Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Comparison of the Effects of Sambucus ebulus Leaf and Fruit Extracts on Leishmania major In Vitro

Author(s): Samira Kadkhodamasoum, Farahnaz Bineshian, Amir KarimiPour, Pooya Tavakoli , Masoud Foroutan, Fatemeh Ghaffarifar* and Soheila Molaei

Volume 21, Issue 1, 2021

Published on: 20 December, 2019

Page: [49 - 54] Pages: 6

DOI: 10.2174/1871526520666191220114540

Price: $65

Abstract

Background: Leishmaniasis is one of the major diseases caused by the intracellular parasite of Leishmania. It has become one of the most dangerous health problems today. Our aim of the present study is to compare the effects of Sambucus ebulus leaf and fruit extracts on Leishmania major in vitro.

Methods: In this study, we used MTT, promastigote and amastigote assay to evaluate the effect of different concentrations of the extract on parasite and we compared their effects. The flow cytometry technique was also used to detect the apoptotic effect of the extracts on promastigotes.

Results: According to MTT experiment IC50 concentration of leaf and fruit extracts on parasite was 157 μg/ml and 265 μg/ml, respectively. After analysis by flow cytometry, leaf and fruit extracts also showed the apoptosis effect. Leaf and fruit extract caused 40.2 and 2.67 percent apoptosis.

Conclusion: Based on the above assessment, we determined that the S. ebulus leaf extract has a more toxic effect on promastigotes and amstigotes than its fruit extract and maybe in the future that be used as a drug candidate.

Keywords: Leishmania major, Sambucus ebulus, MTT, Leishmania genus, fruit extracts, leishmaniasis.

Graphical Abstract

[1]
Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis., 2016, 10(3)e0004349
[http://dx.doi.org/10.1371/journal.pntd.0004349] [PMID: 26937644]
[2]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5)e35671
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[3]
Croft, S.; Vivas, L.; Brooker, S. Recent advances in research and control of malaria, leishmaniasis, trypanosomiasis and schistosomiasis. East. Mediterr. Health J., 2003, 9(4), 518-533.
[4]
Ullah, N.; Nadhman, A.; Siddiq, S.; Mehwish, S.; Islam, A.; Jafri, L.; Hamayun, M. Plants as antileishmanial agents: Current scenario. Phytother. Res., 2016, 30(12), 1905-1925.
[http://dx.doi.org/10.1002/ptr.5710] [PMID: 27704633]
[5]
Benevides Bahiense, J.; Marques, F.M.; Figueira, M.M.; Vargas, T.S.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis. Pharm. Biol., 2017, 55(1), 991-997.
[http://dx.doi.org/10.1080/13880209.2017.1285324] [PMID: 28166708]
[6]
Salehzadeh, A.; Asadpour, L.; Naeemi, A.S.; Houshmand, E. Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(5), 38-40.
[http://dx.doi.org/10.4314/ajtcam.v11i5.6] [PMID: 25395702]
[7]
Hwang, B.; Lee, J.; Liu, Q-H.; Woo, E-R.; Lee, D.G. Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii. Molecules, 2010, 15(5), 3507-3516.
[http://dx.doi.org/10.3390/molecules15053507] [PMID: 20657496]
[8]
Tavakoli, P.; Ghaffarifar, F.; Delavari, H.; Shahpari, N. Efficacy of manganese oxide (Mn2O3) nanoparticles against Leishmania major in vitro and in vivo. J. Trace Elem. Med. Biol., 2019, 56, 162-168.
[http://dx.doi.org/10.1016/j.jtemb.2019.08.003] [PMID: 31473559]
[9]
Foroutan-Rad, M.; Khademvatan, S.; Saki, J.; Hashemitabar, M. Holothuria leucospilota extract induces apoptosis in Leishmania major promastigotes. Iran. J. Parasitol., 2016, 11(3), 339-349.
[PMID: 28127339]
[10]
Soltani, S. -Forushani, H.M.; Soltani, S.; Kahvaz, M.S.; Foroutan, M. Antileishmanial activity of conventional and solid lipid nanoparticles of Amphotericin B on Leishmania major. Infect. Disord. Drug Targets, 2020, 20(6), 822-827.
[http://dx.doi.org/10.2174/1871526519666191015170627] [PMID: 31613731]
[11]
Khademvatan, S.; Eskandari, K.; Hazrati-Tappeh, K.; Rahim, F.; Foroutan, M.; Yousefi, E.; Asadi, N. In silico and in vitro comparative activity of green tea components against Leishmania infantum. J. Glob. Antimicrob. Resist., 2019, 18, 187-194.
[http://dx.doi.org/10.1016/j.jgar.2019.02.008] [PMID: 30797085]
[12]
Albakhit, S.; Khademvatan, S.; Doudi, M.; Foroutan-Rad, M. Antileishmanial activity of date (Phoenix dactylifera L) fruit and pit extracts In Vitro. J. Evid. Based Complementary Altern. Med., 2016, 21(4), NP98-NP102.
[http://dx.doi.org/10.1177/2156587216651031] [PMID: 27242378]
[13]
Dalimi, A.; Delavari, M.; Ghaffarifar, F.; Sadraei, J. In vitro and in vivo antileishmanial effects of aloe-emodin on Leishmania major. J. Tradit. Complement. Med., 2015, 5(2), 96-99.
[http://dx.doi.org/10.1016/j.jtcme.2014.11.004] [PMID: 26151018]
[14]
Akbari, M.; Oryan, A.; Hatam, G. Application of nanotechnology in treatment of leishmaniasis: A Review. Acta Trop., 2017, 172, 86-90.
[http://dx.doi.org/10.1016/j.actatropica.2017.04.029] [PMID: 28460833]
[15]
Hwang, B.; Cho, J.; Hwang, I.S.; Jin, H-G.; Woo, E-R.; Lee, D.G. Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans. Biochem. Biophys. Res. Commun., 2011, 410(3), 489-493.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.004] [PMID: 21679690]
[16]
Olejnik, A.; Olkowicz, M.; Kowalska, K.; Rychlik, J.; Dembczyński, R.; Myszka, K.; Juzwa, W.; Białas, W.; Moyer, M.P. Gastrointestinal digested Sambucus nigra L. fruit extract protects in vitro cultured human colon cells against oxidative stress. Food Chem., 2016, 197(Pt- A), 648-657.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.017] [PMID: 26616999]
[17]
Shokrzadeh, M.; Saravi, S.S.; Mirzayi, M. Cytotoxic effects of ethyl acetate extract of Sambucus ebulus compared with etoposide on normal and cancer cell lines. Pharmacogn. Mag., 2009, 5, 316.
[http://dx.doi.org/10.4103/0973-1296.58152]
[18]
Chowdhury, S.R.; Ray, U.; Chatterjee, B.P.; Roy, S.S. Targeted apoptosis in ovarian cancer cells through mitochondrial dysfunction in response to Sambucus nigra agglutinin. Cell Death Dis., 2017, 8(5)e2762
[http://dx.doi.org/10.1038/cddis.2017.77] [PMID: 28471452]
[19]
Shahidi-Noghabi, S.; Van Damme, E.J.; Iga, M.; Smagghe, G. Exposure of insect midgut cells to Sambucus nigra L. agglutinins I and II causes cell death via caspase-dependent apoptosis. J. Insect Physiol., 2010, 56(9), 1101-1107.
[http://dx.doi.org/10.1016/j.jinsphys.2010.03.012] [PMID: 20230823]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy