Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Synthesis, In Vitro and In Silico Studies of Indolequinone Derivatives against Clinically Relevant Bacterial Pathogens

Author(s): Talita Odriane Custodio Leite, Juliana Silva Novais, Beatriz Lima Cosenza de Carvalho, Vitor Francisco Ferreira, Leonardo Alves Miceli, Letícia Fraga, Bárbara Abrahim-Vieira, Carlos Rangel Rodrigues, Agnes Marie Sá Figueiredo, Helena Carla Castro* and Anna Claudia Cunha*

Volume 20, Issue 3, 2020

Page: [192 - 208] Pages: 17

DOI: 10.2174/1568026620666191223110518

Price: $65

conference banner
Abstract

Background: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms.

Objective: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives.

Methods: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C – APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis.

Results: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections.

Conclusion: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.

Keywords: Indolequinone, Antimicrobial, β-enamino ketones, Staphylococcus aureus, MRSA, Molecular docking.

Graphical Abstract

[1]
Fernandes, P.; Martens, E. Antibiotics in late clinical development. Biochem. Pharmacol., 2017, 133, 152-163.
[http://dx.doi.org/10.1016/j.bcp.2016.09.025] [PMID: 27687641]
[2]
Meletis, G. Carbapenem resistance: overview of the problem and future perspectives. Ther. Adv. Infect. Dis., 2016, 3(1), 15-21.
[http://dx.doi.org/10.1177/2049936115621709] [PMID: 26862399]
[3]
Konaklieva, M.I. Molecular targets of β-lactam-based antimicrobials: beyond the usual suspects. Antibiotics (Basel), 2014, 3(2), 128-142.
[http://dx.doi.org/10.3390/antibiotics3020128] [PMID: 27025739]
[4]
Brambilla, L.Z.S.; Endo, E.H.; Cortez, D.A.G.; Dias Filho, B.P. Anti-biofilm activity against Staphylococcus aureus MRSA and MSSA of neolignans and extract of piper regnellii. Rev. Bras. Farmacogn., 2017, 27, 112-117.
[http://dx.doi.org/10.1016/j.bjp.2016.08.008]
[5]
Ali, J.; Rafiq, Q.A.; Ratcliffe, E. Antimicrobial resistance mechanisms and potential synthetic treatments. Future Sci. OA, 2018, 4(4) FSP290
[http://dx.doi.org/10.4155/fsoa-2017-0109] [PMID: 29682325]
[6]
Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; Salamat, M.K.F.; Baloch, Z. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist., 2018, 11, 1645-1658.
[http://dx.doi.org/10.2147/IDR.S173867] [PMID: 30349322]
[7]
Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS One, 2017, 12(12) e0189621
[http://dx.doi.org/10.1371/journal.pone.0189621] [PMID: 29267306]
[8]
Hasan, R.; Acharjee, M.; Noor, R. Prevalence of vancomycin resistant Staphylococcus aureus (VRSA) in methicillin resistant S. aureus (MRSA) strains isolated from burn wound infections. Ci Ji Yi Xue Za Zhi, 2016, 28(2), 49-53.
[http://dx.doi.org/10.1016/j.tcmj.2016.03.002] [PMID: 28757721]
[9]
Chessa, D.; Ganau, G.; Mazzarello, V. An overview of Staphylococcus epidermidis and Staphylococcus aureus with a focus on developing countries. J. Infect. Dev. Ctries., 2015, 9(6), 547-550.
[http://dx.doi.org/10.3855/jidc.6923] [PMID: 26142662]
[10]
Meade, E.; Slattery, M.A.; Garvey, M. Antimicrobial resistance: an agent in zoonotic disease and increased morbidity. J. Clin. Exp. Toxicol., 2017, 1, 30-37.
[11]
Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[12]
Sakr, F.; Dabbous, M.; Malaeb, D.N.; Rahal, M. Novel antimicrobial agents: a review. Int. J. Pharm. Tech., 2014, 5, 2824-2838.
[13]
Ventola, C.L. The antibiotic resistance crisis: part 1: causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[14]
Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological effects of antibiotics on natural ecosystems: a review. Microchem. J., 2018, 136, 25-39.
[http://dx.doi.org/10.1016/j.microc.2017.02.006]
[15]
da Silva, W.A.; da Silva, L.C.; Campos, V.R.; de Souza, M.C.; Ferreira, V.F.; Dos Santos, Â.C.; Sathler, P.C.; de Almeida, G.S.; Dias, F.R.; Cabral, L.M.; de Azeredo, R.B.; Cunha, A.C. Synthesis and antitumor evaluation of hybrids of 5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylates and carbohydrates. Future Med. Chem., 2018, 10(5), 527-540.
[http://dx.doi.org/10.4155/fmc-2017-0173] [PMID: 29424562]
[16]
Campos, V.R.; Cunha, A.C.; Silva, W.A.; Ferreira, V.F.; Souza, C.S.; Fernandes, P.D.; Moreira, V.N.; Rocha, D.R.; Dias, F.R.F.; Montenegro, R.C.; Souza, M.C.B.V.; Boechat, F.C.S.; Franco, C.F.J.; Resende, J.A.L.C. Synthesis of a New Class of Naphthoquinone Glycoconjugates and Evaluation of Their Potential as Antitumoral Agents. RSC Advances, 2015, 5, 96222-96229.
[http://dx.doi.org/10.1039/C5RA19192K]
[17]
Ibis, C.; Ozsoy-Gunes, Z.; Tuyun, A.F.; Ayla, S.S.; Bahar, H.; Stasevych, M.V.; Musyanovych, Ya.R.; Komarovska-Porokhnyavets, O.; Novikov, V. Synthesis, antibacterial and antifungal evaluation of thio- or piperazinyl-substituted 1,4-naphthoquinone derivatives. J. Sulfur Chem., 2016, 37, 477-487.
[http://dx.doi.org/10.1080/17415993.2016.1187734]
[18]
Novais, J.S.; Campos, V.R.; Silva, A.C.J.A.; Souza, M.C.B.V.; Ferreira, V.F.; Keller, V.G.L.; Ferreira, M.O.; Dias, F.R.F.; Vitorino, M.I.; Sathler, P.C.; Santana, M.V.; Resende, J.A.L.C.; Castro, H.C.; Cunha, A.C. Synthesis and antimicrobial evaluation of promising 7-arylamino-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylates and their halogenated amino compounds for treating gram-negative bacterial infections. RSC Advances, 2017, 7, 18311-18320.
[http://dx.doi.org/10.1039/C7RA00825B]
[19]
Atala, E.; Velásquez, G.; Vergara, C.; Mardones, C.; Reyes, J.; Tapia, R.A.; Quina, F.; Mendes, M.A.; Speisky, H.; Lissi, E.; Ureta-Zañartu, M.S.; Aspée, A.; López-Alarcón, C. Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study. J. Phys. Chem. B, 2013, 117(17), 4870-4879.
[http://dx.doi.org/10.1021/jp400423w] [PMID: 23528077]
[20]
Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 2014, 94(2), 329-354.
[http://dx.doi.org/10.1152/physrev.00040.2012] [PMID: 24692350]
[21]
Karkare, S.; Chung, T.T.H.; Collin, F.; Mitchenall, L.A.; McKay, A.R.; Greive, S.J.; Meyer, J.J.M.; Lall, N.; Maxwell, A. The naphthoquinone diospyrin is an inhibitor of DNA gyrase with a novel mechanism of action. J. Biol. Chem., 2013, 288(7), 5149-5156.
[http://dx.doi.org/10.1074/jbc.M112.419069] [PMID: 23275348]
[22]
Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med., 2015, 80, 148-157.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.013] [PMID: 25433365]
[23]
Hillion, M.; Antelmann, H. Thiol-based redox switches in prokaryotes. Biol. Chem., 2015, 396(5), 415-444.
[http://dx.doi.org/10.1515/hsz-2015-0102] [PMID: 25720121]
[24]
Shchekotikhin, A.E.; Glazunova, V.A.; Luzikov, Y.N.; Buyanov, V.N.; Susova, O.Yu.; Shtil, A.A.; Preobrazhenskaya, M.N. Synthesis and structure-activity relationship studies of 4,11-diaminonaphtho[2,3-f]indole-5,10-diones. Bioorg. Med. Chem., 2006, 14(15), 5241-5251.
[http://dx.doi.org/10.1016/j.bmc.2006.03.052] [PMID: 16631372]
[25]
Cai, F.; Luis, M.A.F.; Lin, X.; Wang, M.; Cai, L.; Cen, C.; Biskup, E. Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: Preventive strategies and treatment. Mol. Clin. Oncol., 2019, 11(1), 15-23.
[http://dx.doi.org/10.3892/mco.2019.1854] [PMID: 31289672]
[26]
Wada, Y.; Fujioka, H.; Kita, Y. Synthesis of the marine pyrroloiminoquinone alkaloids, discorhabdins. Mar. Drugs, 2010, 8(4), 1394-1416.
[http://dx.doi.org/10.3390/md8041394] [PMID: 20479983]
[27]
Newsome, J.J.; Swann, E.; Hassani, M.; Bray, K.C.; Slawin, A.M.Z.; Beall, H.D.; Moody, C.J. Indolequinone antitumour agents: correlation between quinone structure and rate of metabolism by recombinant human NAD(P)H:quinone oxidoreductase. Org. Biomol. Chem., 2007, 5(10), 1629-1640.
[http://dx.doi.org/10.1039/b703370b] [PMID: 17571194]
[28]
Cherif, M.; Cotelle, P.; Catteau, J. General synthesis of 2, 3-substituted 5-membered heterocyclic quinones. Heterocycles, 1992, 34, 1749-1758.
[http://dx.doi.org/10.3987/COM-92-6070]
[29]
Nicolaou, K.C.; Sugita, K.; Baran, P.S.; Zhong, Y-L. Iodine(V) reagents in organic synthesis. Part 2. Access to complex molecular architectures via Dess-Martin periodinane-generated o-imidoquinones. J. Am. Chem. Soc., 2002, 124(10), 2221-2232.
[http://dx.doi.org/10.1021/ja012125p] [PMID: 11878976]
[30]
Uliana, M.P.; Vieira, Y.W.; Donatoni, M.C.; Corrêa, A.G.; Brocksom, U.; Brocksom, T.J. Oxidation of mono-phenols to para-benzoquinones: A comparative study. J. Braz. Chem. Soc., 2008, 19, 1484-1489.
[http://dx.doi.org/10.1590/S0103-50532008000800007]
[31]
Comer, E.; Murphy, S.W. The Bromoquinone Annulation Reaction: A Formal Total Synthesis of EO9. ARKIVOC, 2003, 2003(7), 286-296.
[http://dx.doi.org/10.3998/ark.5550190.0004.724]
[32]
Inman, M.; Moody, C.J. Copper(II)-Mediated Synthesis of Indolequinones from Bromoquinones and Enamines. Eur. J. Org. Chem., 2013, 2013(11), 2179-2187.
[http://dx.doi.org/10.1002/ejoc.201201597] [PMID: 23704833]
[33]
Yamashita, M.; Ueda, K.; Sakaguchi, K.; Iida, A. Synthesis of indolequinones via a sonogashira coupling/cyclization cascade reaction. Tetrahedron Lett., 2011, 52, 4665-4670.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.008]
[34]
Chuang, C-P.; Tsai, A-I. Oxidative free radical reactions between 2-amino-1,4-benzoquinones and carbonyl compounds. Tetrahedron, 2007, 63, 11911-11919.
[http://dx.doi.org/10.1016/j.tet.2007.09.019]
[35]
Germeraad, P.; Moore, H. Rearrangements of azidoquinones. XII. thermal conversion of 2-azido-3-vinyl-1,4-quinones to indolequinones. J. Org. Chem., 1974, 39, 774-780.
[http://dx.doi.org/10.1021/jo00920a008]
[36]
Kobayashi, K.; Takeuchi, H.; Seko, S.; Kanno, Y.; Kujime, S.; Suginome, H. Photoinduced Molecular Transformations. Part 142. One-Step Syntheses of 1H-Benz[f]Indole-4,9-Diones and 1H-Indole-4,7-Diones by a New Regioselective Photoaddition of 2-Amino-1,4-Naphthoquinones and 2-Amino-1,4-Benzoquinones with Alkenes. Helv. Chim. Acta, 1993, 76, 2942-2950.
[http://dx.doi.org/10.1002/hlca.19930760818]
[37]
Hegedus, L.S.; Mulhern, T.A.; Mori, A. Palladium(0)-Catalyzed Syntheses of Indoloquinones. J. Org. Chem., 1985, 50, 4282-4288.
[http://dx.doi.org/10.1021/jo00222a017]
[38]
Hegedus, L.S.; Weider, P.R.; Mulhern, T.A.; Asada, H.; D’Andrea, S. Palladium catalysis in the synthesis of indoloquinones. Gazz. Chim. Ital., 1986, 116, 213-219.
[39]
Fukuyama, Y.; Iwatsuki, C.; Kodama, M.; Ochi, M.; Kataoka, K.; Shibata, K. Antimicrobial Indolequinones from the Mid-Intestinal Gland of the Muricid Gastropod Drupella Fragum. Tetrahedron, 1998, 54, 10007-10016.
[http://dx.doi.org/10.1016/S0040-4020(98)00593-6]
[40]
Ventura, T.L.B.; Calixto, S.D.; de Azevedo Abrahim-Vieira, B.; de Souza, A.M.T.; Mello, M.V.P.; Rodrigues, C.R. Soter de Mariz e Miranda, L.; Alves de Souza, R.O.; Leal, I.C.; Lasunskaia, E.B.; Muzitano, M.F. Antimycobacterial and anti-inflammatory activities of substituted chalcones focusing on an anti-tuberculosis dual treatment approach. Molecules, 2015, 20(5), 8072-8093.
[http://dx.doi.org/10.3390/molecules20058072] [PMID: 25951004]
[41]
Mello, J.F.R.; Botelho, N.C.; Souza, A.M.; Oliveira, R.; Brito, M.A.; Abrahim-Vieira, B. de A.; Sodero, A.C.R.; Castro, H.C.; Cabral, L.M.; Miceli, L.A.; Rodrigues, C.R. Computational studies of benzoxazinone derivatives as antiviral agents against herpes virus type 1 protease. Molecules, 2015, 20(6), 10689-10704.
[http://dx.doi.org/10.3390/molecules200610689] [PMID: 26065834]
[42]
Weinstein, M.P. M100-S25 Performance standards for antimicrobial susceptibility testing. Twenty-Fifth Informational Supplement, 2015, 35(3), 1-240.
[43]
Konaté, K.; Mavoungou, J.F.; Lepengué, A.N.; Aworet-Samseny, R.R.; Hilou, A.; Souza, A.; Dicko, M.H.; M’batchi, B. Antibacterial activity against β- lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Ann. Clin. Microbiol. Antimicrob., 2012, 11, 18.
[http://dx.doi.org/10.1186/1476-0711-11-18] [PMID: 22716026]
[44]
Ferreira, F.A.; Souza, R.R.; de Sousa Moraes, B.; de Amorim Ferreira, A.M.; Américo, M.A.; Fracalanzza, S.E.L.; Dos Santos Silva Couceiro, J.N.; Sá Figueiredo, A.M. Impact of agr dysfunction on virulence profiles and infections associated with a novel methicillin-resistant Staphylococcus aureus (MRSA) variant of the lineage ST1-SCCmec IV. BMC Microbiol., 2013, 13, 93.
[http://dx.doi.org/10.1186/1471-2180-13-93] [PMID: 23622558]
[45]
Sathler, P.C.; Lourenço, A.L.; Rodrigues, C.R.; da Silva, L.C.; Cabral, L.M.; Jordão, A.K.; Cunha, A.C.; Vieira, M.C.B.; Ferreira, V.F.; Carvalho-Pinto, C.E.; Kang, H.C.; Castro, H.C. In vitro and in vivo analysis of the antithrombotic and toxicological profile of new antiplatelets N-acylhydrazone derivatives and development of nanosystems: determination of novel NAH derivatives antiplatelet and nanotechnological approach. Thromb. Res., 2014, 134(2), 376-383.
[http://dx.doi.org/10.1016/j.thromres.2014.05.009] [PMID: 24877647]
[46]
Ionescu, A.; Kozhemyakina, E.; Nicolae, C.; Kaestner, K.H. Spartan’10, version 1.1.0; Wavefunction, Inc. Irvine, CA., 2010.
[47]
Field, C.M.; Summers, D.K. Indole inhibition of ColE1 replication contributes to stable plasmid maintenance. Plasmid, 2012, 67(2), 88-94.
[http://dx.doi.org/10.1016/j.plasmid.2011.11.004] [PMID: 22172706]
[48]
Bax, B.D.; Chan, P.F.; Eggleston, D.S.; Fosberry, A.; Gentry, D.R.; Gorrec, F.; Giordano, I.; Hann, M.M.; Hennessy, A.; Hibbs, M.; Huang, J.; Jones, E.; Jones, J.; Brown, K.K.; Lewis, C.J.; May, E.W.; Saunders, M.R.; Singh, O.; Spitzfaden, C.E.; Shen, C.; Shillings, A.; Theobald, A.J.; Wohlkonig, A.; Pearson, N.D.; Gwynn, M.N. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 2010, 466(7309), 935-940.
[http://dx.doi.org/10.1038/nature09197] [PMID: 20686482]
[49]
Caldwell, S.; McPhail, B.D.; Duthie, G.; Hartley, R. Synthesis of polyhydroxylated flavonoids bearing a lipophilic decyl tail as potential therapeutic antioxidants. Can. J. Chem., 2012, 90, 23-33.
[http://dx.doi.org/10.1139/v11-087]
[50]
Mohammadizadeh, M.R.; Hasaninejad, A.; Bahramzadeh, M.; Khanjarlou, Z.S.P. 2O5/SiO2 as a new, efficient, and reusable catalyst for preparation of β-enaminones under solvent-free conditions. Synth. Commun., 2009, 39, 1152-1165.
[http://dx.doi.org/10.1080/00397910802513052]
[51]
Xu, P.; Huang, K.; Liu, Z.; Zhou, M.; Zeng, W. An Efficient and Convenient Synthesis of 1,2,3-Trisubstituted Pyrroles via Iodocyclization from Ethyl Acetoacetate. Tetrahedron Lett., 2013, 54, 2929-2933.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.094]
[52]
Zurita, J.; Barba, P.; Ortega-Paredes, D.; Mora, M.; Rivadeneira, S. Local circulating clones of Staphylococcus aureus in Ecuador. Braz. J. Infect. Dis., 2016, 20(6), 525-533.
[http://dx.doi.org/10.1016/j.bjid.2016.08.006] [PMID: 27638417]
[53]
Teixeira, M.M.; Araújo, M.C.; Silva-Carvalho, M.C.; Beltrame, C.O.; Oliveira, C.C.; Figueiredo, A.M.; Oliveira, A.G. Emergence of clonal complex 5 (CC5) methicillin-resistant Staphylococcus aureus (MRSA) isolates susceptible to trimethoprim-sulfamethoxazole in a Brazilian hospital. Braz. J. Med. Biol. Res., 2012, 45(7), 637-643.
[http://dx.doi.org/10.1590/S0100-879X2012007500065] [PMID: 22527128]
[54]
Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit. Care, 2017, 21(1), 211.
[http://dx.doi.org/10.1186/s13054-017-1801-3] [PMID: 28807042]
[55]
Figueiredo, A.M.S.; Ferreira, F.A. The multifaceted resources and microevolution of the successful human and animal pathogen methicillin-resistant Staphylococcus aureus. Mem. Inst. Oswaldo Cruz, 2014, 109(3), 265-278.
[http://dx.doi.org/10.1590/0074-0276140016] [PMID: 24789555]
[56]
Gajdács, M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics (Basel), 2019, 8(2), 52-79.
[http://dx.doi.org/10.3390/antibiotics8020052] [PMID: 31052511]
[57]
Ramírez-Estrada, S.; Borgatta, B.; Rello, J. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect. Drug Resist., 2016, 9, 7-18.
[PMID: 26855594]
[58]
Zgurskaya, H.I.; Löpez, C.A.; Gnanakaran, S. Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis., 2015, 1(11), 512-522.
[http://dx.doi.org/10.1021/acsinfecdis.5b00097] [PMID: 26925460]
[59]
Silver, L.L. A Gestalt approach to Gram-negative entry. Bioorg. Med. Chem., 2016, 24(24), 6379-6389.
[http://dx.doi.org/10.1016/j.bmc.2016.06.044] [PMID: 27381365]
[60]
Baldan, R.; Testa, F.; Lorè, N.I.; Bragonzi, A.; Cichero, P.; Ossi, C.; Biancardi, A.; Nizzero, P.; Moro, M.; Cirillo, D.M. Factors contributing to epidemic MRSA clones replacement in a hospital setting. PLoS One, 2012, 7(8) e43153
[http://dx.doi.org/10.1371/journal.pone.0043153] [PMID: 22905220]
[61]
Cihalova, K.; Chudobova, D.; Michalek, P.; Moulick, A.; Guran, R.; Kopel, P.; Adam, V.; Kizek, R. Staphylococcus aureus and MRSA Growth and Biofilm Formation after Treatment with Antibiotics and SeNPs. Int. J. Mol. Sci., 2015, 16(10), 24656-24672.
[http://dx.doi.org/10.3390/ijms161024656] [PMID: 26501270]
[62]
Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes, 2018, 4, 9.
[http://dx.doi.org/10.1038/s41522-018-0053-6] [PMID: 29707229]
[63]
McCarthy, H.; Rudkin, J.K.; Black, N.S.; Gallagher, L.; O’Neill, E.; O’Gara, J.P. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front. Cell. Infect. Microbiol., 2015, 5, 1-9.
[http://dx.doi.org/10.3389/fcimb.2015.00001] [PMID: 25674541]
[64]
Yan, Q.; Karau, M.J.; Patel, R. In vitro activity of oritavancin against biofilms of staphylococci isolated from prosthetic joint infection. Diagn. Microbiol. Infect. Dis., 2018, 92(2), 155-157.
[http://dx.doi.org/10.1016/j.diagmicrobio.2018.05.010] [PMID: 29885758]
[65]
Dobrovolskaia, M.A.; Clogston, J.D.; Neun, B.W.; Hall, J.B.; Patri, A.K.; McNeil, S.E. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett., 2008, 8(8), 2180-2187.
[http://dx.doi.org/10.1021/nl0805615] [PMID: 18605701]
[66]
Tiz, D.B.; Skok, Ž.; Durcik, M.; Tomašič, T.; Mašič, L.P.; Ilaš, J.; Zega, A.; Draskovits, G.; Révész, T.; Nyerges, Á.; Pál, C.; Cruz, C.D.; Tammela, P.; Žigon, D.; Kikelj, D.; Zidar, N. An optimised series of substituted N-phenylpyrrolamides as DNA gyrase B inhibitors. Eur. J. Med. Chem., 2019, 167, 269-290.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.004] [PMID: 30776691]
[67]
Fedorowicz, J.; Sączewski, J.; Konopacka, A.; Waleron, K.; Lejnowski, D.; Ciura, K.; Tomašič, T.; Skok, Ž.; Savijoki, K.; Morawska, M.; Gilbert-Girard, S.; Fallarero, A. Synthesis and biological evaluation of hybrid quinolone-based quaternary ammonium antibacterial agents. Eur. J. Med. Chem., 2019, 179, 576-590.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.071] [PMID: 31279292]
[68]
Cadle, R.M.; Mansouri, M.D.; Darouiche, R.O. Vancomycin-induced elevation of liver enzyme levels. Ann. Pharmacother., 2006, 40(6), 1186-1189.
[http://dx.doi.org/10.1345/aph.1G668] [PMID: 16720708]
[69]
Valencia, E.Y.; Esposito, F.; Spira, B.; Blázquez, J.; Galhardo, R.S. Ciprofloxacin-mediated mutagenesis is suppressed by subinhibitory concentrations of amikacin in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2017, 61(3), e2107-e2116.
[http://dx.doi.org/10.1128/AAC.02107-16] [PMID: 28031197]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy