Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Archeal Di-O-geranylgeranyl Glyceryl Phosphate Synthase of a UbiA Superfamily Member Provides Insight into the Multiple Human Diseases

Author(s): Debjyoti Boral, Vamkudoth Koteswara Rao and Sureshkumar Ramasamy*

Volume 27, Issue 7, 2020

Page: [568 - 573] Pages: 6

DOI: 10.2174/0929866526666191209143948

Price: $65

Abstract

One of the unique characteristic features of the domain archaea, are the lipids that form the hydrophobic core of their cell membrane. These membrane lipids are characterized by distinctive isoprenoid biochemistry and the building blocks are two core lipid structures, sn-2,3- diphytanyl glycerol diether (archaeol) and sn-2,3-dibiphytanyl diglycerol tetraether (caldarchaeol). Archaeol has two phytanyl chains (C20) in a bilayer structure connected to the glycerol moiety by an ether bond. The enzyme involved in this bilayer formation is Di-O-Geranylgeranyl Glyceryl Phosphate Synthase (DGGGPS), which is a member of a very versatile superfamily of enzymes known as UbiA superfamily. Multiple sequence analysis of the typical members of the UbiA superfamily indicates that the majority of conserved residues are located around the central cavity of these enzymes. Interestingly few of these conserved residues in the human homologs are centrally implicated in several human diseases, on basis of the major mutations reported against these diseases in the earlier clinical studies. It remains to be investigated about the role of these conserved residues in the biochemistry of these enzymes. The binding and active site of these enzymes found to be similar architecture but have different substrate affinities ranging from aromatic to linear compounds. So further investigation of UbiA superfamily may be translated to novel therapeutic and diagnostic application of these proteins in human disease management.

Keywords: Archeal lipids, UbiA superfamily, DGGGPS, genetic diseases, membrane protein, lipid synthesis.

Graphical Abstract

[1]
(a) Langworthy, T.A. Lipids of archaebacteria. the Bacteria, 1985, 8, 459-497.
[http://dx.doi.org/10.1016/B978-0-12-307208-5.50016-7]
(b) Kates, M. Archaebacterial lipids: structure, biosynthesis and function. Biochem. Soc. Symp., 1992, 58, 51-72.
[PMID: 1445410]
(c) Kates, M. Biology of halophilic bacteria, Part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia, 1993, 49(12), 1027-1036.
[http://dx.doi.org/10.1007/BF01929909] [PMID: 8270029]
(d) Koga, Y.; Nishihara, M.; Morii, H.; Akagawa-Matsushita, M. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiol. Rev., 1993, 57(1), 164-182.
[PMID: 8464404]
(e) Kamekura, M.; Kates, M. Structural diversity of membrane lipids in members of Halobacteriaceae. Biosci. Biotechnol. Biochem., 1999, 63(6), 969-972.
[http://dx.doi.org/10.1271/bbb.63.969] [PMID: 10427681]
[2]
(a) Boucher, Y.; Kamekura, M.; Doolittle, W.F. Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol., 2004, 52(2), 515-527.
[http://dx.doi.org/10.1111/j.1365-2958.2004.03992.x] [PMID: 15066037]
(b) Lombard, J.; López-García, P.; Moreira, D. The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol., 2012, 10(7), 507-515.
[http://dx.doi.org/10.1038/nrmicro2815] [PMID: 22683881]
[3]
Ogaki, K.; Fujioka, S.; Heckman, M.G.; Rayaprolu, S.; Soto-Ortolaza, A.I.; Labbé, C.; Walton, R.L.; Lorenzo-Betancor, O.; Wang, X.; Asmann, Y.; Rademakers, R.; Graff-Radford, N.; Uitti, R.; Cheshire, W.P.; Wszolek, Z.K.; Dickson, D.W.; Ross, O.A. Analysis of COQ2 gene in multiple system atrophy. Mol. Neurodegener., 2014, 9(1), 44.
[http://dx.doi.org/10.1186/1750-1326-9-44] [PMID: 25373618]
[4]
Hegarty, J.M.; Yang, H.; Chi, N.C. UBIAD1-mediated vitamin K2 synthesis is required for vascular endothelial cell survival and development. Development, 2013, 140(8), 1713-1719.
[http://dx.doi.org/10.1242/dev.093112] [PMID: 23533172]
[5]
Mugoni, V.; Postel, R.; Catanzaro, V.; De Luca, E.; Turco, E.; Digilio, G.; Silengo, L.; Murphy, M.P.; Medana, C.; Stainier, D.Y.; Bakkers, J.; Santoro, M.M. Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell, 2013, 152(3), 504-518.
[http://dx.doi.org/10.1016/j.cell.2013.01.013] [PMID: 23374346]
[6]
Vos, M.; Esposito, G.; Edirisinghe, J.N.; Vilain, S.; Haddad, D.M.; Slabbaert, J.R.; Van Meensel, S.; Schaap, O.; De Strooper, B.; Meganathan, R.; Morais, V.A.; Verstreken, P. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science, 2012, 336(6086), 1306-1310.
[http://dx.doi.org/10.1126/science.1218632] [PMID: 22582012]
[7]
(a) Orr, A.; Dubé, M-P.; Marcadier, J.; Jiang, H.; Federico, A.; George, S.; Seamone, C.; Andrews, D.; Dubord, P.; Holland, S.; Provost, S.; Mongrain, V.; Evans, S.; Higgins, B.; Bowman, S.; Guernsey, D.; Samuels, M. Mutations in the UBIAD1 gene, encoding a potential prenyltransferase, are causal for Schnyder crystalline corneal dystrophy. PLoS One, 2007, 2(8) e685.
[http://dx.doi.org/10.1371/journal.pone.0000685] [PMID: 17668063]
(b) Weiss, J.S.; Kruth, H.S.; Kuivaniemi, H.; Tromp, G.; White, P.S.; Winters, R.S.; Lisch, W.; Henn, W.; Denninger, E.; Krause, M.; Wasson, P.; Ebenezer, N.; Mahurkar, S.; Nickerson, M.L. Mutations in the UBIAD1 gene on chromosome short arm 1, region 36, cause Schnyder crystalline corneal dystrophy. Invest. Ophthalmol. Vis. Sci., 2007, 48(11), 5007-5012.
[http://dx.doi.org/10.1167/iovs.07-0845] [PMID: 17962451]
[8]
Fredericks, W.J.; McGarvey, T.; Wang, H.; Lal, P.; Puthiyaveettil, R.; Tomaszewski, J.; Sepulveda, J.; Labelle, E.; Weiss, J.S.; Nickerson, M.L.; Kruth, H.S.; Brandt, W.; Wessjohann, L.A.; Malkowicz, S.B. the bladder tumor suppressor protein tere1 (ubiad1) modulates cell cholesterol: implications for tumor progression. dna cell biol., 2011, 30(11), 851-864.
[http://dx.doi.org/10.1089/dna.2011.1315] [PMID: 21740188]
[9]
Antonicka, H.; Mattman, A.; Carlson, C.G.; Glerum, D.M.; Hoffbuhr, K.C.; Leary, S.C.; Kennaway, N.G.; Shoubridge, E.A. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am. J. Hum. Genet., 2003, 72(1), 101-114.
[http://dx.doi.org/10.1086/345489] [PMID: 12474143]
[10]
Valnot, I.; von Kleist-Retzow, J-C.; Barrientos, A.; Gorbatyuk, M.; Taanman, J-W.; Mehaye, B.; Rustin, P.; Tzagoloff, A.; Munnich, A.; Rötig, A. A mutation in the human heme A: farnesyltransferase gene (COX10) causes cytochrome c oxidase deficiency. Hum. Mol. Genet., 2000, 9(8), 1245-1249.
[http://dx.doi.org/10.1093/hmg/9.8.1245] [PMID: 10767350]
[11]
(a) Nickerson, M.L.; Bosley, A.D.; Weiss, J.S.; Kostiha, B.N.; Hirota, Y.; Brandt, W.; Esposito, D.; Kinoshita, S.; Wessjohann, L.; Morham, S.G.; Andresson, T.; Kruth, H.S.; Okano, T.; Dean, M. The UBIAD1 prenyltransferase links menaquinone-4 [corrected] synthesis to cholesterol metabolic enzymes. Hum. Mutat., 2013, 34(2), 317-329.
[http://dx.doi.org/10.1002/humu.22230] [PMID: 23169578]
(b)Nickerson, M.L.; Kostiha, B.N.; Brandt, W.; Fredericks, W.; Xu, K-P.; Yu, F-S.; Gold, B.; Chodosh, J.; Goldberg, M.; Lu, D.W.; Yamada, M.; Tervo, T.M.; Grutzmacher, R.; Croasdale, C.; Hoeltzenbein, M.; Sutphin, J.; Malkowicz, S.B.; Wessjohann, L.; Kruth, H.S.; Dean, M.; Weiss, J.S. UBIAD1 mutation alters a mitochondrial prenyltransferase to cause Schnyder corneal dystrophy. PLoS One, 2010, 5(5) e10760.
[http://dx.doi.org/10.1371/journal.pone.0010760] [PMID: 20505825]
[12]
McGarvey, T.W.; Nguyen, T.B.; Malkowicz, S.B. An interaction between apolipoprotein E and TERE1 with a possible association with bladder tumor formation. J. Cell. Biochem., 2005, 95(2), 419-428.
[http://dx.doi.org/10.1002/jcb.20432] [PMID: 15782423]
[13]
(a) Cheng, W.; Li, W. Structural insights into ubiquinone biosynthesis in membranes. Science, 2014, 343(6173), 878-881.
[http://dx.doi.org/10.1126/science.1246774] [PMID: 24558159]
(b) Huang, H.; Levin, E.J.; Liu, S.; Bai, Y.; Lockless, S.W.; Zhou, M. Structure of a membrane-embedded prenyltransferase homologous to UBIAD1. PLoS Biol., 2014, 12(7) e1001911.
[http://dx.doi.org/10.1371/journal.pbio.1001911] [PMID: 25051182]
[14]
Jakobs, B.S.; van den Heuvel, L.P.; Smeets, R.J.; de Vries, M.C.; Hien, S.; Schaible, T.; Smeitink, J.A.; Wevers, R.A.; Wortmann, S.B.; Rodenburg, R.J. A novel mutation in COQ2 leading to fatal infantile multisystem disease. J. Neurol. Sci., 2013, 326(1-2), 24-28.
[http://dx.doi.org/10.1016/j.jns.2013.01.004] [PMID: 23343605]
[15]
(a) Quinzii, C.; Naini, A.; Salviati, L.; Trevisson, E.; Navas, P.; Dimauro, S.; Hirano, M. A mutation in para-hydroxybenzoatepolyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am. J. Hum. Genet., 2006, 78(2), 345-349.
[http://dx.doi.org/10.1086/500092] [PMID: 16400613]
(b) Diomedi-Camassei, F.; Di Giandomenico, S.; Santorelli, F.M.; Caridi, G.; Piemonte, F.; Montini, G.; Ghiggeri, G.M.; Murer, L.; Barisoni, L.; Pastore, A.; Muda, A.O.; Valente, M.L.; Bertini, E.; Emma, F. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J. Am. Soc. Nephrol., 2007, 18(10), 2773-2780.
[http://dx.doi.org/10.1681/ASN.2006080833] [PMID: 17855635]
(c) Desbats, M.A.; Lunardi, G.; Doimo, M.; Trevisson, E.; Salviati, L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J. Inherit. Metab. Dis., 2015, 38(1), 145-156.
[http://dx.doi.org/10.1007/s10545-014-9749-9] [PMID: 25091424]
[16]
Mitsui, J.; Tsuji, S. Mutant COQ2 in multiple-system atrophy. N. Engl. J. Med., 2014, 371(1), 82-83.
[PMID: 24988566]
[17]
Quan, L.; Lv, Q.; Zhang, Y. STRUM: structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics, 2016, 32(19), 2936-2946.
[http://dx.doi.org/10.1093/bioinformatics/btw361] [PMID: 27318206]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy