Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Sodium Dodecyl Benzene Sulfonate-assisted Synthesis and Natural Sunlight Photocatalytic Activity of La Bismuthate Nanorods

Author(s): Fanglv Qiu, Zi Wang, Hongjun Chen, Yue Ma, Hang Wu, Lu Yan, Lizhai Pei* and Chuangang Fan

Volume 16, Issue 5, 2020

Page: [805 - 815] Pages: 11

DOI: 10.2174/1573413715666191212153902

Price: $65

Abstract

Background: Removal of the organic pollutants using the photo-catalysts by the photocatalytic treatment process under natural sunlight irradiation has attracted great attention owing to the complete destruction of the organic pollutants. The La bismuthate nanorods possess good photocatalytic performance for the removal of the methylene orange (MO) under the sunlight irradiation.

Objective: The aim is to synthesize La bismuthate nanorods by hydrothermal method and research the photocatalytic performance of the La bismuthate nanorods for MO degradation under sunlight irradiation.

Methods: La bismuthate nanorods have been synthesized by a simple sodium dodecyl benzene sulfonate (SDBS)-assisted hydrothermal method using sodium bismuthate and La acetate as the starting materials. The obtained La bismuthate products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy and solid UV-vis diffuse reflectance spectrum.

Results: With different SDBS concentration, hydrothermal temperature and reaction time, different morphologies of the La bismuthate products were obtained. XRD analysis shows that the La bismuthate nanorods obtained from 180°C for 24 h with 5wt.% SDBS are composed of orthorhombic La1.08Bi0.92O3.03 phase. Electron microscopy observations show that the La bismuthate nanorods with flat tips have the length of longer than 10 μm and diameter of about 20-100 nm, respectively. The morphology and structure of the products are closely related to the SDBS concentration, hydrothermal temperature and reaction time. Solid UV-vis diffuse reflectance spectrum shows that the band gap of the La bismuthate nanorods is 2.37 eV. The La bismuthate nanorods show good photocatalytic performance for the degradation of MO under the sunlight irradiation. MO solution with the concentration of 10 mg.L-1 can be totally removed by 10 mg La bismuthate nanorods in 10 mL MO aqueous solution under sunlight irradiation for 6 h.

Conclusion: The photocatalytic performance for the removal of MO is dependent on the sunlight irradiation time and dosage of the La bismuthate nanorods. The La bismuthate nanorods exhibit great potential for the removal of organic pollutants.

Keywords: La bismuthate nanorods, sodium dodecyl benzene sulfonate (SDBS), electron microscope, methylene orange (MO), sunlight, photocatalysis.

Graphical Abstract

[1]
Chen, C.S.; Yu, W.W.; Liu, T.G.; Cao, S.Y.; Tsang, Y.H. Graphene oxide/WS2/Mg-doped ZnO nanocomposites for solar-light catalytic and anti-bacterial applications. Sol. Energy Mater. Sol. Cells, 2017, 160, 43-53.
[http://dx.doi.org/10.1016/j.solmat.2016.10.020]
[2]
Yu, W.W.; Chen, X.A.; Mei, W.; Chen, C.S.; Tsang, Y.H. Photocatalytic and electrochemical performance of three-dimensional reduced graphene oxide-WS2/Mg-doped ZnO composites. Appl. Surf. Sci., 2017, 400, 129-138.
[http://dx.doi.org/10.1016/j.apsusc.2016.12.138]
[3]
Chen, C.S.; Cao, S.Y.; Zeng, B.; Ning, X.T.; Liu, T.G.; Chen, X.H.; Xiao, Y.; Yu, W.W. Synthesis and photocatalytic property of graphene/multi-walled carbon nanotube/ZnO nanocrystalline aggregates hybrids by spray drying method. Funct. Mater. Lett. (Singap.), 2014, 7, 1450048.
[http://dx.doi.org/10.1142/S1793604714500489]
[4]
Senobari, S.; Nezamzadeh-Ejhieh, A. A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments. J. Mol. Liq., 2018, 261, 208-217.
[http://dx.doi.org/10.1016/j.molliq.2018.04.028]
[5]
Nezamzadeh-Ejhieh, A.; Shahriari, E. Photocatalytic decolorization of methyl green using Fe(II)-o-phenanthroline as supported onto zeolite Y. J. Ind. Eng. Chem., 2014, 20, 2719-2726.
[http://dx.doi.org/10.1016/j.jiec.2013.10.060]
[6]
Nezamzadeh-Ejhieh, A.; Moazzeni, N. Sunlight photodecolorization of a mixture of Methyl Orange and Bromocresol Green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst. J. Ind. Eng. Chem., 2013, 19, 1433-1442.
[http://dx.doi.org/10.1016/j.jiec.2013.01.006]
[7]
Nezamzadeh-Ejhieh, A.; Khorsandi, M. Heterogeneous photodecolorization of Eriochrome Black T using Ni/P zeolite catalyst. Desalination, 2010, 262, 79-85.
[http://dx.doi.org/10.1016/j.desal.2010.05.047]
[8]
Beshkar, F.; Amiri, O.; Salehi, Z. Synthesis of ZnSnO3 nanostructures by using novel gelling agents and their application in degradation of textile dye. Separ. Purif. Tech., 2017, 184, 66-71.
[http://dx.doi.org/10.1016/j.seppur.2017.04.024]
[9]
Hu, X.P.; Pan, D.W.; Han, H.T.; Lin, M.Y.; Zhu, Y.; Wang, C.C. Preparation of bismuth-based microrods and their application in electroanalysis. Mater. Lett., 2017, 190, 83-85.
[http://dx.doi.org/10.1016/j.matlet.2016.12.119]
[10]
Chen, C.S.; Liu, T.G.; Lin, L.W.; Xie, X.D.; Chen, X.H.; Liu, Q.C.; Liang, B.; Yu, W.W.; Qiu, C.Y. Multi-walled carbon nanotube-supported metal-doped ZnO nanoparticles and their photocatalytic property. J. Nanopart. Res., 2013, 15(1), 1295.
[http://dx.doi.org/10.1007/s11051-012-1295-5] [PMID: 23420492]
[11]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Designing of experiments for evaluating the interactions of influencing factors on the photocatalytic activity of NiS and SnS2: Focus on coupling, supporting and nanoparticles. J. Colloid Interface Sci., 2017, 490, 628-641.
[http://dx.doi.org/10.1016/j.jcis.2016.11.102] [PMID: 27940030]
[12]
Esmaili-Hafshejani, J.; Nezamzadeh-Ejhieh, A. Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution. J. Hazard. Mater., 2016, 316, 194-203.
[http://dx.doi.org/10.1016/j.jhazmat.2016.05.006] [PMID: 27235827]
[13]
Mohammadvari, P.; Nezamzadeh-Ejhieh, A. Supporting of mixed ZnS–NiS semiconductors onto clinoptilolite nano-particles to improve its activity in photodegradation of 2-nitrotoluene. RSC Adv, 2015, 5, 75300-75310.
[http://dx.doi.org/10.1039/C5RA12608H]
[14]
Shams-Ghahfarokhi, Z.; Nezamzadeh-Ejhieh, A. As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Mater. Sci. Semicond. Process., 2015, 39, 265-275.
[http://dx.doi.org/10.1016/j.mssp.2015.05.022]
[15]
Arabpour, N.; Nezamzadeh-Ejhieh, A. Modification of clinoptilolite nano-particles with iron oxide: Increased composite catalytic activity for photodegradation of cotrimaxazole in aqueous suspension. Mater. Sci. Semicond. Process., 2015, 31, 684-692.
[http://dx.doi.org/10.1016/j.mssp.2014.12.067]
[16]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater., 2017, 321, 629-638.
[http://dx.doi.org/10.1016/j.jhazmat.2016.09.056] [PMID: 27694027]
[17]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. A comprehensive study on enhancement and optimization of photocatalytic activity of ZnS and SnS2: Response Surface Methodology (RSM), n-n heterojunction, supporting and nanoparticles study. J. Photochem. Photobiol. Chem., 2017, 348, 68-78.
[http://dx.doi.org/10.1016/j.jphotochem.2017.08.007]
[18]
Senobari, S.; Nezamzadeh-Ejhieh, A. A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 196, 334-343.
[http://dx.doi.org/10.1016/j.saa.2018.02.043] [PMID: 29475182]
[19]
Shtarev, D.S.; Makarevich, K.S.; Shtareva, A.V.; Blokh, A.I.; Syuy, A.V. Application of pyrolytic method of synthesis for preparation of calcium bismuthate based photocatalyst. SPIE Proc., 2016, 10176, 101761L-2..
[20]
Sajjad, S.; Leghari, S.A.K.; Zhang, J. Nonstoichiometric Bi2O3: efficient visible light photocatalyst. RSC Adv., 2013, 3, 1363-1367.
[http://dx.doi.org/10.1039/C2RA22239F]
[21]
Radha, R.; Kumar, Y.R.; Sakar, M.; Vinod, K.R.; Balakumar, S. Understanding the lattice composition directed in situ structural disorder for enhanced visible light photocatalytic activity in bismuth iron niobate pyrochlore. Appl. Catal. B, 2018, 225, 386-396.
[http://dx.doi.org/10.1016/j.apcatb.2017.12.004]
[22]
Najafian, H.; Manteghi, F.; Beshkar, F.; Salati-Niasari, M. Efficient degradation of azo dye pollutants on ZnBi38O58 nanostructures under visible-light irradiation. Separ. Purif. Tech., 2018, 195, 30-36.
[http://dx.doi.org/10.1016/j.seppur.2017.11.076]
[23]
Lu, Y.T.; Chen, L.Y.; Huang, Y.L.; Cheng, H.; Kim, S.I.; Seo, H.J. Optical properties and visible light-driven photocatalytic activity of Bi11VO19 nanoparticles with δ-Bi2O3-structure. J. Alloys Compd., 2015, 640, 226-232.
[http://dx.doi.org/10.1016/j.jallcom.2015.04.046]
[24]
Najafian, H.; Manteghi, F.; Beshkar, F.; Salavati-Niasari, M. Fabrication of nanocomposite photocatalyst CuBi2O4/Bi3ClO4 for removal of acid brown 14 as water pollutant under visible light irradiation. J. Hazard. Mater., 2019, 361, 210-220.
[http://dx.doi.org/10.1016/j.jhazmat.2018.08.092] [PMID: 30196033]
[25]
Huo, R.; Yang, X.L.; Liu, Y.Q.; Xu, Y.H. Visible-light photocatalytic degradation of glyphosate over BiVO4 prepared by different co-precipitation methods. Mater. Res. Bull., 2017, 88, 56-61.
[http://dx.doi.org/10.1016/j.materresbull.2016.12.012]
[26]
Xiao, Y.; Chen, C.S.; Cao, S.Y.; Qian, G.P.; Nie, X.B.; Yu, W.W. Enhanced sunlight-driven photocatalytic activity of graphene oxide/Bi2WO6 nanoplates by silicon modification. Ceram. Int., 2015, 41, 10087-10094.
[http://dx.doi.org/10.1016/j.ceramint.2015.04.103]
[27]
Chen, C.S.; Cao, S.Y.; Wu, W.W.; Xie, X.D.; Liu, Q.C.; Tsang, Y.H.; Xiao, Y. Adsorption, photocatalytic and sunlight-driven antibacterial activity of Bi2WO6/graphene oxide nanoflakes. Vacuum, 2015, 116, 48-53.
[http://dx.doi.org/10.1016/j.vacuum.2015.02.031]
[28]
Zhang, Y.; Lin, F.F.; Wei, T.; Qiu, F.L.; Ma, Y.; Pei, L.Z. Ethylenediamine-assisted synthesis of barium bismuthate microrods and sunlight photocatalytic performance. Int. J. Mater. Res., 2018, 109, 1035-1042.
[29]
Pei, L.Z.; Wei, T.; Lin, N.; Yu, H.Y. Hierarchical bismuth phosphate microspheres with high photocatalytic performance. Int. J. Mater. Res., 2016, 107, 477-483.
[http://dx.doi.org/10.3139/146.111364]
[30]
Pei, L.Z.; Liu, H.D.; Lin, N.; Yu, H.Y. Bismuth titanate nanorods and their visible light photocatalytic properties. J. Alloys Compd., 2015, 622, 254-261.
[http://dx.doi.org/10.1016/j.jallcom.2014.10.008]
[31]
Hu, R.S.; Li, C.; Wang, X.; Sun, Y.; Jia, H.X.; Su, H.Q.; Zhang, Y.L. Photocatalytic activities of LaFeO3 and La2FeTiO6 in p-chlorophenol degradation under visible light. Catal. Commun., 2012, 29, 35-39.
[http://dx.doi.org/10.1016/j.catcom.2012.09.012]
[32]
Li, Z.H.; Chen, G.; Tian, X.J.; Li, Y.X. Photocatalytic property of La2Ti2O7 synthesized by the mineralization polymerizable complex method. Mater. Res. Bull., 2008, 43, 1781-1788.
[http://dx.doi.org/10.1016/j.materresbull.2007.07.010]
[33]
Khasanova, N.R.; Yoshida, K.; Yamamoto, A.; Tajima, S. Extended range of superconducting bismuthates K1-xAxBiO3 (A=La, Bi, and Ca). Physica C, 2001, 356, 12-22.
[http://dx.doi.org/10.1016/S0921-4534(01)00122-8]
[34]
Yelovik, N.A.; Shestimerova, T.A.; Bykov, M.A.; Wei, Z.; Dikarev, E.V.; Shevelkov, A.V. Synthesis, structure, and properties of LnBiI6·3H2O (Ln-La, Nd). Russ. Chem. Bull., 2017, 66, 1196-1201.
[http://dx.doi.org/10.1007/s11172-017-1872-y]
[35]
Chen, Z.Y.; Xu, M.; Du, B.L.; Zhu, H.L.; Xie, T.; Wang, W.H. Morphology control of lithium iron phosphate nanoparticles by soluble starch-assisted hydrothermal synthesis. J. Power Sources, 2014, 272, 837-844.
[http://dx.doi.org/10.1016/j.jpowsour.2014.09.019]
[36]
Lin, L.W.; Tang, Y.H.; Chen, C.S.; Xu, H.F. Self-assembled single crystal germanium nanowires arrays under supercritical hydrothermal conditions. CrystEngComm, 2010, 12, 2975-2981.
[http://dx.doi.org/10.1039/b927384k]
[37]
Lin, L.W.; Tang, Y.H.; Chen, C.S. Self-assembled silicon oxide nanojunctions. Nanotechnology, 2009, 20(17), 175601.
[http://dx.doi.org/10.1088/0957-4484/20/17/175601] [PMID: 19420594]
[38]
Ali, S.; Wang, F.P.; Iqbal, M.Z.; Shah, H.U.; Zafar, S. Hydrothermal synthesis, characterization and optical properties of SnS prismatic nanorods. Mater. Lett., 2017, 206, 22-25.
[http://dx.doi.org/10.1016/j.matlet.2017.06.031]
[39]
Naderi, M.; Shoushtari, M.Z.; Kazeminezhad, I.; Ahmadi, M.; Roghabadi, F.A. Hydrothermal synthesized AZO nanorods layer as a high potential buffer layer for inverted polymer solar cell. Ceram. Int., 2018, 44, 15660-15665.
[http://dx.doi.org/10.1016/j.ceramint.2018.05.236]
[40]
Lin, X.Z.; Guo, B.; Qiu, Y.F.; Xu, P.R.; Fan, H.B. Surfactant-free hydrothermal synthesis of CePO4 microbundles assembled by aligned nanorods. Mater. Lett., 2017, 194, 49-52.
[http://dx.doi.org/10.1016/j.matlet.2017.01.130]
[41]
Li, L.J.; Chen, Z.Y.; Zhang, Q.B.; Xu, M.; Zhou, X.; Zhu, H.L.; Zhang, K.L. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 894-904.
[http://dx.doi.org/10.1039/C4TA05902F]
[42]
Cao, S.Y.; Chen, C.S.; Xi, X.D.; Zeng, B.; Ning, X.T.; Liu, T.G.; Chen, X.H.; Meng, X.M.; Xiao, Y. Hypothermia-controlled Co-precipitation route to deposit well-dispersed β-Bi2O3 nanospheres on polymorphic graphene flakes. Vacuum, 2014, 102, 1-4.
[http://dx.doi.org/10.1016/j.vacuum.2013.10.025]
[43]
Li, X.P.; Sun, Y.L.; Luo, C.W.; Chao, Z.S. UV-resistant hydrophobic CeO2 nanomaterial with photocatalytic depollution performance. Ceram. Int., 2018, 44, 13439-13443.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.132]
[44]
Pei, B.; Yao, H.X.; Zhang, W.X.; Yang, Z.H. Hydrothermal synthesis of morphology-controlled LiFePO4 cathode material for lithium-ion batteries. J. Power Sources, 2012, 220, 317-323.
[http://dx.doi.org/10.1016/j.jpowsour.2012.07.128]
[45]
Wang, H.Y.; Ren, Y.; Wang, W.J.; Huang, X.B.; Huang, K.L.; Wang, Y.; Liu, S.Q. NH4V3O8 nanorod as a high performance cathode material for rechargeable Li-ion batteries. J. Power Sources, 2012, 199, 315-321.
[http://dx.doi.org/10.1016/j.jpowsour.2011.10.069]
[46]
Wu, P.P.; Zhang, Z.K.; Song, G.P. Preparation of Nd2O3 nanorods in SDBS micelle system. J. Rare Earths, 2014, 32, 1027-1031.
[http://dx.doi.org/10.1016/S1002-0721(14)60178-2]
[47]
Teng, F.; Santhanagopalan, S.; Asthana, A.; Geng, X.B.; Mho, S.; Shahbazian-Yassar, R.; Meng, D.D. Self-assembly of LiFePO4 nanodendrites in a novel system of ethylene glycol-water. J. Cryst. Growth, 2010, 312, 3493-3502.
[http://dx.doi.org/10.1016/j.jcrysgro.2010.09.005]
[48]
Hamzah, M.; Ndlmoa, R.M.; Khenfouch, M.; Srinivasu, V.V. Blue luminescence from hydrothermal ZnO nanorods based PVA nanofibers. J. Mater. Sci. Mater. Electron., 2017, 28, 11915-11920.
[http://dx.doi.org/10.1007/s10854-017-7000-9]
[49]
Jadhav, A.R.; Bandal, H.A.; Taasoli, A.H.; Kim, H. Environment friendly hydrothermal synthesis of carbon-Co3O4 nanorods composite as an efficient catalyst for oxygen evolution reaction. J. Energ. Chem., 2017, 26, 695-702.
[http://dx.doi.org/10.1016/j.jechem.2017.03.011]
[50]
Lin, L.; Sun, X.; Jiang, Y.; He, Y. Sol-hydrothermal synthesis and optical properties of Eu3+, Tb(3+)-codoped one-dimensional strontium germanate full color nano-phosphors. Nanoscale, 2013, 5(24), 12518-12531.
[http://dx.doi.org/10.1039/c3nr04185a] [PMID: 24170239]
[51]
Bae, H.J.; Yoo, T.H.; Yoon, Y.; Lee, I.G.; Kim, J.P.; Cho, B.J.; Hwang, W.S. High-aspect ratio β–Ga2O3 nanorods via hydrothermal synthesis. Nanomaterials (Basel), 2018, 8(8), 594-603.
[http://dx.doi.org/10.3390/nano8080594] [PMID: 30081584]
[52]
Hu, P.F.; Chen, Y.; Chen, Y.; Lin, Z.H.; Wang, Z.C. Hydrothermal synthesis and photocatalytic properties of WO3 nanorods by using capping agent SnCl4·5H2O. Physica E, 2017, 92, 12-16.
[http://dx.doi.org/10.1016/j.physe.2017.05.004]
[53]
Bi, Z.C.; Xu, F.; Yang, P.H.; Yu, J.Y.; Li, J.B. Minic oil recovery with a SDBS-dodecane-silica gel. Colloids Surf. A Physicochem. Eng. Asp., 2001, 180, 235-242.
[http://dx.doi.org/10.1016/S0927-7757(00)00771-8]
[54]
Zhang, X.L.; Liu, G.M.; Wu, Z.L.; Pang, P.S. Effect of sodium dodecyl benzene sulfonate on the absorption spectrum and determination of crystal violet in aqueous solution. Dyes Pigments, 2012, 95, 784-788.
[http://dx.doi.org/10.1016/j.dyepig.2012.06.019]
[55]
Xiang, J.; Cao, H.; Warner, J.H.; Watt, A.A.R. Crystallization and self-assembly of calcium carbonate architectures. Cryst. Growth Des., 2008, 8, 4583-4588.
[http://dx.doi.org/10.1021/cg8006553]
[56]
Leem, G.; Sarangi, S.; Zhang, S.; Rusakova, I.; Brazdeikis, A.; Litvinov, D.; Lee, T.R. Surfactant-controlled size and shape evolution of magnetic nanoparticles. Cryst. Growth Des., 2009, 9, 32-34.
[http://dx.doi.org/10.1021/cg8009833]
[57]
Huang, Y.; Wang, W.; Liang, H.; Xu, H. Surfactant-promoted reductive synthesis of shape-controlled gold nanostructures. Cryst. Growth Des., 2009, 9, 858-862.
[http://dx.doi.org/10.1021/cg800500c]
[58]
Fan, L.; Guo, R. Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions. Cryst. Growth Des., 2008, 8, 2150-2156.
[http://dx.doi.org/10.1021/cg701096g]
[59]
Chala, S.; Wetchakun, K.; Phanichphant, S.; Inceesungvorn, B.; Wetchakun, N. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst. J. Alloys Compd., 2014, 597, 129-135.
[http://dx.doi.org/10.1016/j.jallcom.2014.01.130]
[60]
Berglund, S.P.; Flaherty, D.W.; Hahn, N.T.; Bard, A.J.; Mullins, C.B. Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J. Phys. Chem. C, 2011, 115, 3794-3802.
[http://dx.doi.org/10.1021/jp1109459]
[61]
Bahrami, M.; Nezamzadeh-Ejhieh, A. Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution. Mater. Sci. Semicond. Process., 2015, 30, 275-284.
[http://dx.doi.org/10.1016/j.mssp.2014.10.006]
[62]
Jafari, S.; Nezamzadeh-Ejhieh, A. Supporting of coupled silver halides onto clinoptilolite nanoparticles as simple method for increasing their photocatalytic activity in heterogeneous photodegradation of mixture of 4-methoxy aniline and 4-chloro-3-nitro aniline. J. Colloid Interface Sci., 2017, 490, 478-487.
[http://dx.doi.org/10.1016/j.jcis.2016.11.087] [PMID: 27918985]
[63]
Babaahamdi-Milani, M.; Nezamzadeh-Ejhieh, A. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles. J. Hazard. Mater., 2016, 318, 291-301.
[http://dx.doi.org/10.1016/j.jhazmat.2016.07.012] [PMID: 27427895]
[64]
Shirzadi, A.; Nezamzadeh-Ejhieh, A. Enhanced photocatalytic activity of supported CuO–ZnO semiconductors towards the photodegradation of mefenamic acid aqueous solution as a semi real sample. J. Mol. Catal. Chem., 2016, 411, 222-229.
[http://dx.doi.org/10.1016/j.molcata.2015.10.027]
[65]
Khodami, Z.; Nezamzadeh-Ejhieh, A. Investigation of photocatalytic effect of ZnO–SnO2/nano clinoptilolite system in the photodegradation of aqueous mixture of 4-methylbenzoic acid/2-chloro-5-nitrobenzoic acid. J. Mol. Catal. Chem., 2015, 409, 59-68.
[http://dx.doi.org/10.1016/j.molcata.2015.08.013]
[66]
Iyyapushpam, S.; Nishanthi, S.T.; Padiyan, D.P. Photocatalytic degradation of methyl orange using α-Bi2O3 prepared without surfactant. J. Alloys Compd., 2013, 563, 104-107.
[http://dx.doi.org/10.1016/j.jallcom.2013.02.107]
[67]
Brezesinski, K.; Ostermann, R.; Hartmann, P.; Perlich, J.; Brezesinski, T. Exceptional photocatalytic activity of ordered mesoporous β-Bi2O3 thin films and electrospun nanofiber mats. Chem. Mater., 2010, 22, 3079-3085.
[http://dx.doi.org/10.1021/cm903780m]
[68]
Iyyapushpam, S.; Nishanthi, S.T.; Padiyan, D.P. Enhanced photocatalytic degradation of methyl orange by gamma Bi2O3 and its kinetics. J. Alloys Compd., 2014, 601, 85-87.
[http://dx.doi.org/10.1016/j.jallcom.2014.02.142]
[69]
Liang, S.H.; Zhang, D.F.; Pu, X.P.; Yao, X.T.; Han, R.T.; Yin, J.; Ren, X.Z. A novel Ag2O/g-C3N4 p-n heterojunction photocatalysts with enhanced visible and near-infrared light activity. Separ. Purif. Tech., 2019, 210, 786-797.
[http://dx.doi.org/10.1016/j.seppur.2018.09.008]
[70]
Liu, X.W.; Xu, J.J.; Ni, Z.Y.; Wang, R.C.; You, J.H.; Guo, R. Adsorption and visible-light-driven photocatalytic properties of Ag3PO4/WO3 composites: A discussion of the mechanism. Chem. Eng. J., 2019, 356, 22-33.
[http://dx.doi.org/10.1016/j.cej.2018.09.001]
[71]
Chen, C.S.; Xie, X.D.; Cao, S.Y.; Liu, Q.C.; Kuang, J.C.; Mei, Y.P.; Zhao, G.J.; Liu, T.G.; Zeng, B.; Ning, X.T. Preparation and photocatalytic property of multi-walled carbon nanotubes/TiO2 nanohybrids. Funct. Mater. Lett. (Singap.), 2013, 6, 1350018.
[http://dx.doi.org/10.1142/S1793604713500185]
[72]
Chen, C.S.; Xie, X.D.; Zhao, G.J.; Zeng, B.; Ning, X.T.; Cao, S.Y.; Xiao, Y.; Mei, Y.P.; Meng, X.M.; Huang, M.X. Graphene/multi-walled carbon nanotube composite as an effective supports to enhance the photocatalytic property of Cu-doped ZnO nanoparticles. Funct. Mater. Lett. (Singap.), 2013, 6, 1350062.
[http://dx.doi.org/10.1142/S1793604713500628]
[73]
Li, H.B.; Huang, G.Y.; Zhang, J.; Fu, S.H.; Wang, T.G.; Liao, H.W. Photochemical synthesis and enhanced photocatalytic activity of MnOx/BiPO4 heterojunction. Trans. Nonferrous Met. Soc. China, 2017, 27, 1127-1133.
[http://dx.doi.org/10.1016/S1003-6326(17)60131-6]
[74]
Yao, W.F.; Wang, H.; Xu, X.H.; Yang, X.N.; Zhang, Y.; Shang, S.X.; Wang, M. Preparation and photocatalytic property of La(Fe)-doped bismuth titanate. Appl. Catal. A Gen., 2003, 251, 235-239.
[http://dx.doi.org/10.1016/S0926-860X(03)00378-8]
[75]
Li, H.B.; Jiang, P.; Zhang, W.B.; Chen, S.G.; Li, F.J. Hydrothermal synthesis of BiVO4@Cu2O core-shell n-p heterojunction for enhanced visible-light photocatalytic performance. Nanosci. Nanotechnol. Lett., 2018, 10, 451-460.
[http://dx.doi.org/10.1166/nnl.2018.2689]
[76]
Zhang, D.; Cui, S.; Yang, J. Preparation of Ag2O/g-C3N4/Fe3O4 composites and the application in the photocatalytic degradation of Rhodamine B under visible light. J. Alloys Compd., 2018, 708, 1141-1149.
[http://dx.doi.org/10.1016/j.jallcom.2017.03.095]
[77]
Li, H.B.; Zhang, J.; Huang, G.Y.; Fu, S.H.; Ma, C.; Wang, B.Y.; Huang, Q.R.; Liao, H.W. Hydrothermal synthesis and enhanced photocatalytic activity of hierarchical flower-like Fe-doped BiVO4. Trans. Nonferrous Met. Soc. China, 2017, 27, 868-875.
[http://dx.doi.org/10.1016/S1003-6326(17)60102-X]
[78]
Chen, C.S.; Xie, X.D.; Cao, S.Y.; Liu, T.G.; Lin, L.W.; Chen, X.H.; Liu, Q.C.; Kuang, J.C.; Xiao, Y. Preparation and photocatalytic activity of multi-walled carbon nanotubes/Mg-doped ZnO nanohybrids. Mater. Sci. Pol., 2015, 33, 460-469.
[http://dx.doi.org/10.1515/msp-2015-0083]
[79]
Nezamzadeh-Ejhieh, A.; Karimi-Shamsabadi, M. Comparison of photocatalytic efficiency of supported CuO onto micro and nano particles of zeolite X in photodecolorization of Methylene blue and Methyl orange aqueous mixture. Appl. Catal. A Gen., 2014, 477, 83-92.
[http://dx.doi.org/10.1016/j.apcata.2014.02.031]
[80]
Parshetti, G.K.; Telke, A.A.; Kalyani, D.C.; Govindwar, S.P. Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J. Hazard. Mater., 2010, 176(1-3), 503-509.
[http://dx.doi.org/10.1016/j.jhazmat.2009.11.058] [PMID: 19969416]
[81]
Hu, C.C.; Huang, H.X.; Lin, Y.F. Ag-deposited electrospun SrTiO3 nanofiber with enhanced photocatalytic activity for degradation of methylene orange. J. Nanosci. Nanotechnol., 2017, 17, 1-6.
[82]
Yu, W.; Sun, Y.; Lei, M.; Chen, S.; Qiu, T.; Tang, Q. Preparation of micro-electrolysis material from flotation waste of copper slag and its application for degradation of organic contaminants in water. J. Hazard. Mater., 2019, 361, 221-227.
[http://dx.doi.org/10.1016/j.jhazmat.2018.08.098] [PMID: 30196034]
[83]
Abbasi, A.; Hamadanian, M.; Gholami, T.; Salavati-Niasari, M.; Sadri, N. Facile preparation of PbCrO4 and PbCrO4/Ag nanostructure as an effective photocatalyst for degradation of organic contaminants. Separ. Purif. Tech., 2019, 209, 79-87.
[http://dx.doi.org/10.1016/j.seppur.2018.07.018]
[84]
Faraji, M.; Abedini, A. Surface photochemical modification of TiO2 nanotube/Ti plates for photocatalytic elimination of methylene orange dye. Int. J. Environ. Sci. Technol., 2019, 16, 909-920.
[http://dx.doi.org/10.1007/s13762-018-1660-8]
[85]
Du, Y.B.; Zhang, L.; Ruan, M.; Niu, C.G.; Wen, X.J.; Liang, C.; Zhang, X.G.; Zeng, G.M. Template-free synthesis of three-dimensional porous CdS/TiO2 with high stability and excellent visible photocatalytic activity. Mater. Chem. Phys., 2018, 212, 69-77.
[http://dx.doi.org/10.1016/j.matchemphys.2018.03.033]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy