Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Prediction of Oral Acute Toxicity of Organophosphates Using QSAR Methods

Author(s): Mina Kianpour, Esmat Mohammadinasab* and Tahereh M. Isfahani

Volume 17, Issue 1, 2021

Published on: 27 December, 2019

Page: [38 - 56] Pages: 19

DOI: 10.2174/1573409916666191227093237

Price: $65

Abstract

Aims: Prediction of oral acute toxicity of organophosphates using QSAR methods. Background: Prediction of oral acute toxicity of organophosphates (including some pesticides and insecticides) using GA-MLR and BPANN methods.

Objective: The aim of the present study was to develop quantitative structure-activity relationship (QSAR) models, based on molecular descriptors to predict the oral acute toxicity (LD50) of organophosphate compounds.

Methods: The QSAR models based on genetic algorithm-multiple linear regression (GA-MLR) and back-propagation artificial neural network (BPANN) methods were proposed. The prediction experiment showed that the BPANN method was a reliable model for screening molecular descriptors, and molecular descriptors obtained by BPANN models could well characterize the molecular structure of each compound.

Results: It was indicated that among molecular descriptors to predict the LD50 of organophosphates, ALOGP2, RDF030u, RDF065p and GATS5m descriptors have more importance than the other descriptors. Also BPANN approach with the values of root mean square error (RMSE= 0.00168), square correlation coefficient (R2 = 0.9999) and absolute average deviation (AAD=0.001675045) gave the best outcome, and the model predictions were in good agreement with experimental data.

Conclusion: The proposed model may be useful for predicting LD50 of new compounds of similar class.

Keywords: QSAR, GA-MLR, BPANN, organophosphates, LD50, ADD.

Graphical Abstract

[1]
Bowls, B.J.; Freeman, J.M.; Luna, J.A.; Meggs, W.J. Oral treatment of organophosphate poisoning in mice. Acad. Emerg. Med., 2003, 10(3), 286-288.
[http://dx.doi.org/10.1197/aemj.10.3.286] [PMID: 12615598]
[2]
Gunnell, D.; Eddleston, M.; Phillips, M.R.; Konradsen, F. The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health, 2007, 7(1), 357-372.
[http://dx.doi.org/10.1186/1471-2458-7-357] [PMID: 18154668]
[3]
Jett, D.A. Neurological aspects of chemical terrorism. Ann. Neurol., 2007, 61(1), 9-13.
[http://dx.doi.org/10.1002/ana.21072] [PMID: 17262854]
[4]
Mileson, B.E.; Chambers, J.E.; Chen, W.L.; Dettbarn, W.; Ehrich, M.; Eldefrawi, A.T.; Gaylor, D.W.; Hamernik, K.; Hodgson, E.; Karczmar, A.G.; Padilla, S.; Pope, C.N.; Richardson, R.J.; Saunders, D.R.; Sheets, L.P.; Sultatos, L.G.; Wallace, K.B. Common mechanism of toxicity: a case study of organophosphorus pesticides. Toxicol. Sci., 1998, 41(1), 8-20.
[PMID: 9520337]
[5]
Storm, J.E.; Rozman, K.K.; Doull, J. Occupational exposure limits for 30 organophosphate pesticides based on inhibition of red blood cell acetylcholinesterase. Toxicology, 2000, 150(1-3), 1-29.
[http://dx.doi.org/10.1016/S0300-483X(00)00219-5] [PMID: 10996660]
[6]
El Yazal, J.; Rao, S.N.; Mehl, A.; Slikker, W. Prediction of organophosphorus acetylcholinesterase inhibition using three-dimensional quantitative structure-activity relationship (3D-QSAR) methods. Toxicol. Sci., 2001, 63(2), 223-232.
[http://dx.doi.org/10.1093/toxsci/63.2.223] [PMID: 11568366]
[7]
Pope, C.N. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J. Toxicol. Environ. Health B Crit. Rev., 1999, 2(2), 161-181.
[http://dx.doi.org/10.1080/109374099281205] [PMID: 10230392]
[8]
Zhu, K.Y.; Gao, J.R. Increased activity associated with reduced sensitivity of acetylcholinesterase in organophosphate-resistant greenbug, schizaphis graminum (homoptera: aphididae). Health, Part B: Cri. Rev. Pestic. Sci., 1999, 55(1), 11-17.
[9]
Bolognesi, C. Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat. Res., 2003, 543(3), 251-272.
[http://dx.doi.org/10.1016/S1383-5742(03)00015-2] [PMID: 12787816]
[10]
Shi, L.M.; Fan, Y.; Myers, T.G.; O’Connor, P.M.; Paull, K.D.; Friend, S.H.; Weinstein, J.N. Mining the NCI anticancer drug discovery databases: genetic function approximation for the QSAR study of anticancer ellipticine analogues. J. Chem. Inf. Comput. Sci., 1998, 38(2), 189-199.
[http://dx.doi.org/10.1021/ci970085w] [PMID: 9538518]
[11]
Oloff, S.; Mailman, R.B.; Tropsha, A. Application of validated QSAR models of D1 dopaminergic antagonists for database mining. J. Med. Chem., 2005, 48(23), 7322-7332.
[http://dx.doi.org/10.1021/jm049116m] [PMID: 16279792]
[12]
Meneses-Marcel, A.; Marrero-Ponce, Y.; Machado-Tugores, Y.; Montero-Torres, A.; Pereira, D.M.; Escario, J.A.; Nogal-Ruiz, J.J.; Ochoa, C.; Arán, V.J.; Martínez-Fernández, A.R.; García Sánchez, R.N. A linear discrimination analysis based virtual screening of trichomonacidal lead-like compounds: outcomes of in silico studies supported by experimental results. Bioorg. Med. Chem. Lett., 2005, 15(17), 3838-3843.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.124] [PMID: 16005626]
[13]
Santana, L.; Uriarte, E.; González-Díaz, H.; Zagotto, G.; Soto-Otero, R.; Méndez-Alvarez, E. A QSAR model for in silico screening of MAO-A inhibitors. Prediction, synthesis, and biological assay of novel coumarins. J. Med. Chem., 2006, 49(3), 1149-1156.
[http://dx.doi.org/10.1021/jm0509849] [PMID: 16451079]
[14]
Yari, M.W.; Harno, D.P. Design of new potent insecticides of organophosphate derivatives based on QSAR Analysis. Indo. J. Chem., 2013, 13(1), 86-93.
[http://dx.doi.org/10.22146/ijc.21331]
[15]
McKinney, J.D.; Richard, A.; Waller, C.; Newman, M.C.; Gerberick, F. The practice of structure activity relationships (SAR) in toxicology. Toxicol. Sci., 2000, 56(1), 8-17.
[http://dx.doi.org/10.1093/toxsci/56.1.8] [PMID: 10869449]
[16]
Roy, K.; Das, R.N. A review on principles, theory and practices of 2D-QSAR. Curr. Drug Metab., 2014, 15(4), 346-379.
[http://dx.doi.org/10.2174/1389200215666140908102230] [PMID: 25204823]
[17]
Naik, P.K.; Singh, T.; Singh, H. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models. SAR QSAR Environ. Res., 2009, 20(5-6), 551-566.
[http://dx.doi.org/10.1080/10629360903278735] [PMID: 19916114]
[18]
Niraj, R.R.; Saini, V.; Kumar, A. QSAR analyses of organophosphates for insecticidal activity and its in-silico validation using molecular docking study. Environ. Toxicol. Pharmacol., 2015, 40(3), 886-894.
[http://dx.doi.org/10.1016/j.etap.2015.09.021] [PMID: 26492451]
[19]
Zahouily, M.; Rhihil, A.; Bazoui, H.; Sebt, S.; Zakarya, D. Structure-toxicity relationships study of a series of organophosphorus insecticides. Mol. Mod. Ann., 2002, 8(5), 168-172.
[20]
U.S. National Library of Medicine. (Available from:. http://chem.sis.nlm.nih.gov/chemidplus/
[21]
Todeschini, R.; Consonni, V. Handbook of molecular descriptors; , 2000.
[http://dx.doi.org/10.1002/9783527613106]
[22]
QSAR - New DRAGON. (Available from: . http://www. talete.mi.it
[23]
Hilbert, D.B. Genetic algorithm in chemistry. Chemom. Intell. Lab. Syst., 1993, 19(3), 277-293.
[http://dx.doi.org/10.1016/0169-7439(93)80028-G]
[24]
Ghasemi, J.; Ahmadi, S. Combination of genetic algorithm and partial least squares for cloud point prediction of nonionic surfactants from molecular structures. Ann. Chim., 2007, 97(1-2), 69-83.
[http://dx.doi.org/10.1002/adic.200690087] [PMID: 17822265]
[25]
Goodarzi, M.; Freitas, M.; Wu, C.H.; Duchowicz, P.R. pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression. Chemom. Intell. Lab., 2010, 101(2), 102-109.
[http://dx.doi.org/10.1016/j.chemolab.2010.02.003]
[26]
Cho, S.J.; Hermsmeier, M.A. Genetic algorithm guided selection: variable selection and subset selection. J. Chem. Inf. Comput. Sci., 2002, 42(4), 927-936.
[http://dx.doi.org/10.1021/ci010247v] [PMID: 12132894]
[27]
Ahmadi, S. Application of GA-MLR method in QSPR modeling of stability constants of diverse 15-crown-5 complexes with sodium cation. J. Incl. Phenom. Macrocycl. Chem., 2010, 74(1-4), 1-10.
[28]
Ghosh, P.; Bagchi, M.C. QSAR modeling for quinoxaline derivatives using genetic algorithm and simulated annealing based feature selection. Curr. Med. Chem., 2009, 16(30), 4032-4048.
[http://dx.doi.org/10.2174/092986709789352303] [PMID: 19747124]
[29]
Depczynski, U.; Frost, V.J.; Molt, K. Genetic algorithms applied to the selection of factors in principal component regression. Anal. Chim. Acta, 2000, 420(2), 217-227.
[http://dx.doi.org/10.1016/S0003-2670(00)00893-X]
[30]
Niazi, A.; Leardi, R. Genetic algorithms in chemometrics. Wiley Online Library., 2012, 26(6), 345-351.
[31]
Alsberg, B.K.; Marchand, G.N.; King, R.D. A new 3D molecular structure representation using quantum topology with application to structure–property relationships. Chemom. Intell. Lab. Syst., 2000, 54(2), 75-91.
[http://dx.doi.org/10.1016/S0169-7439(00)00101-5]
[32]
Leardi, R. Nature-inspired methods in chemometrics: genetic algorithms and artificial neural networks.Handling in Sci. and teach; Amsterdam, London,; , 2003.
[33]
Leardi, R. Application of genetic algorithm–PLS for feature selection in spectral data sets. J. Chemometr., 2000, 14(5-6), 643-655.
[http://dx.doi.org/10.1002/1099-128X(200009/12)14:5/6<643:AID-CEM621>3.0.CO;2-E]
[34]
Randic, M.; Basak, S.C. Multiple regression analysis with optimal molecular descriptors. SAR QSAR Environ. Res., 2000, 11(1), 1-23.
[http://dx.doi.org/10.1080/10629360008033226] [PMID: 10768403]
[35]
Kutner, M.k.; Nachtsheim, C.J.; Neter, J. Applied Linear Regression Models, 4th ed; McGraw-Hill: Boston, 2004.
[36]
Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed; John Wiley & Sons, 2015.
[37]
Snedecor, G.W.; Cochran, W.G. Statistical Methods; Oxford and IBH: New Delhi, 1967.
[38]
Parlak, A.; Islamoglu, Y.; Yasar, H.; Egrisogut, A. Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a Diesel engine. Appl. Therm. Eng., 2006, 26(8-9), 824-828.
[http://dx.doi.org/10.1016/j.applthermaleng.2005.10.006]
[39]
Nasr, G.E.; Badr, E.A.; Joun, C. Backpropagation neural networks for modelling gasoline consumption. Energy Convers. Manage., 2003, 44(6), 893-905.
[http://dx.doi.org/10.1016/S0196-8904(02)00087-0]
[40]
Basheer, I.A.; Hajmeer, M. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods, 2000, 43(1), 3-31.
[http://dx.doi.org/10.1016/S0167-7012(00)00201-3] [PMID: 11084225]
[41]
Moriguchi, I.; Hirino, S.; Liu, Q.; Nakagome, I.; Matsushita, Y. Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull. (Tokyo), 1992, 40(1), 127-130.
[http://dx.doi.org/10.1248/cpb.40.127]
[42]
Scotti, M.T.; Emerenciano, V.; Ferreira, M.J.P.; Scotti, L.; Stefani, R.; da Silva, M.S.; Mendonça, Junior F.J. Self-organizing maps of molecular descriptors for sesquiterpene lactones and their application to the chemotaxonomy of the Asteraceae family. Molecules, 2012, 17(4), 4684-4702.
[http://dx.doi.org/10.3390/molecules17044684] [PMID: 22522398]
[43]
Kawczak, P.; Belka, M.; Slawinski, J.; Baczek, T. QSRR evaluation of the new anticancer sulfonamides in view of the cis-trans isomerism. Curr. Pharm. Anal., 2018, 14(1), 35-40.
[44]
Rouhollahi, A.; Ghasemi, J.B.; Babaee, E.; Ouammou, A. Quantitative structure activity relationship modeling of environmentally important diphenyl ether herbicides using MLR and PLS. Curr. Anal. Chem., 2010, 6(1), 3-10.
[http://dx.doi.org/10.2174/157341110790069583]
[45]
Thapliyal, A.; Krishen Khar, R.; Chandra, A. Artificial neural network modelling of green synthesized silver nanoparticles in bentonite/starch bio-nanocomposite. Curr. Nanosci., 2018, 14(3), 239-251.
[http://dx.doi.org/10.2174/1573413713666171103103141]
[46]
Vogl, T.P.; Mangis, J.K.; Rigler, A.K.; Zink, W.T.; Alkon, D.L. Accelerating the convergence of the back-propagation method. Biol. Cybern., 1988, 59(4-5), 257-263.
[http://dx.doi.org/10.1007/BF00332914]
[47]
Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 2014, 7(3), 1247-1250.
[http://dx.doi.org/10.5194/gmd-7-1247-2014]
[48]
McKeen, S.A.; Wilczak, J.; Grell, G.; Djalalova, I.; Peckham, S.; Hsie, E.; Gong, W.; Bouchet, V.; Menard, S.; Moffet, R.; McHenry, J.; McQueen, J.; Tang, Y.; Carmichael, G.R.; Pagowski, M.; Chan, A.; Dye, T.; Frost, G.; Lee, P.; Mathur, R. Assessment of an ensemble of seven real time ozone forecasts over eastern North America during the summer of 2004. J. Geophys. Res., 2005, 110(D21307), 1-16.
[49]
Savage, N.H.; Agnew, P.; Davis, L.S.; Ordóñez, C.; Thorpe, R.; Johnson, C.E.; O’Connor, F.M.; Dalvi, M. Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation. Geosci. Model Dev., 2013, 6(2), 353-372.
[http://dx.doi.org/10.5194/gmd-6-353-2013]
[50]
Ghaffari, M.M.; Faujan, B.H.A.; Mahiran, B.; Mohd Basyaruddin, A.R. Artificial neural network modeling studies to predict the yield of enzymatic synthesis of betulinic acid ester. Electron. J. Biotechnol., 2010, 13(3), 1-12.
[http://dx.doi.org/10.2225/vol13-issue3-fulltext-9]
[51]
Bas, D. Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J. Food Eng., 2007, 78(3), 846-854.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy