Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

In Silico Studies on Anti-Stress Compounds of Ethanolic Root Extract of Hemidesmus indicus L.

Author(s): Jayasimha R. Daddam, Basha Sreenivasulu, Katike Umamahesh*, Kotha Peddanna* and Dowlathabad M. Rao

Volume 21, Issue 6, 2020

Page: [502 - 515] Pages: 14

DOI: 10.2174/1389201021666191211152754

Price: $65

Abstract

Background: Alternative medicine is available for those diseases which cannot be treated by conventional medicine. Ayurveda and herbal medicines are important alternative methods in which the treatment is done with extracts of different medicinal plants. This work is concerned with the evaluation of anti-stress bioactive compounds from the ethanolic root extract of Hemidesmus indicus.

Methods: Gas chromatography and Mass Spectrum studies are used to identify the compounds present in the ethanolic extract based on the retention time, area. In order to perform docking studies, Vasopressin model is generated using modeling by Modeller 9v7. Vasopressin structure is developed based on the crystal structure of neurophysin-oxytocin from Bos taurus (PDB ID: 1NPO_A) collected from the PDB data bank. Using molecular dynamics simulation methods, the final predicted structure is obtained and further analyzed by verifying 3D and PROCHECK programs, confirmed that the final model is reliable. The identified compounds are docked to vasopressin for the prediction of anti-stress activity using GOLD 3.0.1 software.

Results: The predicted model of Vasopressin structure is stabilized and confirmed that it is a reliable structure for docking studies. The results indicated ARG4, THR7, ASP9, ASP26, ALA32, ALA 80 in Vasopressin are important determinant residues in binding as they have strong hydrogen bonding with phytocompounds. Among the 21 phytocompounds identified and docked, molecule Deoxiinositol, pentakis- O-(trimethylsilyl) showed the best docking results with Vasopressin.

Conclusion: The identified compounds were used for anti-stress activity by insilico method with Vasopressin which plays an important role in causing stress and hence selected for inhibitory studies with phytocompounds. The phytocompounds are inhibiting vasopressin through hydrogen bodings and are important in protein-ligand interactions. Docking results showed that out of twenty-one compounds, Deoxiinositol, pentakis-O-(trimethylsilyl) showed best docking energy to the Vasopressin.

Keywords: Ayurveda, anti-stress, GC-MS, modeling, docking studies, vasopressin.

Graphical Abstract

[1]
Muthukumar, K.; Nachiappan, V. Cadmium-induced oxidative stress in Saccharomyces cerevisiae. Indian J. Biochem. Biophys., 2010, 47(6), 383-387.
[PMID: 21355423]
[2]
Muthukumar, K.; Nachiappan, V. Phosphatidylethanolamine from phosphatidylserine decarboxylase2 is essential for autophagy under cadmium stress in Saccharomyces cerevisiae. Cell Biochem. Biophys., 2013, 67(3), 1353-1363.
[http://dx.doi.org/10.1007/s12013-013-9667-8] [PMID: 23743710]
[3]
Ulrich-Lai.Yvonne, M.; Herman, James P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci., 2017, 10(6), 397-409.
[4]
Mary, S.; Ann, C.; Gary, W.Stress and the HPA axis: Alcohol Res., 2012, 34(4), 468-483.
[PMID: 23584113]
[5]
Aguilera, G. HPA axis responsiveness to stress: implications for healthy aging. Exp. Gerontol., 2011, 46(2-3), 90-95.
[http://dx.doi.org/10.1016/j.exger.2010.08.023] [PMID: 20833240]
[6]
Smith, S.M. Wylie, V.W.The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci., 2017, 8(4), 383-395.
[7]
Jessica, M.M.; Brent, M.; James, H.P. The medial prefrontal cortex: coordinator of autonomic, neuroendocrine, and behavioral responses to stress. J. Neuroendocrinol., 2017, 27(6), 446-456.
[8]
El-Sheikh, M.; Erath, S.A. Family conflict, autonomic nervous system functioning, and child adaptation: state of the science and future directions. Dev. Psychopathol., 2011, 23(2), 703-721.
[http://dx.doi.org/10.1017/S0954579411000034] [PMID: 23786705]
[9]
Hering, D.; Lachowska, K.; Schlaich, M. Role of the sympathetic nervous system in stress-mediated cardiovascular disease. Curr. Hypertens. Rep., 2015, 17(10), 80.
[http://dx.doi.org/10.1007/s11906-015-0594-5] [PMID: 26318888]
[10]
McGaugh, J.L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci., 2004, 27, 1-28.
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144157] [PMID: 15217324]
[11]
Insel, T.R. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron, 2010, 65(6), 768-779.
[http://dx.doi.org/10.1016/j.neuron.2010.03.005] [PMID: 20346754]
[12]
de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci., 2005, 6(6), 463-475.
[http://dx.doi.org/10.1038/nrn1683] [PMID: 15891777]
[13]
Bale, T.L.; Vale, W.W. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. Toxicol., 2004, 44, 525-557.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121410] [PMID: 14744257]
[14]
Engelmann, M.; Ludwig, M. The activity of the hypothalamo-neurohypophysial system in response to acute stressor exposure: neuroendocrine and electrophysiological observations. Stress, 2004, 7(2), 91-96.
[http://dx.doi.org/10.1080/10253890410001677240] [PMID: 15512852]
[15]
Fehm, H.L.; Kern, W.; Peters, A. The selfish brain: competition for energy resources. Prog. Brain Res., 2006, 153, 129-140.
[http://dx.doi.org/10.1016/S0079-6123(06)53007-9] [PMID: 16876572]
[16]
Spruill, T.M. Chronic psychosocial stress and hypertension. Curr. Hypertens. Rep., 2010, 12(1), 10-16.
[http://dx.doi.org/10.1007/s11906-009-0084-8] [PMID: 20425153]
[17]
Prasad, E.M.; Mopuri, R.; Islam, M.S.; Kodidhela, L.D. Cardioprotective effect of Vitex negundo on isoproterenol-induced myocardial necrosis in wistar rats: A dual approach study. Biomed. Pharmacother., 2017, 85, 601-610.
[http://dx.doi.org/10.1016/j.biopha.2016.11.069] [PMID: 27889228]
[18]
Kurjogi, M.; Satapute, P.; Jogaiah, S.; Abdelrahman, M.; Daddam, J.R.; Ramu, V.; Tran, L.P. Computational modeling of the staphylococcal enterotoxins and their interaction with natural antitoxin compounds. Int. J. Mol. Sci., 2018, 19(1), 133.
[http://dx.doi.org/10.3390/ijms19010133] [PMID: 29301344]
[19]
Seshapani, P.; Rayalu, D.J.; Kumar, V.K.; Sekhar, K.C.; Kumari, J.P. Insights from the molecular characterization of mercury stress proteins identified by proteomics in E.coli nissle 1917. Bioinformation, 2013, 9(9), 485-490.
[http://dx.doi.org/10.6026/97320630009485] [PMID: 23847405]
[20]
Kumar, P.N.; Swapna, T.H.; Khan, M.Y.; Daddam, J.R.; Hameeda, B. Molecular dynamics and protein interaction studies of lipopeptide (Iturin A) on α- amylase of Spodoptera litura. J. Theor. Biol., 2017, 415, 41-47.
[http://dx.doi.org/10.1016/j.jtbi.2016.12.003] [PMID: 27940096]
[21]
Daddam, J.R.; Dowlathabad, M.R.; Panthangi, S.; Jasti, P. Molecular docking and P-glycoprotein inhibitory activity of flavonoids. Interdiscip. Sci., 2014, 6(3), 167-175.
[http://dx.doi.org/10.1007/s12539-012-0197-7] [PMID: 25205494]
[22]
Singh, N.K.; Pakkkianathan, B.C.; Kumar, M.; Daddam, J.R.; Jayavel, S.; Kannan, M.; Pillai, G.G.; Krishnan, M. Computational studies on molecular interactions of 6-thioguanosine analogs with anthrax toxin receptor 1. Interdiscip. Sci., 2012, 4(3), 183-189.
[http://dx.doi.org/10.1007/s12539-012-0126-9] [PMID: 23292691]
[23]
Rayalu, D.J.; Selvaraj, C.; Singh, S.K.; Ganeshan, R.; Kumar, N.U.; Seshapani, P. Homology modeling, active site prediction, and targeting the anti hypertension activity through molecular docking on endothelin - B receptor domain. Bioinformation, 2012, 8(2), 81-86.
[http://dx.doi.org/10.6026/97320630008081] [PMID: 22359440]
[24]
Kotha, P.; Rayalu Daddam, J.; Sai Gopal Divi, V.R.; Dakinedi, S.R.; Dowlathabad, M. Modelling simulation phylogenetics of leukemia FMS Tyrosine Kinase 3 (FLT3). Online J. Bioinform., 2015, 16(1), 8-17.
[25]
Zhang, J.; Luan, C.H.; Chou, K.C.; Johnson, G.V. Identification of the N-terminal functional domains of Cdk5 by molecular truncation and computer modeling. Proteins, 2002, 48(3), 447-453.
[http://dx.doi.org/10.1002/prot.10173] [PMID: 12112670]
[26]
Raghava, G.P.; Searle, S.M.; Audley, P.C.; Barber, J.D.; Barton, G.J.; Bench, O.X. OXBench: a benchmark for evaluation of protein multiple sequence alignment accuracy. BMC Bioinformatics, 2003, 4, 47.
[http://dx.doi.org/10.1186/1471-2105-4-47] [PMID: 14552658]
[27]
Webb, B.; Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol., 2014, 1137, 1-15.
[http://dx.doi.org/10.1007/978-1-4939-0366-5_1] [PMID: 24573470]
[28]
Wriggers, W.; Schulten, K. Investigating a back door mechanism of actin phosphate release by steered molecular dynamics. Proteins, 1999, 35(2), 262-273.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19990501)35:2<262:AID-PROT11>3.0.CO;2-N] [PMID: 10223297]
[29]
Wang, J.F.; Wei, D.Q.; Li, L.; Zheng, S.Y.; Li, Y.X.; Chou, K.C. 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Biochem. Biophys. Res. Commun.(BBRC), 2007, 355(2), 513-519.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.185] [PMID: 17307149]
[30]
Wang, J.F.; Chou, K.C. Insights into the mutation-induced HHH syndrome from modeling human mitochondrial ornithine transporter-1. PLoS One, 2012, 7(1) e31048
[http://dx.doi.org/10.1371/journal.pone.0031048]] [PMID: 22292090]
[31]
Sircar, A.; Sanni, K.A.; Shi, J.; Gray, J.J. Analysis and modeling of the variable region of camelid single-domain antibodies. J. Immunol., 2011, 186(11), 6357-6367.
[http://dx.doi.org/10.4049/jimmunol.1100116] [PMID: 21525384]
[32]
Kolawole, O.A.; Banjo, S. In vitro biological estimation of 1,2,3] triazolo4,5-d] pyrimidine derivatives as anti-breast cancer agent: DFT, QSAR and docking studies. Curr. Pharm. Biotechnol., 2019, 20, 1.
[http://dx.doi.org/10.2174/1389201020666190904163003] [PMID: 31483227]
[33]
Weitzner, B.D.; Jeliazkov, J.R.; Lyskov, S.; Marze, N.; Kuroda, D.; Frick, R.; Adolf-Bryfogle, J.; Biswas, N.; Dunbrack, R.L., Jr; Gray, J.J. Modeling and docking of antibody structures with Rosetta. Nat. Protoc., 2017, 12(2), 401-416.
[http://dx.doi.org/10.1038/nprot.2016.180] [PMID: 28125104]
[34]
Krovat, E.M.; Steindl, T.; Langer, T. Recent advances in docking and scoring. Curr. Comput. Aided Drug Des., 2005, 1, 93-102.
[http://dx.doi.org/10.2174/1573409052952314]
[35]
Morris, G.M.; Goodsell, D.S.; Huey, R.; Olson, A.J. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J. Comput. Aided Mol. Des., 1996, 10(4), 293-304.
[http://dx.doi.org/10.1007/BF00124499] [PMID: 8877701]
[36]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[37]
Wang, T.; Wu, M.B.; Chen, Z.J.; Chen, H.; Lin, J.P.; Yang, L.R. Fragment-based drug discovery and molecular docking in drug design. Curr. Pharm. Biotechnol., 2015, 16(1), 11-25.
[http://dx.doi.org/10.2174/1389201015666141122204532] [PMID: 25420726]
[38]
Mishra, S.S.; Sharma, C.S.; Singh, H.P.; Pandiya, H.; Kumar, N. In silico ADME, bioactivity and toxicity parameters calculation of some selected anti-tubercular drugs. Int. J. Pharmaceut. Phytopharmacologic. Res., 2016, 6, 77-79.
[http://dx.doi.org/10.24896/eijppr.2016661]
[39]
Kumar, N.; Mishra, S.S.; Sharma, C.S.; Singh, H.P.; Kalra, S. In silico binding mechanism prediction of benzimidazole based corticotropin releasing factor-1 receptor antagonists by quantitative structure activity relationship, molecular docking and pharmacokinetic parameters calculation. J. Biomol. Struct. Dyn., 2018, 36(7), 1691-1712.
[http://dx.doi.org/10.1080/07391102.2017.1332688] [PMID: 28521603]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy