMID: 26010149]
[32]
Wang J, Sun Z, Yan S, Gao F. Effect of miR 145 on gastric cancer cells. Mol Med Rep 2019; 19(5): 3403-10.
[http://dx.doi.org/10.3892/mmr.2019.10015] [PMID: 30864704]
[33]
Zeng JF, Ma XQ, Wang LP, Wang W. MicroRNA-145 exerts tumor-suppressive and chemo-resistance lowering effects by targeting CD44 in gastric cancer. World J Gastroenterol 2017; 23(13): 2337-45.
[http://dx.doi.org/10.3748/wjg.v23.i13.2337] [PMID: 28428713]
[34]
Iio A, Takagi T, Miki K, Naoe T, Nakayama A, Akao Y. DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells. Biochim Biophys Acta 2013; 1829(10): 1102-10.
[http://dx.doi.org/10.1016/j.bbagrm.2013.07.010] [PMID: 23932921]
[35]
Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform.In: Current protocols in human genetics. 2009.
[http://dx.doi.org/10.1002/0471142905.hg0212s60]
[36]
Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform.In: Curr Protoc Hum Genet. 2009; 2009.
[http://dx.doi.org/10.1002/0471142905.hg0212s60]
[37]
Thomas RK, Baker AC, Debiasi RM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet 2007; 39(3): 347-51.
[http://dx.doi.org/10.1038/ng1975] [PMID: 17293865]
[38]
Adamec C. [Example of the use of the nonparametric test. Test x2 for comparison of 2 independent examples] Cesk Zdrav 1964; 12: 613-9.
[PMID: 14246305]
[39]
Yang B, Heng L, Du S, et al. Association between RTEL1, PHLDB1, and TREH polymorphisms and glioblastoma risk: a case-control study. Med Sci Monit 2015; 21: 1983-8.
[http://dx.doi.org/10.12659/MSM.893723] [PMID: 26156397]
[40]
Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006; 22(15): 1928-9.
[http://dx.doi.org/10.1093/bioinformatics/btl268] [PMID: 16720584]
[41]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16(3): 203-22.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[42]
Jin P, Alisch RS, Warren ST. RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 2004; 6(11): 1048-53.
[http://dx.doi.org/10.1038/ncb1104-1048] [PMID: 15516998]
[43]
Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 2012; 110(3): 483-95.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.247452] [PMID: 22302755]
[44]
Wu WK, Lee CW, Cho CH, et al. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 2010; 29(43): 5761-71.
[http://dx.doi.org/10.1038/onc.2010.352] [PMID: 20802530]
[45]
Du C, Shen Z, Zang R, et al. Negative feedback circuitry between MIR143HG and RBM24 in Hirschsprung disease. Biochim Biophys Acta 2016; 1862(11): 2127-36.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.017] [PMID: 27565737]
[46]
Kontaraki JE, Marketou ME, Kochiadakis GE, et al. The long non-coding RNAs MHRT, FENDRR and CARMEN, their expression levels in peripheral blood mononuclear cells in patients with essential hypertension and their relation to heart hypertrophy. Clin Exp Pharmacol Physiol 2018; 45(11): 1213-7.
[http://dx.doi.org/10.1111/1440-1681.12997] [PMID: 29917257]
[47]
Lin X, Xiaoqin H, Jiayu C, Li F, Yue L, Ximing X. Long non-coding RNA miR143HG predicts good prognosis and inhibits tumor multiplication and metastasis by suppressing mitogen-activated protein kinase and Wnt signaling pathways in hepatocellular carcinoma. Hepatol Res 2019; 49(8): 902-18.
[http://dx.doi.org/10.1111/hepr.13344] [PMID: 30945380]
[48]
Zhao Q, Sun X, Liu C, Li T, Cui J, Qin C. Expression of the microRNA-143/145 cluster is decreased in hepatitis B virus-associated hepatocellular carcinoma and may serve as a biomarker for tumorigenesis in patients with chronic hepatitis B. Oncol Lett 2018; 15(5): 6115-22.
[http://dx.doi.org/10.3892/ol.2018.8117] [PMID: 29616093]
[49]
Xie H, Huang H, Huang W, Xie Z, Yang Y, Wang F. LncRNA miR143HG suppresses bladder cancer development through inactivating Wnt/β-catenin pathway by modulating miR-1275/AXIN2 axis. J Cell Physiol 2019; 234(7): 11156-64.
[http://dx.doi.org/10.1002/jcp.27764] [PMID: 30471109]
[50]
Zhang X, Zhuang J, Liu L, et al. Integrative transcriptome data mining for identification of core lncRNAs in breast cancer. PeerJ 2019; 7e7821

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy