Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Proposed Mechanism of Tecoma stans in Diabetes-Associated Complications

Author(s): Amit Gupta and Tapan Behl*

Volume 11, Issue 2, 2021

Published on: 24 December, 2019

Page: [127 - 139] Pages: 13

DOI: 10.2174/2210315510666191224114311

Price: $65

Abstract

Tecoma stans (L.) Juss. ex Kunth has shown potent antidiabetic effect in the past; however, none of the studies have been carried out to explore its effect in diabetic complications including diabetic retinopathy and nephropathy. Thus, this review will aim to explore and propose multiple hypotheses regarding its mechanism of action in diabetic complications which includes reduction in oxidative stress, inflammation, angiogenesis, lipid profile correction and direct anti-glycemic effects.

A detailed review including most of the articles, which includes research as well as reviews, available on the internet regarding the concerned topic was performed. The review includes MEDLINE databases using keywords along with their combinations, such as diabetic complications, plants in diabetes, Tecoma stans, renin oxidative stress, inflammation, angiogenesis, diabetic retinopathy, α- glucosidase and α-amylase, among several others. Mostly English-language articles were selected.

Since it has already been reported in various studies that Tecoma stans exhibit anti-diabetic effect, however no information regarding its effects in diabetic complications were reported. This review presents the data which aids in confirming that Tecoma stans can provide promising results in oxidative stress, inflammation, angiogenesis and lipid peroxidation. Furthermore, it has been depicted that Tecoma stans has the potential for α-glucosidase inhibition. The mechanism below can explain that Tecoma stans can be used in diabetic complications of diabetic nephropathy and retinopathy.

Tecoma stans may provide an effective natural product to treat hyperglycaemia and prevent subsequent diabetic complications which includes nephropathy and retinopathy.

Keywords: Angiogenesis, inflammation, low-density lipoprotein cholesterol level, oxidative stress, nephropathy, diabetic.

Graphical Abstract

[2]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006]
[3]
Bansode, T.S.; Salalkar, B.K. Phytotherapy: Herbal medicine in the management of Diabetes mellitus. Plant Sci. Today, 2017, 4(4), 161-165.
[http://dx.doi.org/10.14719/pst.2017.4.4.347]
[4]
Behl, T.; Kotwani, A. Proposed mechanisms of Terminalia catappa in hyperglycaemia and associated diabetic complications. J. Pharm. Pharmacol., 2017, 69(2), 123-134.
[http://dx.doi.org/10.1111/jphp.12676]
[5]
Aguilar, L.C.; Macias, S.; Chagoya, A.; Cardenas, A. Antidiabetic activity of Tecoma stans in rats. Fitoterapia, 1993, 64, 304.
[6]
Román-Ramos, R.; Flores-Sáenz, J.L.; Partida-Hernández, G.; Lara-Lemus, A.; Alarcón-Aguilar, F. Experimental study of the hypoglycemic effect of some antidiabetic plants. Arch. Invest. Med. (Mex.), 1991, 22(1), 87-93.
[7]
Costantino, L.; Raimondi, L.; Pirisino, R.; Brunetti, T.; Pessotto, P.; Giannessi, F.; Lins, A.P.; Barlocco, D.; Antolini, L.; El-Abady, S.A. Isolation and pharmacological activities of the Tecoma stans alkaloids. Farmaco, 2003, 58(9), 781-785.
[http://dx.doi.org/10.1016/S0014-827X(03)00133-2]
[8]
Aguilar-Santamaría, L.; Ramírez, G.; Nicasio, P.; Alegría-Reyes, C.; Herrera-Arellano, A. Antidiabetic activities of Tecoma stans (L.) Juss. ex Kunth. J. Ethnopharmacol., 2009, 124(2), 284-288.
[http://dx.doi.org/10.1016/j.jep.2009.04.033]
[9]
Tekwu, E.M.; Beng, V.P.; Kuete, V. African medicinal plants acting on the reproductive, cardiovascular, and central nervous systems. In: Medicinal Plant Research in Africa; Elsevier, 2013; pp. 805-841.
[http://dx.doi.org/10.1016/B978-0-12-405927-6.00022-9]
[10]
Kameshwaran, S.; Suresh, V.; Arunachalam, G.; Kanthlal, S.K.; Mohanraj, M. In vitro and in vivo anticancer activity of methanolic extract of Tecoma stans flowers. Int. Res. J. Pharm., 2012, 3(3), 246-251.
[11]
Kameshwaran, S.; Suresh, V.; Arunachalam, G.; Frank, P.R.; Manikandan, V. Evaluation of antinociceptive and anti-inflammatory potential of flower extract Tecoma stans. Indian J. Pharmacol., 2012, 44(4), 543-544.
[http://dx.doi.org/10.4103/0253-7613.99352]
[12]
Pallavi, K.; Vishnavi, B.; Mamatha, P.K.; Amruthapriyanka, A. Phytochemical investigation and anti-microbial activity of Tecoma stans. World J. Pharm. Re., 2014, 3(2), 70-72.
[13]
Marzouk, M.S.; Gamal-Eldeen, A.M.; Mohamed, M.A.; El-Sayed, M.M. Antioxidant and anti-proliferative active constituents of Tecoma stans against tumor cell lines. Nat. Prod. Commun., 2006, 1(9)
[http://dx.doi.org/10.1177/1934578X0600100908]]
[14]
Namde, H.; Wani, M. Callus induction studies and active components and antioxidant activity investigation from leaves and callus of Tecoma stans L. Juss. Ex. Kunth. Res. J. Pharm. Biol. Chem. Sci., 2014, 5(2), 604-610.
[15]
Terán Baptista, Z.P.; Gómez, A.L.A.; Kritsanida, M.; Grougnet, R.; Mandova, T.; Aredes Fernandez, P.A.; Sampietro, D.A. Antibacterial activity of native plants from Northwest Argentina against phytopathogenic bacteria. Nat. Prod. Res., 2018, 9, 1-4.
[http://dx.doi.org/10.1080/14786419.2018.1525716]
[16]
Ramesh, T.; Anusha, V.; Kumar, A.R. Antibacterial activity of methanolic extract of roots of Tecoma stans. Int. J. Chem. Sci., 2009, 7(1), 6-8.
[17]
Govindappa, M.; Sadananda, T.S.; Channabasava, R.; Raghavendra, V.B. In vitro anti-inflammatory, lipoxygenase, xanthine oxidase and acetycholinesterase inhibitory activity of Tecoma stans (L.) Juss. Ex kunth. Int. J. Pharma Bio Sci., 2011, 2(2), 275-285.
[18]
Tavs A, Abere; Comfort O, Enoghama Pharmacognostic standardization and insecticidal activity of the leaves of Tecoma stans Juss (Bignoniaceae). J. Sci. Pract. Phar., 2011, (2), 39-45.
[19]
Salem, M.Z.; Gohar, Y.M.; Camacho, L.M.; El-Shanhorey, N.A.; Salem, A.Z. Antioxidant and antibacterial activities of leaves and branches extracts of Tecoma stans (L.) Juss. ex Kunth against nine species of pathogenic bacteria. Afr. J. Microbiol. Res., 2013, 7(5), 418-426.
[http://dx.doi.org/10.5897/AJMR12.2274]
[20]
Subalakshmi, T. Jepa Chandra, Mohan. Inhibitory effect of different solvent extracts of Tecoma stans, Ixora Coccinea and AervaLenata leaves on pseudomonas aeruginosa and Streptococcus Sp. of cattle pathogens. World J. Pharm. Pharm. Sci., 2017, (6), 1219-1228.
[21]
Venkatadri, B.; Arunagirinathan, N.; Rameshkumar, M.R.; Ramesh, L.; Dhanasezhian, A.; Agastian, P. In vitro antibacterial activity of aqueous and ethanol extracts of Aristolochiaindica and Toddaliaasiatica against multidrug-resistant bacteria. Indian J. Pharm. Sci., 2015, 77(6), 788-791.
[http://dx.doi.org/10.4103/0250-474X.174991]
[22]
Brahmam, B.; Sirisha, K.; Sathish Kumar, M.; Narendra Babu, A.; Rama Rao, N.V. Evaluation of central analgesic activity of Tecoma stans flower extracts. Int. J. Pharm. Pharm. Res., 2015, 4(1), 89-92.
[23]
Sridharan, G.; Sarvanan, R.; Brindha, P. Evaluation of anticancer potentials of Tecoma stans (L). Juss. ex. Kunth against EAC cell lines. Int. J. Pharm. Pharm. Sci., 2014, 6(1), 88-92.
[24]
Ittagi, S.; Merugumolu, V.K.; Siddamsetty, R.S. Cardioprotective effect of hydroalcoholic extract of Tecoma stans flowers against isoproterenol induced myocardial infarction in rats. Asian Pac. J. Trop. Med., 2014, 4, S378-S384.
[http://dx.doi.org/10.1016/S2222-1808(14)60474-6]
[25]
Shanmukha, I.; Vijay Kumar, M.; Ramachandra Setty, S. Effect of Tecoma stans leaves for its preventive role on experimentally induced liver toxicity. Int. J. Pharm. Tech. Res., 2013, 5(3), 915-923.
[26]
Kamalakkannan, N.; Prince, P.S. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin. Pharmacol. Toxicol., 2006, 98(1), 97-103.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_241.x]
[27]
Taher, M.A.; Dawood, D.H.; Sanad, M.I.; Hassan, R.A. Searching for anti-hyperglycemic phytomolecules of Tecoma stans. Eur. J. Chem., 2016, 7(4), 397-404.
[http://dx.doi.org/10.5155/eurjchem.7.4.397-404.1478]
[28]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2010, 33(Suppl. 1), S62-S69.
[http://dx.doi.org/10.2337/dc10-S062]
[29]
Boudina, S.; Abel, E.D. Diabetic cardiomyopathy, causes and effects. Rev. Endocr. Metab. Disord., 2010, 11(1), 31-39.
[http://dx.doi.org/10.1007/s11154-010-9131-7]
[30]
Guzman, D.C.; Olguín, H.J.; García, E.H.; Peraza, A.V.; de la Cruz, D.Z.; Soto, M.P. Mechanisms involved in the development of diabetic retinopathy induced by oxidative stress. Redox Rep., 2017, 22(1), 10-16.
[http://dx.doi.org/10.1080/13510002.2016.1205303]
[31]
Luis-Rodríguez, D.; Martínez-Castelao, A.; Górriz, J.L.; De-Álvaro, F.; Navarro-González, J.F. Pathophysiological role and therapeutic implications of inflammation in diabetic nephropathy. World J. Diabetes, 2012, 3(1), 7-18.
[http://dx.doi.org/10.4239/wjd.v3.i1.7]
[32]
Anburaj, G.; Marimuthu, M.; Sobiyana, P.; Manikandan, R. A Review on Tecoma stans. Int. J. Eng. Res. Mod. Educ., 2016, 1(1), 43-49.
[33]
Patriota, L.L.; Procópio, T.F.; de Souza, M.F.; de Oliveira, A.P.; Carvalho, L.V.; Pitta, M.G.; Rego, M.J.; Paiva, P.M.; Pontual, E.V.; Napoleão, T.H. A trypsin inhibitor from Tecoma stans leaves inhibits growth and promotes ATP depletion and lipid peroxidation in Candida albicans and Candida krusei. Front. Microbiol., 2016, 7, 611.
[http://dx.doi.org/10.3389/fmicb.2016.00611]
[34]
Bailey, L.H., Ed.; The Standard Cyclopedia of Horticulture: Illustrated with Colored Plates, Four Thousand Engravings in the Text, and Ninety-six Full-page Cuts; Macmillan, 1929.
[35]
Verma, S. Phytochemical and pharmacological review study on Tecoma stans Linn. J. Med. Plants Stud., 2016, 4(5), 162-164.
[36]
Jones, G.; Ferguson, G.; Marsh, W.C. Stereochemistry and absolute configuration of Tecomanine and alkaloid C, an oxygenated skytanthine, two monoterpene alkaloids from Tecoma stans. J. Chem. Soc. Chem. Commun., 1971, (17), 994-996.
[http://dx.doi.org/10.1039/c29710000994]
[37]
Anburaj, G.; Marimuthu, M.; Rajasudha, V.; Manikandan, R. Phytochemical screening and GC-MS analysis of ethanolic extract of Tecoma stans (Family: Bignoniaceae) yellow bell flowers. J. Pharmacogn. Phytochem., 2016, 5(6), 172.
[38]
Epifano, F.; Genovese, S.; Fiorito, S.; Mathieu, V.; Kiss, R. Lapachol and its congeners as anticancer agents: a review. Phytochem. Rev., 2014, 13(1), 37-49.
[http://dx.doi.org/10.1007/s11101-013-9289-1]
[39]
Lins, A.P.; Felicio, J.D. Monoterpene alkaloids from Tecoma stans. Phytochemistry, 1993, 34(3), 876-878.
[http://dx.doi.org/10.1016/0031-9422(93)85381-Z]
[40]
Hammouda, Y.; Rashid, A.K.; Amer, M.S. Hypoglycaemic properties of Tecomine and Tecostanine. J. Pharm. Pharmacol., 1964, 16(12), 833-834.
[http://dx.doi.org/10.1111/j.2042-7158.1964.tb07420.x]
[41]
Hammouda, Y.; Amer, M.S. Antidiabetic effect of Tecomine and tecostanine. J. Pharm. Sci., 1966, 55(12), 1452-1454.
[http://dx.doi.org/10.1002/jps.2600551228]
[42]
Hammouda, Y.; Khalafallah, N. Stability of tecomine, the major antidiabetic factor of Tecoma stans (Juss.) f. bignoniaceae. J. Pharm. Sci., 1971, 60(8), 1142-1145.
[http://dx.doi.org/10.1002/jps.2600600806]
[43]
Dohnal, B. Investigations on some metabolites of Tecoma stans Juss. callus tissue. Part III. Chromatographical search for iridoids, phenolic acids, terpenoids and sugars. Acta Soc. Bot. Pol., 1977, 46(2), 187-199.
[http://dx.doi.org/10.5586/asbp.1977.015]
[44]
Winkelman, M. Ethnobotanical treatments of diabetes in Baja California Norte. Med. Anthropol., 1989, 11(3), 255-268.
[http://dx.doi.org/10.1080/01459740.1989.9965997]
[45]
Evangeline, R.M.; Murugan, N.; Kumar, P.P. Christhudas. In vitro studies on α-glucosidase inhibition, antioxidant and free radical scavenging properties of Tecoma stans. Food Chem., 2015, 7, 44-49.
[46]
Ravishankar, B.; Shukla, V.J. Indian systems of medicine: a brief profile. Afr. J. Tradit. Complement. Altern. Med., 2007, 4(3), 319-337.
[http://dx.doi.org/10.4314/ajtcam.v4i3.31226]
[47]
Jadhav, D. Ethanomedicinal plants used by Bhil tribe of Bibdod, Madhya Pradesh. Afr. J. Tradit. Complement. Altern. Med., 2006, 5(2), 263-267.
[48]
Mohan, S.C.; Anand, T.; Priya, R.M. Protective effect of Tecoma stans flowers on gentamicin-induced nephrotoxocity in rats. Asian J. Biochem., 2016, 11(1), 59-67.
[http://dx.doi.org/10.3923/ajb.2016.59.67]
[49]
Javid, T.; Adnan, M.; Tariq, A.; Akhtar, B.; Ullah, R.; El Salam, N.A. Antimicrobial activity of three medicinal plants (Artemisia indica, Medicago falcate and Tecoma stans). Afr. J. Tradit. Complement. Altern. Med., 2015, 12(3), 91-96.
[http://dx.doi.org/10.4314/ajtcam.v12i3.11]
[50]
Robinson, J.P.; Suriya, K.; Subbaiya, R.; Ponmurugan, P. Antioxidant and cytotoxic activity of Tecoma stans against lung cancer cell line (A549). Braz. J. Pharm. Sci., 2017, 53(3)
[http://dx.doi.org/10.1590/s2175-97902017000300204]]
[51]
Thirumal, M.; Kishore, G.; Prithika, R.; Das, S.; Nithya, G. In vitro anticancer activity of Tecoma stans (L.) ethanolic leaf extract on human breast cancer cell line (MCF-7). Int. J. Pharma Bio Sci., 2012, 2(4), 488-493.
[52]
Ramirez, G.; Zamilpa, A.; Zavala, M.; Perez, J.; Morales, D.; Tortoriello, J. Chrysoeriol and other polyphenols from Tecoma stans with lipase inhibitory activity. J. Ethnopharmacol., 2016, 185, 1-8.
[http://dx.doi.org/10.1016/j.jep.2016.03.014]
[53]
Hernandez-Galicia, E.; Aguilar-Contreras, A.; Aguilar-Santamaria, L.; Roman-Ramos, R.; Chavez-Miranda, A.A.; Garcia-Vega, L.M.; Flores-Saenz, J.L.; Alarcon-Aguilar, F.J. Studies on hypoglycemic activity of Mexican medicinal plants.Proceedings of the western pharmacology society; , 2002, Vol. 45, pp. 118-124. Seattle, Wash.
[54]
Alonso-Castro, A.J.; Zapata-Bustos, R.; Romo-Yañez, J.; Camarillo-Ledesma, P.; Gómez-Sánchez, M.; Salazar-Olivo, L.A. The antidiabetic plants Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae) and Teucrium cubense Jacq (Lamiaceae) induce the incorporation of glucose in insulin-sensitive and insulin-resistant murine and human adipocytes. J. Ethnopharmacol., 2010, 127(1), 1-6.
[http://dx.doi.org/10.1016/j.jep.2009.09.060]
[55]
Wang, G.G.; Lu, X.H.; Li, W.; Zhao, X.; Zhang, C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid. Based Complement. Alternat. Med., 2011.2011323171
[http://dx.doi.org/10.1155/2011/323171]
[56]
Bagli, E.; Stefaniotou, M.; Morbidelli, L.; Ziche, M.; Psillas, K.; Murphy, C.; Fotsis, T. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3¢-kinase activity. Cancer Res., 2004, 64(21), 7936-7946.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3104]
[57]
Baskaran, K.; Pugalendi, K.V.; Saravanan, R. Antidiabetic and antihyperlipidemic activity of Chrysoeriol in diabetic rats, role of HMG CoA reductase, LCAT and LPL: In vivo and in silico approaches. J. Pharm. Res., 2015, 9(9), 597-605.
[58]
Jin, S.; Chang, C.; Zhang, L.; Liu, Y.; Huang, X.; Chen, Z. Chlorogenic acid improves late diabetes through adiponectin receptor signaling pathways in db/db mice. PLoS One, 2015, 10(4), e0120842.
[http://dx.doi.org/10.1371/journal.pone.0120842]
[59]
Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.; Choi, M.S.; Lee, M.K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol., 2010, 48(3), 937-943.
[http://dx.doi.org/10.1016/j.fct.2010.01.003]
[60]
Li, S.Y.; Chang, C.Q.; Ma, F.Y.; Yu, C.L. Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-α in golden hamsters fed on high fat diet. Biomed. Environ. Sci., 2009, 22(2), 122-129.
[http://dx.doi.org/10.1016/S0895-3988(09)60034-9]
[61]
Mei, X.; Zhou, L.; Zhang, T.; Lu, B.; Sheng, Y.; Ji, L. Chlorogenic acid attenuates diabetic retinopathy by reducing VEGF expression and inhibiting VEGF-mediated retinal neoangiogenesis. Vascul. Pharmacol., 2018, 101, 29-37.
[http://dx.doi.org/10.1016/j.vph.2017.11.002]
[62]
Park, J.J.; Hwang, S.J.; Park, J.H.; Lee, H.J. Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway. Cell Oncol. (Dordr.), 2015, 38(2), 111-118.
[http://dx.doi.org/10.1007/s13402-014-0216-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy