Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Research Article

Preclinical Pharmacokinetics Study of a Novel Intravenous Anesthetic ET-26 Hydrochloride

Author(s): Yu Jun Zhang, ChaoYi Deng, Jun Yang, DeYing Gong, Yi Kang, Jin Liu and WenSheng Zhang*

Volume 20, Issue 13, 2019

Page: [1073 - 1081] Pages: 9

DOI: 10.2174/1389200221666191223105504

Price: $65

Abstract

Background: ET-26 hydrochloride is a novel intravenous anesthetic, approved for clinical trials, that produces a desirable sedative-hypnotic effect with stable myocardial performance and mild adrenocortical suppression in rats and beagle dogs. The objective of this study was to assess the absorption, distribution, metabolism, and excretion of ET-26 hydrochloride.

Methods: Hepatocytes from human, monkey, dog, rat, and mouse were used to determine the metabolites of ET-26 hydrochloride. Distribution and excretion were assessed in rats and pharmacokinetic studies were performed in beagle dogs.

Results: The metabolic pathway and proposed structure of metabolites were fully assessed resulting from the biotransformation reactions of hydrolysis, dehydrogenation, demethylation and glucuronic acid conjugation. The main distribution of the drug was in fat (15067 ± 801 ng/ml) and liver (13647 ± 1126 ng/ml), and the kidney was the primary excretion route (4.47%-11.94%). The Cmax after injection with 1.045 mg/kg, 2.09 mg/kg, and 4.18 mg/kg was 1476.5 ± 138.9 ng/ml, 2846.1 ± 223.3 ng/ml, and 6233.3 ± 238.9 ng/ml, respectively. The t1/2 of the drug was similar across dose groups at 74.8 ± 10.8 min to 81.4 ± 4.2 min. The AUC0-t values were 30208.1 ± 2026.5 min*ng/ml, 62712.8 ± 1808.3 min*ng/ml, and 130465.2 ± 7457.4 min*ng/ml, respectively.

Conclusion: The metabolic pathway and the proposed structure of metabolites for ET-26 hydrochloride were fully assessed. The majority of distribution for ET-26 hydrochloride occurs in the fat and liver, while the primary route of excretion for ET-26 hydrochloride is through the kidney. In dogs, pharmacokinetic features of ET-26 hydrochloride had a linear relationship with dosage.

Keywords: Preclinical pharmacokinetics study, absorption, distribution, metabolism, excretion, intravenous anesthetic, ET-26 hydrochloride.

« Previous
Graphical Abstract

[1]
Weiser, T.G.; Haynes, A.B.; Molina, G.; Lipsitz, S.R.; Esquivel, M.M.; Uribe-Leitz, T.; Fu, R.; Azad, T.; Chao, T.E.; Berry, W.R.; Gawande, A.A. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet,, 2015, 385(Suppl. 2), S11.
[http://dx.doi.org/10.1016/S0140-6736(15)60806-6] [PMID: 26313057]
[2]
Giese, J.L.; Stockham, R.J.; Stanley, T.H.; Pace, N.L.; Nelissen, R.H. Etomidate versus thiopental for induction of anesthesia. Anesth. Analg., 1985, 64(9), 871-876.
[http://dx.doi.org/10.1213/00000539-198509000-00006] [PMID: 4025853]
[3]
Tomlin, S.L.; Jenkins, A.; Lieb, W.R.; Franks, N.P. Stereoselective effects of etomidate optical isomers on gamma-aminobutyric acid type A receptors and animals. Anesthesiology, 1998, 88(3), 708-717.
[http://dx.doi.org/10.1097/00000542-199803000-00022] [PMID: 9523815]
[4]
Fellows, I.W.; Byrne, A.J.; Allison, S.P. Adrenocortical suppression with etomidate. Lancet, 1983, 2(8340), 54-55.
[http://dx.doi.org/10.1016/S0140-6736(83)90043-0] [PMID: 6134923]
[5]
Kamp, R.; Kress, J.P. Etomidate, sepsis, and adrenal function: not as bad as we thought? Crit. Care, 2007, 11(3), 145.
[http://dx.doi.org/10.1186/cc5939] [PMID: 17610749]
[6]
Forman, S.A. Clinical and molecular pharmacology of etomidate. Anesthesiology, 2011, 114(3), 695-707.
[http://dx.doi.org/10.1097/ALN.0b013e3181ff72b5] [PMID: 21263301]
[7]
Chan, C.M.; Mitchell, A.L.; Shorr, A.F. Etomidate is associated with mortality and adrenal insufficiency in sepsis: a meta-analysis*. Crit. Care Med., 2012, 40(11), 2945-2953.
[http://dx.doi.org/10.1097/CCM.0b013e31825fec26] [PMID: 22971586]
[8]
Bovill, J.G. Intravenous anesthesia for the patient with left ventricular dysfunction. Semin. Cardiothorac. Vasc. Anesth., 2006, 10(1), 43-48.
[http://dx.doi.org/10.1177/108925320601000108] [PMID: 167032339]
[9]
Wang, B.; Yang, J.; Chen, J.; Kang, Y.; Yang, L.H.; Liu, J.; Zhang, W.S. An etomidate analogue with less adrenocortical suppression, stable hemodynamics, and improved behavioral recovery in rats. Anesth. Analg., 2017, 125(2), 442-450.
[http://dx.doi.org/10.1213/ANE.0000000000002063] [PMID: 28514325]
[10]
Yang, J.; Kang, Y.; Wang, B.; Yang, L.; Liu, J.; Zhang, W. Metabolite-inactive etomidate analogues alleviating suppression on adrenal function in Beagle dogs. Eur. J. Pharm. Sci., 2017, 99, 343-349.
[http://dx.doi.org/10.1016/j.ejps.2016.12.041] [PMID: 28057551]
[11]
Liu, X.; Song, H.; Yang, J.; Zhou, C.; Kang, Y.; Yang, L.; Liu, J.; Zhang, W. The etomidate analog ET-26 HCl retains superior myocardial performance: comparisons with etomidate in vivo and in vitro. PLoS One, 2018, 13(1)e0190994
[http://dx.doi.org/10.1371/journal.pone.0190994] [PMID: 29324898]
[12]
Wang, B.; Chen, S.; Yang, J.; Yang, L.; Liu, J.; Zhang, W. ET-26 hydrochloride (ET-26 HCl) has similar hemodynamic stability to that of etomidate in normal and uncontrolled hemorrhagic shock (UHS) rats. PLoS One, 2017, 12(8)e0183439
[http://dx.doi.org/10.1371/journal.pone.0183439] [PMID: 28813523]
[13]
Wang, B.; Jiang, J.; Yang, J.; Chen, J.; Zhu, Z.; Liu, J.; Zhang, W. Pharmacologic studies on ET-26 hydrochloride in a rat model of lipopolysaccharide-induced sepsis. Eur. J. Pharm. Sci., 2017, 109, 441-445.
[http://dx.doi.org/10.1016/j.ejps.2017.09.005] [PMID: 28882766]
[14]
Burden, N.; Kendrick, J.; Knight, L.; McGregor, V.; Murphy, H.; Punler, M.; van Wijk, H. Maximizing the success of bile duct cannulation studies in rats: recommendations for best practice. Lab. Anim., 2017, 51(5), 457-464.
[http://dx.doi.org/10.1177/0023677217698001] [PMID: 28948900]
[15]
Chen, X.; Zhang, W.; Rios, S.; Morkos, M.B.; Ye, X.; Li, G.; Jiang, X.; Wang, Z.; Wang, L. An HPLC tandem mass spectrometry for quantification of ET-26-HCl and its major metabolite in plasma and application to a pharmacokinetic study in rats. J. Pharm. Biomed. Anal., 2018, 149, 381-386.
[http://dx.doi.org/10.1016/j.jpba.2017.11.017] [PMID: 29149702]
[16]
Cotten, J.F.; Husain, S.S.; Forman, S.A.; Miller, K.W.; Kelly, E.W.; Nguyen, H.H.; Raines, D.E. Methoxycarbonyl-etomidate: a novel rapidly metabolized and ultra-short-acting etomidate analogue that does not produce prolonged adrenocortical suppression. Anesthesiology, 2009, 111(2), 240-249.
[http://dx.doi.org/10.1097/ALN.0b013e3181ae63d1] [PMID: 19625798]
[17]
Pejo, E.; Ge, R.; Banacos, N.; Cotten, J.F.; Husain, S.S.; Raines, D.E. Electroencephalographic recovery, hypnotic emergence, and the effects of metabolite after continuous infusions of a rapidly metabolized etomidate analog in rats. Anesthesiology, 2012, 116(5), 1057-1065.
[http://dx.doi.org/10.1097/ALN.0b013e3182515403] [PMID: 22417966]
[18]
Pejo, E.; Cotten, J.F.; Kelly, E.W.; Le Ge, R.; Cuny, G.D.; Laha, J.K.; Liu, J.; Lin, X.J.; Raines, D.E. In vivo and in vitro pharmacological studies of methoxycarbonyl-carboetomidate. Anesth. Analg., 2012, 115(2), 297-304.
[http://dx.doi.org/10.1213/ANE.0b013e3182320559] [PMID: 21965364]
[19]
Edwards, A.M.; Glistak, M.L.; Lucas, C.M.; Wilson, P.A. 7-Ethoxycoumarin deethylase activity as a convenient measure of liver drug metabolizing enzymes: regulation in cultured rat hepatocytes. Biochem. Pharmacol., 1984, 33(9), 1537-1546.
[http://dx.doi.org/10.1016/0006-2952(84)90425-8] [PMID: 6329231]
[20]
Hummel, J.; McKendrick, S.; Brindley, C.; French, R. Exploratory assessment of dose proportionality: review of current approaches and proposal for a practical criterion. Pharm. Stat., 2009, 8(1), 38-49.
[http://dx.doi.org/10.1002/pst.326] [PMID: 18386766]
[21]
Smith, B.P.; Vandenhende, F.R.; DeSante, K.A.; Farid, N.A.; Welch, P.A.; Callaghan, J.T.; Forgue, S.T. Confidence interval criteria for assessment of dose proportionality. Pharm. Res., 2000, 17(10), 1278-1283.
[http://dx.doi.org/10.1023/A:1026451721686] [PMID: 11145235]
[22]
Wagner, R.L.; White, P.F. Etomidate inhibits adrenocortical function in surgical patients. Anesthesiology, 1984, 61(6), 647-651.
[http://dx.doi.org/10.1097/00000542-198412000-00003] [PMID: 6095700]
[23]
Wagner, R.L.; White, P.F.; Kan, P.B.; Rosenthal, M.H.; Feldman, D. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N. Engl. J. Med., 1984, 310(22), 1415-1421.
[http://dx.doi.org/10.1056/NEJM198405313102202] [PMID: 6325910]
[24]
Atucha, E.; Hammerschmidt, F.; Zolle, I.; Sieghart, W.; Berger, M.L. Structure-activity relationship of etomidate derivatives at the GABA(A) receptor: comparison with binding to 11beta-hydroxylase. Bioorg. Med. Chem. Lett., 2009, 19(15), 4284-4287.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.065] [PMID: 19497738]
[25]
Zolle, I.M.; Berger, M.L.; Hammerschmidt, F.; Hahner, S.; Schirbel, A.; Peric-Simov, B. New selective inhibitors of steroid 11beta-hydroxylation in the adrenal cortex. Synthesis and structure-activity relationship of potent etomidate analogues. J. Med. Chem., 2008, 51(7), 2244-2253.
[http://dx.doi.org/10.1021/jm800012w] [PMID: 18348518]
[26]
Esch, E.W.; Bahinski, A.; Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov., 2015, 14(4), 248-260.
[http://dx.doi.org/10.1038/nrd4539] [PMID: 25792263]
[27]
Huh, D.; Leslie, D.C.; Matthews, B.D.; Fraser, J.P.; Jurek, S.; Hamilton, G.A.; Thorneloe, K.S.; McAlexander, M.A.; Ingber, D.E. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med., 2012, 4(159)159ra147
[http://dx.doi.org/10.1126/scitranslmed.3004249] [PMID: 23136042]
[28]
Tanaka, Y.; Fujita, H. Fluid driving system for a micropump by differentiating iPS cells into cardiomyocytes on a tent-like structure. Sens. Actuators B Chem., 2015, 210, 267-272.
[http://dx.doi.org/10.1016/j.snb.2014.12.069]
[29]
Bein, A.; Shin, W.; Jalili-Firoozinezhad, S.; Park, M.H.; Sontheimer-Phelps, A.; Tovaglieri, A.; Chalkiadaki, A.; Kim, H.J.; Ingber, D.E. Microfluidic organ-on-a-chip models of human intestine. Cell. Mol. Gastroenterol. Hepatol., 2018, 5(4), 659-668.
[http://dx.doi.org/10.1016/j.jcmgh.2017.12.010] [PMID: 29713674]
[30]
Jang, K.J.; Mehr, A.P.; Hamilton, G.A.; McPartlin, L.A.; Chung, S.; Suh, K.Y.; Ingber, D.E. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol., 2013, 5(9), 1119-1129.
[http://dx.doi.org/10.1039/c3ib40049b] [PMID: 23644926]
[31]
Fang, Y.; Eglen, R.M. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov., 2017, 22(5), 456-472.
[http://dx.doi.org/10.1177/1087057117696795] [PMID: 28520521]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy