Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

A Literature Review on Planning and Analysis of Multi-stress Accelerated Life Test for Reliability Assessment

Author(s): Xiangxiang Zhang, Jun Yang* and Xuefeng Kong

Volume 15, Issue 1, 2021

Published on: 09 December, 2019

Page: [12 - 21] Pages: 10

DOI: 10.2174/1872212113666191209150647

Price: $65

conference banner
Abstract

Background: Multi-stress accelerated life test (MALT) has obtained increasing attention in reliability assessment due to its advantages. Started with constant-stress ALT with two stress variables, MALT has developed a lot during the past decades. In MALT, the design of the test plan and data analysis are two crucial aspects. Numerous researchers have discussed these two aspects and some important methods of planning and data analysis for MALT are presented.

Methods: We first conducted a survey in the journal databases including Elsevier, Springer, IEEEXplore, Wiley and Taylor & Francis; and patent databases like Spacenet, USPTO and WIPO. Then we revised the literature including patents comprehensively on the planning and analysis of multistress ALT.

Results: Optimal designs for MALT under different stress loadings are summarized, and different types of statistical inference methods are categorized and introduced. Finally, some challenges and research trends are discussed for future study.

Keywords: Multiple stresses, accelerated life test, reliability assessment, optimal designs, ALT planning, data analysis.

Graphical Abstract

[1]
W.Q. Meeker, and L.A. Escobar, "A review of recent research and current issues in accelerated testing", Int. Stat. Rev., vol. 61, no. 1, pp. 147-168, 1993.
[http://dx.doi.org/10.2307/1403600]
[2]
W. Nelson, "A bibliography of accelerated test plans", IEEE Trans. Reliab., vol. 54, no. 2, pp. 194-197, 2005.
[http://dx.doi.org/10.1109/TR.2005.847247]
[3]
W. Nelson, "A bibliography of accelerated test plans part II - references", IEEE Trans. Reliab., vol. 54, no. 3, pp. 370-373, 2005.
[http://dx.doi.org/10.1109/TR.2005.853289]
[4]
L.A. Escobar, and W.Q. Meeker, "A Review of Accelerated Test Models", Stat. Sci., vol. 21, no. 4, pp. 552-577, 2006.
[http://dx.doi.org/10.1214/088342306000000321]
[5]
E.A. Elsayed, "Overview of Reliability Testing", IEEE Trans. Reliab., vol. 61, no. 2, pp. 282-291, 2012.
[http://dx.doi.org/10.1109/TR.2012.2194190]
[6]
W. Minford, "“Accelerated Life Testing and Reliability of High K Multilayer Ceramic Capacitors”, IEEE Trans. Components, Hybrids, and Manuf", Technol., vol. 5, no. 3, pp. 297-300, 1982.
[http://dx.doi.org/10.1109/TCHMT.1982.1135974]
[7]
B.M. Mogilevsky, and G.A. Shirn, "“Accelerated life tests of ceramic capacitors”, IEEE Trans. Components, Hybrids, and Manuf", Technol., vol. 11, no. 4, pp. 351-357, 1988.
[http://dx.doi.org/10.1109/33.16667]
[8]
R. Morin, R. Bartnikas, and P. Menard, "A three-phase multi-stress accelerated electrical aging test facility for stator bars", IEEE Trans. Energ. Convers., vol. 15, no. 2, pp. 149-156, 2000.
[http://dx.doi.org/10.1109/60.866992]
[9]
S. Kurihara, S. Furukawa, K. Takano, Y. Hashimoto, and M. Hikita, "Study on Acceleration Factor at 5000 h Multiple Stress Test and Aging Evaluation of EVA Insulator", Electr. Eng. Jpn., vol. 201, no. 4, pp. 18-25, 2017.
[http://dx.doi.org/10.1002/eej.23004]
[10]
A. Charki, R. Laronde, F. Guérin, D. Bigaud, and F. Coadou, "Robustness evaluation using highly accelerated life testing", Int. J. Adv. Manuf. Technol., vol. 56, no. 9, pp. 1253-1261, 2011.
[http://dx.doi.org/10.1007/s00170-011-3264-z]
[11]
H. Yang, L. Han, and M. He, "Multi-stress accelerated life monitoring and testing system based on automatic photoelectric parameter acquisition", CN Patent CN103149523 (A), 12-Jun, 2013
[12]
J. Wu, "Dynamic stress accelerated life test profile compilation method", CN Patent CN107545110 (A), 2018.
[13]
Z. Chao, and W. Shaoping, "Design method for integrated stress, acceleration and service life testing profile of astronautic drive component", CN Patent CN102494880 (A), 2012.
[14]
Q. Guan, Y. Tang, J. Fu, and A. Xu, "Optimal Multiple Constant-Stress Accelerated Life Tests for Generalized Exponential Distribution", Commun. Stat. Simul. Comput., vol. 43, no. 8, pp. 1852-1865, 2014.
[http://dx.doi.org/10.1080/03610918.2013.810257]
[15]
G-B. Yang, "Optimum constant-stress accelerated life-test plans", IEEE Trans. Reliab., vol. 43, no. 4, pp. 575-581, 1994.
[http://dx.doi.org/10.1109/24.370223]
[16]
X. Liu, and L-C. Tang, "A sequential constant‐stress accelerated life testing scheme and its Bayesian inference", Qual. Reliab. Eng. Int., vol. 25, no. 1, pp. 91-109, 2009.
[http://dx.doi.org/10.1002/qre.958]
[17]
L. Wang, "Inference of constant-stress accelerated life test for a truncated distribution under progressive censoring", Appl. Math. Model., vol. 44, pp. 743-757, 2017.
[http://dx.doi.org/10.1016/j.apm.2017.02.011]
[18]
F-K. Wang, and Y-C. Lu, "Useful lifetime of white OLED under a constant stress accelerated life testing", Opt. Quantum Electron., vol. 47, no. 2, pp. 323-329, 2015.
[http://dx.doi.org/10.1007/s11082-014-9915-1]
[19]
C-M. Liao, and S-T. Tseng, "Optimal design for step-stress accelerated degradation tests", IEEE Trans. Reliab., vol. 55, no. 1, pp. 59-66, 2006.
[http://dx.doi.org/10.1109/TR.2005.863811]
[20]
W. Nelson, "Accelerated Life Testing - Step-Stress Models and Data Analyses", IEEE Trans. Reliab., vol. R-29, no. 2, pp. 103-108, 1980.
[http://dx.doi.org/10.1109/TR.1980.5220742]
[21]
C. Xiong, “Step-stress Accelerated Life Testing,” in Handbook of Reliability Engineering., Springer London: London, 2003, pp. 457-469.
[22]
L-C. Tang, “Multiple-steps Step-stress Accelerated Life Test,” in Handbook of Reliability Engineering., Springer London: London, 2003, pp. 441-455.
[23]
W. Zhao, and E.A. Elsayed, "A general accelerated life model for step-stress testing", IIE Trans., vol. 37, no. 11, pp. 1059-1069, 2005.
[http://dx.doi.org/10.1080/07408170500232396]
[24]
T. Yincai, and F. Heliang, "A new way to estimate the parameters in the progressive stress accelerated life testing", Appl. Math., vol. 11, no. 4, p. 445, 1996.
[http://dx.doi.org/10.1007/BF02662884]
[25]
C. Peng, and S. Tseng, "Progressive-Stress Accelerated Degradation Test for Highly-Reliable Products", IEEE Trans. Reliab., vol. 59, no. 1, pp. 30-37, 2010.
[http://dx.doi.org/10.1109/TR.2010.2040769]
[26]
M.M. Mohie El-Din, S.E. Abu-Youssef, N.S.A. Ali, and A.M. Abd El-Raheem, "Classical and Bayesian inference on progressive-stress accelerated life testing for the extension of the exponential distribution under progressive type-II censoring", Qual. Reliab. Eng. Int., vol. 33, no. 8, pp. 2483-2496, 2017.
[http://dx.doi.org/10.1002/qre.2212]
[27]
Z. Lin, and H. Fei, "A nonparametric approach to progressive stress accelerated life testing", IEEE Trans. Reliab., vol. 40, no. 2, pp. 173-176, 1991.
[http://dx.doi.org/10.1109/24.87123]
[28]
M. Mustafa, Z. Cai, J.C. Suhling, and P. Lall, "The effects of aging on the cyclic stress-strain behavior and hysteresis loop evolution of lead free solders", in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Florida, USA,, 2011pp. 927-939
[http://dx.doi.org/10.1109/ECTC.2011.5898623]]
[29]
M. Mustafa, Z. Cai, J.C. Roberts, J.C. Suhling, and P. Lall, "Evolution of the tension/compression and shear cyclic stress-strain behavior of lead-free solder subjected to isothermal aging", in 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, California, USA,, 2012pp. 765-780.
[http://dx.doi.org/10.1109/ITHERM.2012.6231505]]
[30]
N. Fu, J.C. Suhling, M. Mustafa, and P. Lall, "Aging induced evolution of the cyclic stress-strain behavior of lead free solders", in 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm),Las Vegas, NV,, 2016pp. 737-745.
[31]
J. Pippola, T. Marttila, and L. Frisk, "Sequential stress combinations in product level reliability testing of industrial electronics", In: 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC), Singapore,, 2014pp. 738-742
[http://dx.doi.org/10.1109/EPTC.2014.7028377]]
[32]
P. Hacke, "Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity", IEEE J. Photovoltaics, vol. 5, no. 6, pp. 1549-1553, 2015.
[http://dx.doi.org/10.1109/JPHOTOV.2015.2466463]
[33]
I.P. Lipscomb, P.M. Weaver, J. Swingler, and J.W. McBride, "The effect of relative humidity, temperature and electrical field on leakage currents in piezo-ceramic actuators under dc bias", Sens. Actuators A Phys., vol. 151, no. 2, pp. 179-186, 2009.
[http://dx.doi.org/10.1016/j.sna.2009.01.017]
[34]
B.K. Gupta, "Effectiveness of thermo-mechanical stress in accelerated aging of turn insulation in motor coils", Conference Record of the 1992 IEEE International Symposium on Electrical Insulation Baltimore, MD, USA, 1992pp. 79-82
[http://dx.doi.org/10.1109/ELINSL.1992.247047]]
[35]
G. Haddad, K.L. Wong, and R.K. Gupta, "Dielectric breakdown characteristics of HTV silicone rubber under multiple stress conditions", Proceedings of 2014 International Symposium on Electrical Insulating Materials Niigata, 2014pp. 276-279
[http://dx.doi.org/10.1109/ISEIM.2014.6870772]]
[36]
N. Balakrishnan, L. Zhang, and Q. Xie, "Inference for a Simple Step-Stress Model with Type-I Censoring and Lognormally Distributed Lifetimes", Commun. Stat. Theory Methods, vol. 38, no. 10, pp. 1690-1709, 2009.
[http://dx.doi.org/10.1080/03610920902866966]
[37]
E. Gouno, A. Sen, and N. Balakrishnan, "Optimal step-stress test under progressive type-I censoring", IEEE Trans. Reliab., vol. 53, no. 3, pp. 388-393, 2004.
[http://dx.doi.org/10.1109/TR.2004.833320]
[38]
A.A. Ismail, A.A. Abdel-Ghaly, and E.H. El-Khodary, "Optimum constant-stress life test plans for Pareto distribution under type-I censoring", J. Stat. Comput. Simul., vol. 81, no. 12, pp. 1835-1845, 2011.
[http://dx.doi.org/10.1080/00949655.2010.506440]
[39]
C-H. Hu, R.D. Plante, and J. Tang, "Equivalent step-stress accelerated life tests with log-location-scale lifetime distributions under Type-I censoring", IIE Trans., vol. 47, no. 3, pp. 245-257, 2015.
[http://dx.doi.org/10.1080/0740817X.2014.928960]
[40]
N. Balakrishnan, D. Kundu, K.T. Ng, and N. Kannan, "Point and Interval Estimation for a Simple Step-Stress Model with Type-II Censoring", J. Qual. Technol., vol. 39, no. 1, pp. 35-47, 2007.
[http://dx.doi.org/10.1080/00224065.2007.11917671]
[41]
C. Xiong, "Inferences on a simple step-stress model with type-II censored exponential data", IEEE Trans. Reliab., vol. 47, no. 2, pp. 142-146, 1998.
[http://dx.doi.org/10.1109/24.722278]
[42]
J. Lee, and R. Pan, "Bayesian inference model for step-stress accelerated life testing with type-II censoring", 2008 Annual Reliability and Maintainability Symposium Las Vegas, NV, 2008pp. 91-96
[43]
M. Kateri, U. Kamps, and N. Balakrishnan, "Optimal allocation of change points in simple step-stress experiments under Type-II censoring", Comput. Stat. Data Anal., vol. 55, no. 1, pp. 236-247, 2011.
[http://dx.doi.org/10.1016/j.csda.2010.04.013]
[44]
C. Ding, C. Yang, and S-K. Tse, "Accelerated life test sampling plans for the Weibull distribution under Type I progressive interval censoring with random removals", J. Stat. Comput. Simul., vol. 80, no. 8, pp. 903-914, 2010.
[http://dx.doi.org/10.1080/00949650902834478]
[45]
K-F. Shen, Y-J. Shen, and L-Y. Leu, "Design of optimal step–stress accelerated life tests under progressive type I censoring with random removals", Qual. Quant., vol. 45, no. 3, pp. 587-597, 2011.
[http://dx.doi.org/10.1007/s11135-010-9315-y]
[46]
S-J. Wu, Y-P. Lin, and Y-J. Chen, "Planning step-stress life test with progressively type I group-censored exponential data", Stat. Neerl., vol. 60, no. 1, pp. 46-56, 2006.
[http://dx.doi.org/10.1111/j.1467-9574.2006.00309.x]
[47]
P. Chen, A. Xu, and Z. Ye, "Generalized Fiducial Inference for Accelerated Life Tests With Weibull Distribution and Progressively Type-II Censoring", IEEE Trans. Reliab., vol. 65, no. 4, pp. 1737-1744, 2016.
[http://dx.doi.org/10.1109/TR.2016.2604298]
[48]
R. M. EL-Sagheer, "Inferences in Constant-Partially Accelerated Life Tests Based on Progressive Type-II Censoring", Bull. Malays. Math. Sci. Soc., vol. 41, no. 2, pp. 609-626, 2018.
[49]
B.X. Wang, K. Yu, and Z. Sheng, "New Inference for Constant-Stress Accelerated Life Tests With Weibull Distribution and Progressively Type-II Censoring", IEEE Trans. Reliab., vol. 63, no. 3, pp. 807-815, 2014.
[http://dx.doi.org/10.1109/TR.2014.2313804]
[50]
D.S. Peck, "Comprehensive Model for Humidity Testing Correlation", 24th International Reliability Physics Symposium California, USA, 1986pp. 44-50
[http://dx.doi.org/10.1109/IRPS.1986.362110]]
[51]
W. Q. Meeker and L. A. Escobar, Statistical Methods for Reliability Data., Wiley: New York, 1998.
[52]
N. Sha, and R. Pan, "Bayesian analysis for step-stress accelerated life testing using weibull proportional hazard model", Stat. Hefte, vol. 55, no. 3, pp. 715-726, 2014.
[53]
H-J. Shyur, "E. A. Elsayed, and J. T. Luxhøj, “A general hazard regression modelfor accelerated life testing", Ann. Oper. Res., vol. 91, no. 0, pp. 263-280, 1999.
[54]
M.I. Rodríguez-Borbón, M.A. Rodríguez-Medina, L.A. Rodríguez-Picón, A. Alvarado-Iniesta, and N. Sha, "Reliability Estimation for Accelerated Life Tests Based on a Cox Proportional Hazard Model with Error Effect", Qual. Reliab. Eng. Int., vol. 33, no. 7, pp. 1407-1416, 2017.
[http://dx.doi.org/10.1002/qre.2113]
[55]
P. Gao, and X. Li, "Acceptance Sampling Plan of Accelerated Life Testing for Exponential Distribution under Time-Censoring", 2014 Reliability and Maintainability Symposium Colorado, USA, 2014pp. 1-6
[http://dx.doi.org/10.1109/RAMS.2014.6798476]]
[56]
B. Wang, "Unbiased estimations for the exponential distribution based on step-stress accelerated life-testing data", Appl. Math. Comput., vol. 173, no. 2, pp. 1227-1237, 2006.
[http://dx.doi.org/10.1016/j.amc.2005.04.066]
[57]
W. Nelson, and T.J. Kielpinski, "Theory for Optimum Censored Accelerated Life Tests for Normal and Lognormal Life Distributions", Technometrics, vol. 18, no. 1, pp. 105-114, 1976.
[http://dx.doi.org/10.2307/1267923]
[58]
X.Y. Cheng, and S.M. Wu, "A statistical analysis of constant stress accelerated life testing for the case of the Weibull distribution", J. Huaqiao Univ. Nat. Sci. Ed., vol. 19, no. 4, pp. 334-338, 1998.
[59]
A.J. Watkins, "Review: likelihood method for fitting Weibull log-linear models to accelerated life-test data", IEEE Trans. Reliab., vol. 43, no. 3, pp. 361-365, 1994.
[http://dx.doi.org/10.1109/24.326426]
[60]
H. Xu, X. Li, and L. Liu, "Statistical analysis of accelerated life testing under Weibull distribution based on fuzzy theory In", 2015 Annual Reliability and Maintainability Symposium (RAMS) Florida, USA, 2015pp. 1-5
[http://dx.doi.org/10.1109/RAMS.2015.7105078]]
[61]
H. Yang, L. Xue, W. Huang, D. Song, and J. Wang, "LED Current Stress Accelerated Life Test under Lognormal Distribution Case", Proceedings of the 2012 Second International Conference on Electric Information and Control Engineering Lushan, China, 2012pp. 502-507
[62]
A.A. Alhadeed, IEEE Trans. Reliab., vol. 54, no. 1, pp. 64-68, 2005.
[http://dx.doi.org/10.1109/TR.2004.841704]
[63]
L.A. Escobar, and W.Q. Meeker, "Planning Accelerated Life Tests With Two or More Experimental Factors", Technometrics, vol. 37, no. 4, pp. 411-427, 1995.
[http://dx.doi.org/10.1080/00401706.1995.10484374]
[64]
J-W. Park, and B-J. Yum, "Optimal design of accelerated life tests with two stresses", Nav. Res. Logist.(NRL), vol. 43, no. 6, pp. 863-884, 1996.
[http://dx.doi.org/10.1002/(SICI)1520-6750(199609)43:6863::AID-NAV5>3.0.CO;2-2]]
[65]
W. Chen, H. Feng, P. Qian, S. Zhou, and X. Lu, "Theory & Method for Optimum Design of Accelerated Life Test Plan under Multiple Stresses", Chin. J. Mech. Eng., vol. 42, no. 12, pp. 101-105, 2006.
[http://dx.doi.org/10.3901/JME.2006.12.101]
[66]
Y. Zhu, and E.A. Elsayed, "Design of accelerated life testing plans under multiple stresses", Nav. Res. Logist.(NRL), vol. 60, no. 6, pp. 468-478, 2013.
[http://dx.doi.org/10.1002/nav.21545]]
[67]
E.A. Elsayed, and H. Zhang, "Design of PH-based accelerated life testing plans under multiple-stress-type", Reliab. Eng. Syst. Saf., vol. 92, no. 3, pp. 286-292, 2007.
[http://dx.doi.org/10.1016/j.ress.2006.04.016]
[68]
T. Yang, and R. Pan, "A Novel Approach to Optimal Accelerated Life Test Planning With Interval Censoring", IEEE Trans. Reliab., vol. 62, no. 2, pp. 527-536, 2013.
[http://dx.doi.org/10.1109/TR.2013.2257053]
[69]
E.M. Monroe, R. Pan, C.M. Anderson-Cook, D.C. Montgomery, and C.M. Borror, "A generalized linear model approach to designing accelerated life test experiments", Qual. Reliab. Eng. Int., vol. 27, no. 4, pp. 595-607, 2011.
[http://dx.doi.org/10.1002/qre.1143]
[70]
X. Zhao, J. Xu, and B. Liu, "Accelerated Degradation Tests Planning With Competing Failure Modes", IEEE Trans. Reliab., vol. 67, no. 1, pp. 142-155, 2018.
[http://dx.doi.org/10.1109/TR.2017.2761025]
[71]
R. Peng, B. Liu, Q. Zhai, and W. Wang, "Optimal maintenance strategy for systems with two failure modes", Reliab. Eng. Syst. Saf., vol. 188, pp. 624-632, 2019.
[http://dx.doi.org/10.1016/j.ress.2017.07.014]
[72]
Y. Zhu, and E.A. Elsayed, "Optimal design of accelerated life testing plans under progressive censoring", IIE Trans., vol. 45, no. 11, pp. 1176-1187, 2013.
[http://dx.doi.org/10.1080/0740817X.2012.725504]
[73]
H. Zhang, Y. Chen, D. Xu, F. Lin, and R. Kang, "Simulation-based multi-stress small sample accelerated life test scheme design optimization method”, CN Patent CN103246821 (A), 2013",
[74]
W. Chen, L. Gao, J. Liu, P. Qian, and J. Pan, "Optimal design of multiple stress constant accelerated life test plan on non-rectangle test region", Chin. J. Mech. Eng., vol. 25, no. 6, pp. 1231-1237, 2012.
[http://dx.doi.org/10.3901/CJME.2012.06.1231]
[75]
N. Balakrishnan, and M.H. Ling, "Best Constant-Stress Accelerated Life-Test Plans With Multiple Stress Factors for One-Shot Device Testing Under a Weibull Distribution", IEEE Trans. Reliab., vol. 63, no. 4, pp. 944-952, 2014.
[http://dx.doi.org/10.1109/TR.2014.2336391]
[76]
X. Xu, and M. Krzeminski, "Optimal designs for accelerated life tests with multiple stress factors and heteroscedasticity", Commun. Stat. Theory Methods, vol. 47, no. 6, pp. 1273-1306, 2018.
[http://dx.doi.org/10.1080/03610926.2017.1317809]
[77]
H-Y. Xu, and H-L. Fei, "Planning Step-Stress Accelerated Life Tests With Two Experimental Variables", IEEE Trans. Reliab., vol. 56, no. 3, pp. 569-579, 2007.
[http://dx.doi.org/10.1109/TR.2007.903292]
[78]
C. Li, and N. Fard, "Optimum Bivariate Step-Stress Accelerated Life Test for Censored Data", IEEE Trans. Reliab., vol. 56, no. 1, pp. 77-84, 2007.
[http://dx.doi.org/10.1109/TR.2006.890897]
[79]
L. Ling, W. Xu, and M. Li, "Optimal bivariate step-stress accelerated life test for Type-I hybrid censored data", J. Stat. Comput. Simul., vol. 81, no. 9, pp. 1175-1186, 2011.
[http://dx.doi.org/10.1080/00949651003796327]
[80]
H. Tingting, J. Tongmin, H. Ruijian, and L. Xiaoyang, Accelerated life test optimization design method based on proportional hazards-proportional odds model. CN Patent CN101620034 (A).
[81]
N. Hakamipour, "Optimal Plan for Step-Stress Accelerated Life Test with Two Stress Variables for Lognormal Data", Iran. J. Sci. Technol. Trans. Sci., vol. 42, no. 4, pp. 2259-2271, 2018.
[http://dx.doi.org/10.1007/s40995-017-0391-x]
[82]
Y. Chen, W. Sun, and D. Xu, "Multi-Stress Equivalent Optimum Design for Ramp-Stress Accelerated Life Test Plans Based on D-Efficiency", IEEE Access, vol. 5, pp. 25854-25862, 2017.
[http://dx.doi.org/10.1109/ACCESS.2017.2769668]
[83]
S. Zhang, and Y. Li, "Research for Electrical Energy Meter Accelerated Life Testing", Elec. Meas. Instrum., vol. 47, no. 7A, pp. 89-91, 2010.
[84]
Z. Chao, and W. Shaoping, "Combined stress acceleration life test method of spaceflight drive assembly", N102445338 (A), 2012., .
[85]
J. Kim, J-S. Yoon, and S-W. Choi, "Lifetime Assessment Method using Multiple-Stress Acceleration Aging for Flexible Cable of Portable Electric Machines", J. Electr. Eng. Technol., vol. 11, no. 5, pp. 1377-1382, 2016.
[http://dx.doi.org/10.5370/JEET.2016.11.5.1377]
[86]
W. Zhang, X. Li, T. Jiang, and L. Huang, "Life-prediction of Multi-stress Accelerated Life Testing Based on BP Algotithm of Artificial Neural Network", Hangkong Xuebao, vol. 30, no. 9, pp. 1691-1695, 2009.
[87]
F. Sun, X. Li, and T. Jiang, Grey support vector machine-based multi-stress accelerated life testing forecasting method, . CN Patent CN102270302 (A), 2011.
[88]
X. Wang, and J. Shen, "Reliability Analysis of Multi-Stress Accelerated Life Test Based on BP Neural Network In", 2012 Fifth International Conference on Business Intelligence and Financial Engineering Lanzhou, China, 2012pp. 6-9
[http://dx.doi.org/10.1109/BIFE.2012.10]]
[89]
K. Lin, Y. Chen, and D. Xu, "Reliability assessment model considering heterogeneous population in a multiple stresses accelerated test", Reliab. Eng. Syst. Saf., vol. 165, pp. 134-143, 2017.
[http://dx.doi.org/10.1016/j.ress.2017.03.013]
[90]
G.K. Bhattacharyya, and Z. Soejoeti, "A tampered failure rate model for step-stress accelerated life test", Commun. Stat. Theory Methods, vol. 18, no. 5, pp. 1627-1643, 1989.
[http://dx.doi.org/10.1080/03610928908829990]
[91]
L.C. Tang, Y.S. Sun, T.N. Goh, and H.L. Ong, "Analysis of step-stress accelerated-life-test data: a new approach", IEEE Trans. Reliab., vol. 45, no. 1, pp. 69-74, 1996.
[http://dx.doi.org/10.1109/24.488919]
[92]
M. Shaked, W.J. Zimmer, and C.A. Ball, "A Nonparametric Approach to Accelerated Life Testing", J. Am. Stat. Assoc., vol. 74, no. 367, pp. 694-699, 1979.
[http://dx.doi.org/10.1080/01621459.1979.10481672]
[93]
K. Devarajan, and N. Ebrahimi, "A nonparametric approach to accelerated life testing under multiple stresses", Nav. Res. Logist., vol. 45, no. 6, pp. 629-644, 1998.
[http://dx.doi.org/10.1002/(SICI)1520-6750(199809)45:6<629:AID-NAV6>3.0.CO;2-4]
[94]
H. Zhang, and E.A. Elsayed, "Nonparametric Accelerated Life Testing Based on Proportional Odds Model", Int. J. Reliab. Qual. Saf. Eng., vol. 13, no. 4, pp. 365-378, 2006.
[http://dx.doi.org/10.1142/S0218539306002318]
[95]
M.H. Ling, H.Y. So, and N. Balakrishnan, "Likelihood Inference Under Proportional Hazards Model for One-Shot Device Testing", IEEE Trans. Reliab., vol. 65, no. 1, pp. 446-458, 2016.
[http://dx.doi.org/10.1109/TR.2015.2440251]
[96]
N. Chen, Y. Tang, and Z. Ye, "Robust Quantile Analysis for Accelerated Life Test Data", IEEE Trans. Reliab., vol. 65, no. 2, pp. 901-913, 2016.
[http://dx.doi.org/10.1109/TR.2015.2500368]
[97]
J. Yang, X. Shi, and J. Zhang, "A new processing method for accelerated degradation data based on quantile regression and pseudo-failure lifetime", Microelectron. Reliab., vol. 88-90, pp. 1141-1145, 2018.
[http://dx.doi.org/10.1016/j.microrel.2018.06.076]
[98]
W. Si, and Q. Yang, "Accelerated Life Testing With Semiparametric Modeling of Stress Effects", IEEE Trans. Reliab., vol. 66, no. 4, pp. 989-996, 2017.
[http://dx.doi.org/10.1109/TR.2017.2703646]
[99]
R.V. León, R. Ramachandran, A.J. Ashby, and J. Thyagarajan, "Bayesian Modeling of Accelerated Life Tests with Random Effects", J. Qual. Technol., vol. 39, no. 1, pp. 3-16, 2007.
[http://dx.doi.org/10.1080/00224065.2007.11917669]
[100]
C. Mukhopadhyay, and S. Roy, "Bayesian Accelerated Life Testing Under Competing Log-location-scale Family of Causes of Failure", Comput. Stat., vol. 31, no. 1, pp. 89-119, 2016.
[http://dx.doi.org/10.1007/s00180-015-0602-x]
[101]
Y. Wang, C. Zhang, Y. Tan, and X. Chen, Optimal design method for multi-stress multiple-performance-degradation step-up-stress accelerated degradation testing, . CN Patent CN105069532 (A), 2015.
[102]
B. Liu, R. Yeh, M. Xie, and W. Kuo, "Maintenance Scheduling for Multicomponent Systems with Hidden Failures", IEEE Trans. Reliab., vol. 66, no. 4, pp. 1280-1292, 2017.
[http://dx.doi.org/10.1109/TR.2017.2740562]
[103]
X. Zhao, B. Liu, and Y. Liu, "Reliability Modeling and Analysis of Load-Sharing Systems With Continuously Degrading Components", IEEE Trans. Reliab., vol. 67, no. 3, pp. 1096-1110, 2018.
[http://dx.doi.org/10.1109/TR.2018.2846649]
[104]
Y. Liu, B. Liu, X. Zhao, and M. Xie, "Development of RVM-Based Multiple-Output Soft Sensors With Serial and Parallel Stacking Strategies", IEEE Trans. Contr. Syst. Technol., pp. 1-8, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy