Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Abstract

Background: Neuraminidase inhibitors (NAIs) are the only class of antivirals in clinical use against influenza virus approved worldwide. However, approximately 1-3% of circulating strains present resistance mutations to oseltamivir (OST), the most used NAI. Therefore, it is important to catalogue new molecules to inhibit influenza virus, especially OST-resistant strains. Natural products from tropical plants used for human consumption represent a worthy class of substances. Their use could be stimulated in resource-limited setting where the access to expensive antiviral therapies is restricted.

Methods: We evaluated the anti-influenza virus activity of agathisflavone derived from Anacardium occidentale L.

Results: The neuraminidase (NA) activity of wild-type and OST-resistant influenza virus was inhibited by agathisflavone, with IC50 values ranging from 20 to 2.0 µM, respectively. Agathisflavone inhibited influenza virus replication with EC50 of 1.3 µM. Sequential passages of the virus in the presence of agathisflavone revealed the emergence of mutation R249S, A250S and R253Q in the NA gene. These changes are outside the OST binding region, meaning that agathisflavone targets this viral enzyme at a region different than conventional NAIs.

Conclusion: Altogether our data suggest that agathisflavone has a promising chemical structure for the development of anti-influenza drugs.

Keywords: Agathisflavone, Flavonoid, Antiviral, Influenza, Anacardiaceae, Anacardium occidentale L

Next »
Graphical Abstract

[1]
Influenza, W.H.O. WHO Influenza (seasonal).. http://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal)2018.
[2]
Gordon, A.; Reingold, A. The burden of influenza: a complex problem. Curr. Epidemiol. Rep., 2018, 5(1), 1-9.
[http://dx.doi.org/10.1007/s40471-018-0136-1] [PMID: 29503792]
[3]
WHO Up to 650.000 people die of respiratory diseases linked to seasonal flu each year.. http://www.who.int/news-room/detail/14-12-2017-up-to-650-000-people-die-of-respiratory-diseases-linked-to-seasonal-flu-each-year2018.
[4]
Szewczyk, B.; Bieńkowska-Szewczyk, K.; Król, E. Introduction to molecular biology of influenza a viruses. Acta Biochim. Pol., 2014, 61(3), 397-401.
[http://dx.doi.org/10.18388/abp.2014_1857] [PMID: 25180226]
[5]
Dou, D.; Revol, R.; Östbye, H.; Wang, H.; Daniels, R. Influenza A virus cell entry, replication, virion assembly and movement. Front. Immunol., 2018, 9, 1581.
[http://dx.doi.org/10.3389/fimmu.2018.01581] [PMID: 30079062]
[6]
Gamblin, S.J.; Skehel, J.J. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J. Biol. Chem., 2010, 285(37), 28403-28409.
[http://dx.doi.org/10.1074/jbc.R110.129809] [PMID: 20538598]
[7]
Davidson, S. Treating Influenza infection, from now and into the future. Front. Immunol., 2018, 9, 1-14.
[8]
Jagadesh, A.; Salam, A.A.; Mudgal, P.P.; Arunkumar, G. Influenza virus neuraminidase (NA): a target for antivirals and vaccines. Arch. Virol., 2016, 161(8), 2087-2094.
[http://dx.doi.org/10.1007/s00705-016-2907-7] [PMID: 27255748]
[9]
Koonin, L.M.; Patel, A. Timely antiviral administration during an influenza pandemic: key components. Am. J. Public Health, 2018, 108, S215-S220.
[http://dx.doi.org/10.2105/AJPH.2018.304609] [PMID: 30192657]
[10]
Lackenby, A.; Besselaar, T.G.; Daniels, R.S.; Fry, A.; Gregory, V.; Gubareva, L.V.; Huang, W.; Hurt, A.C.; Leang, S.K.; Lee, R.T.C.; Lo, J.; Lollis, L.; Maurer-Stroh, S.; Odagiri, T.; Pereyaslov, D.; Takashita, E.; Wang, D.; Zhang, W.; Meijer, A. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016-2017. Antiviral Res., 2018, 157, 38-46.
[http://dx.doi.org/10.1016/j.antiviral.2018.07.001] [PMID: 29981793]
[11]
Silva-Luz, C.L.; Pirani, J.R. Anacardiaceae in Brazilian Flora Species List. Rio de Janeiro Botanical Garden. Available from: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB44
[12]
Cardoso, M.P.; Lima, L.S.; David, J.P.; Moreira, B.O.; Santos, E.O.; David, J.M.; Alves, C.Q. A new biflavonoid from schinopsis brasiliensis (Anacardiaceae). J. Braz. Chem. Soc., 2015, 26, 1527-1531.
[13]
Velagapudi, R.; Ajileye, O.O.; Okorji, U.; Jain, P.; Aderogba, M.A.; Olajide, O.A. Agathisflavone isolated from Anacardium occidentale suppresses SIRT1-mediated neuroinflammation in BV2 microglia and neurotoxicity in APPSwe-transfected SH-SY5Y cells. Phytother. Res., 2018, 32(10), 1957-1966.
[http://dx.doi.org/10.1002/ptr.6122] [PMID: 29786910]
[14]
Souza, C.S.; Grangeiro, M.S.; Pereira, E.P.L.; Santos, C.C.; Silva, A.B.; Sampaio, G.P.; Figueiredo, D.D.R.; David, J.M.; David, J.P.; Silva, V.D.A.; Butt, A.M.; Costa, S.L. Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity. Neurotoxicology, 2018, 65, 85-97.
[15]
Dumitru, G.; El-Nashar, H.A.S.; Mostafa, M.N.; Eldahshan, O.A.; Boiangiu, R.S.; Todirascu-Ciornea, E.; Abdel, L.H.; Singab, N.B. Agathisflavone isolated from Schinus polygamus (Cav.) Cabrera leaves prevents scopolamine-induced memory impairment and brain oxidative stress in zebrafish (Danio rerio). Phytomedicine, 2019, vol. 58152889
[17]
Andrade, A.W.L.; Machado, K.D.C.; Machado, K.D.C.; Figueiredo, D.D.R.; David, J.M.; Islam, M.T.; Uddin, S.J.; Shilpi, J.A.; Costa, J.P. In vitro antioxidant properties of the biflavonoid agathisflavone. Chem. Cent. J., 2018, 12(1), 75.
[http://dx.doi.org/10.1186/s13065-018-0443-0] [PMID: 29959550]
[18]
Konan, N.A.; Lincopan, N.; Díaz, I.E.C.; de Fátima Jacysyn, J.; Tiba, M.M.T.; Amarante Mendes, J.G.; Bacchi, E.M.; Spira, B. Cytotoxicity of cashew flavonoids towards malignant cell lines. Exp. Toxicol. Pathol., 2012, 64(5), 435-440.
[http://dx.doi.org/10.1016/j.etp.2010.10.010] [PMID: 21106357]
[19]
de Sousa, L.R.; Wu, H.; Nebo, L.; Fernandes, J.B.; da Silva, M.F.; Kiefer, W.; Kanitz, M.; Bodem, J.; Diederich, W.E.; Schirmeister, T.; Vieira, P.C. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies. Bioorg. Med. Chem., 2015, 23(3), 466-470.
[http://dx.doi.org/10.1016/j.bmc.2014.12.015] [PMID: 25564380]
[20]
Lin, Y.M.; Flavin, M.T.; Schure, R.; Chen, F.C.; Sidwell, R.; Barnard, D.L.; Huffman, J.H.; Kern, E.R. Antiviral activities of biflavonoids. Planta Med., 1999, 65(2), 120-125.
[http://dx.doi.org/10.1055/s-1999-13971] [PMID: 10193201]
[21]
Zhi, H.; Jin, X.; Zhu, H.; Li, H.; Zhang, Y.; Lu, Y.; Chen, D. Exploring the effective materials of flavonoids-enriched extract from Scutellaria baicalensis roots based on the metabolic activation in influenza A virus induced acute lung injury. J. Pharm. Biomed. Anal., 2020, 177 112876
[http://dx.doi.org/10.1016/j.jpba.2019.112876] [PMID: 31525575]
[22]
Liu, A.L.; Wang, H.D.; Lee, S.M.; Wang, Y.T.; Du, G.H. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem., 2008, 16(15), 7141-7147.
[http://dx.doi.org/10.1016/j.bmc.2008.06.049] [PMID: 18640042]
[23]
Liu, Y.; Tong, J.; Tong, Y.; Li, P.; Cui, X.; Cao, H. In vitro anti-influenza virus effect of total flavonoid from Trollius ledebouri Reichb. J. Int. Med. Res., 2018, 46(4), 1380-1390.
[http://dx.doi.org/10.1177/0300060517750284] [PMID: 29444614]
[24]
Yan, H.; Wang, H.; Ma, L.; Ma, X.; Yin, J.; Wu, S.; Huang, H.; Li, Y. Cirsimaritin inhibits influenza A virus replication by downregulating the NF-κB signal transduction pathway. Virol. J., 2018, 15(1), 88.
[http://dx.doi.org/10.1186/s12985-018-0995-6] [PMID: 29783993]
[25]
Liu, C.H.; Jassey, A.; Hsu, H.Y.; Lin, L.T. Antiviral Activities of Silymarin and Derivatives. Molecules, 2019, 24, 1552.
[http://dx.doi.org/10.3390/molecules24081552]
[26]
You, H.L.; Huang, C.C.; Chen, C.J.; Chang, C.C.; Liao, P.L.; Huang, S.T. Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid. J. Chin. Med. Assoc., 2018, 81, 458-468.
[http://dx.doi.org/10.1016/j.jcma.2017.11.007]
[27]
Szretter, K.J.; Balish, A.L.; Katz, J.M. Influenza: propagation, quantification, and storage. Curr. Protoc. Microbiol., 2013, 15G, 1.
[http://dx.doi.org/ 10.1002/0471729256.mc15g01s3]
[29]
Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg., 1938, 27, 493-497.
[30]
J. L. Barrett, S.; Mckenzie-Kludas, C.; Mcauley, J.; Streltsov, V. A.; Withers, S. G., Passaging of an influenza A (H1N1) pdm09 virus in a difluoro sialic acid inhibitor selects for a novel, but unfit I106M neuraminidase mutant. Antiviral Res., 2019. 104542
[31]
Pizzorno, A.; Abed, Y.; Plante, P.L.; Carbonneau, J.; Baz, M.; Hamelin, M.È.; Corbeil, J.; Boivin, G. Evolution of oseltamivir resistance mutations in Influenza A(H1N1) and A(H3N2) viruses during selection in experimentally infected mice. Antimicrob. Agents Chemother., 2014, 58(11), 6398-6405.
[http://dx.doi.org/10.1128/AAC.02956-14] [PMID: 25114143]
[32]
Roussy, J.F.; Abed, Y.; Bouhy, X.; Boivin, G. Emergence of an oseltamivir-resistant influenza A/H3N2 virus in an elderly patient receiving a suboptimal dose of antiviral prophylaxis. J. Clin. Microbiol., 2013, 51(12), 4234-4236.
[http://dx.doi.org/10.1128/JCM.02659-13] [PMID: 24088848]
[33]
[34]
Joy, S.; Nair, P.S.; Hariharan, R.; Pillai, M.R. Detailed comparison of the protein-ligand docking efficiencies of GOLD, a commercial package and ArgusLab, a licensable freeware. In Silico Biol. (Gedrukt), 2006, 6(6), 601-605.
[PMID: 17518767]
[35]
Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.; Meyer, E.F., Jr; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank: a computer-based archival file for macromolecular structures. Arch. Biochem. Biophys., 1978, 185(2), 584-591.
[http://dx.doi.org/10.1016/0003-9861(78)90204-7] [PMID: 626512]
[36]
Yang, X.Y.; Liu, A.L.; Liu, S.J.; Xu, X.W.; Huang, L.F. Screening for neuraminidase inhibitory activity in traditional Chinese medicines used to treat influenza. Molecules, 2016, 21(9), 1138.
[http://dx.doi.org/10.3390/molecules21091138]
[37]
de Carvalho, M.G.; Gomes, M.S.R.; Pereira, A.H.F.; Daniel, J.F.S.; Schripsema, J. Carbon-13 and proton NMR assignments of a new agathisflavone derivative. Magn. Reson. Chem., 2006, 44, 35-37.
[http://dx.doi.org/10.1002/mrc.1720]
[38]
Woyessa, A.B.; Mengesha, M.; Belay, D.; Tayachew, A.; Ayele, W.; Beyene, B.; Kassa, W.; Zemelak, E.; Demissie, G.; Amare, B.; Boulanger, L.; Granados, C.; Williams, T.; Tareke, I.; Rajatonirina, S.; Jima, D. Epidemiology of influenza in Ethiopia: findings from influenza sentinel surveillance and respiratory infection outbreak investigations, 2009-2015. BMC Infect. Dis., 2018, 18(1), 449.
[http://dx.doi.org/10.1186/s12879-018-3365-5] [PMID: 30176806]
[40]
Schrauwen, E.J.; de Graaf, M.; Herfst, S.; Rimmelzwaan, G.F.; Osterhaus, A.D.; Fouchier, R.A. Determinants of virulence of influenza A virus. Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33(4), 479-490.
[http://dx.doi.org/10.1007/s10096-013-1984-8] [PMID: 24078062]
[41]
Pasquini-Descomps, H.; Brender, N.; Maradan, D.H.; Brender, N.; Maradan, D. Value for money in H1N1 influenza: A Systematic review of the cost-effectiveness of pandemic interventions. Value Health, 2017, 20(6), 819-827.
[http://dx.doi.org/10.1016/j.jval.2016.05.005] [PMID: 28577700]
[42]
Muthuri, S.G.; Venkatesan, S.; Myles, P.R.; Leonardi-Beem, J. Effectiveness of neuraminidase inhibitors in reducing mortality in hospitalised influenza A (H1N1) pdm09 patients: an individual participant data meta-analysis. Lancet Respir. Med., 2014, 2, 395-404.
[http://dx.doi.org/10.1016/S2213-2600(14)70041-4] [PMID: 24815805]
[43]
Abed, Y.; Boivin, G. A review of clinical influenza A and B infections with reduced susceptibility to both Oseltamivir and Zanamivir. Open Forum Infect. Dis., 2017, 4, 1-10.
[44]
Khwaza, V.; Oyedeji, O.; Aderibigbe, B. Antiviral activities of oleanolic acid and its analogues. Molecules, 2018, 23, 2300.
[http://dx.doi.org/10.3390/molecules23092300]
[45]
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[46]
Ha, T.K.Q.; Dao, T.T.; Nguyen, N.H.; Kim, J.; Kim, E.; Cho, T.O.; Oh, W.K. Antiviral phenolics from the leaves of Cleistocalyx operculatus. Fitoterapia, 2016, 110, 135-141.
[http://dx.doi.org/10.1016/j.fitote.2016.03.006] [PMID: 26972228]
[47]
Enkhtaivan, G.; Maria John, K.M.; Ayyanar, M.; Sekar, T.; Jin, K.J.; Kim, D.H. Anti-influenza (H1N1) potential of leaf and stem bark extracts of selected medicinal plants of South India. Saudi J. Biol. Sci., 2015, 22(5), 532-538.
[http://dx.doi.org/10.1016/j.sjbs.2015.01.011] [PMID: 26288555]
[48]
Leitão, N.C.M.C.S.; Prado, G.H.C.; Veggi, P.C.; Meireles, M.A.A.; Pereira, C.G. Anacardium occidentale L. leaves extraction via SFE: Global yields, extraction kinetics, mathematical modeling and economic evaluation. J. Supercrit. Fluids, 2013, 78, 114-123.
[http://dx.doi.org/10.1016/j.supflu.2013.03.024]
[49]
Gubareva, L.V.; Bethell, R.; Hart, G.J.; Murti, K.G.; Penn, C.R.; Webster, R.G. Characterization of mutants of influenza A virus selected with the neuraminidase inhibitor 4-guanidino-Neu5Ac2en. J. Virol., 1996, 70(3), 1818-1827.
[PMID: 8627706]
[50]
Lentz, M.R.; Air, G.M.; Laver, W.G.; Webster, R.G. Sequence of the neuraminidase gene of influenza virus A/Tokyo/3/67 and previously uncharacterized monoclonal variants. Virology, 1984, 135(1), 257-265.
[http://dx.doi.org/10.1016/0042-6822(84)90135-1] [PMID: 6203216]
[51]
WHO. WHO guidelines on the use of vaccines and antivirals during influenza Pandemics., https://www.who.int/influenza/resources/documents/11_29_01_A.pdf?ua=12019.
[52]
Akinhanmi, T.F.; Atasie, V.N.; Akintokun, P.O. Chemical composition and physicochemical properties of cashew nut (Anacardium occidentale) oil and cashew nut shell liquid. Journal of Agricultural. Food Environ. Sci., 2008, 2, 1-10.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy