[1]
Maiese, K. Sirtuins: Developing innovative treatments for aged-related memory loss and alzheimer’s disease. Curr. Neurovasc. Res., 2018, 15(4), 367-371.
[2]
Maiese, K. Impacting dementia and cognitive loss with innovative strategies: Mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural Regen. Res., 2019, 14(5), 773-774.
[3]
World Health Organization. Description of the global burden of NCDs, their risk factors and determinants., Global status report on noncommunicable
diseases 2010. WHO 2011; 1: 1-76.
[4]
Sivaraman, V.; Yellon, D.M. Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J. Cardiovasc. Pharmacol. Ther., 2014, 19(1), 83-96.
[5]
Maiese, K. Taking aim at Alzheimer’s disease through the mammalian target of rapamycin. Ann. Med., 2014, 46(8), 587-596.
[6]
Maiese, K. Harnessing the power of SIRT1 and non-coding RNAs in vascular disease. Curr. Neurovasc. Res., 2017, 14(1), 82-88.
[7]
Chong, Z.Z.; Shang, Y.C.; Wang, S.; Maiese, K. SIRT1: New avenues of discovery for disorders of oxidative stress. Expert Opin. Ther. Targets, 2012, 16(2), 167-178.
[8]
Csicsar, A.; Tarantini, S.; Yabluchanskiy, A. Role of endothelial NAD+ deficiency in age-related vascular dysfunction. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(6), 1253-1266.
[9]
Hsu, Y.C.; Wu, Y.T.; Tsai, C.L.; Wei, Y.H. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells. Exp. Biol. Med. (Maywood), 2018, 243(6), 563-575.
[10]
Klimova, N.; Kristian, T. Multi-targeted effect of nicotinamide mononucleotide on brain bioenergetic metabolism. Neurochem. Res., 2019, 44(10), 2280-2287.
[11]
Song, S.B.; Park, J.S.; Chung, G.J.; Lee, I.H.; Hwang, E.S. Diverse therapeutic efficacies and more diverse mechanisms of nicotinamide. Metabolomics, 2019, 15(10), 137.
[12]
Maiese, K. Regeneration in the nervous system with erythropoietin. Front. Biosci. (Landmark edition)., 2016, 21, 561-596.
[13]
Mishra, M.; Duraisamy, A.J.; Kowluru, R.A. Sirt1- A guardian of the development of diabetic retinopathy. Diabetes, 2018, 67(4), 745-754.
[14]
Zhao, D.; Sun, X.; Lv, S. Salidroside attenuates oxidized lowdensity lipoproteininduced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. Int. J. Mol. Med., 2019, 43(6), 2279-2290.
[15]
Pazienza, V.; Pomara, C.; Cappello, F. The TRPA1 channel is a cardiac target of mIGF-1/SIRT1 signaling. Am. J. Physiol. Heart Circ. Physiol., 2014, 307(7), H939-H944.
[16]
Xue, P.; Zhao, J.; Zheng, A. Chrysophanol alleviates myocardial injury in diabetic db/db mice by regulating the SIRT1/HMGB1/NF-kappaB signaling pathway. Exp. Ther. Med., 2019, 18(6), 4406-4412.
[17]
Klionsky, D.J.; Abdelmohsen, K.; Abe, A. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2016, 12(1), 1-222.
[18]
Maiese, K.; Chong, Z.Z.; Shang, Y.C.; Wang, S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin. Ther. Targets, 2012, 16(12), 1203-1214.
[19]
Aranha, M.M.; Santos, D.M.; Sola, S.; Steer, C.J.; Rodrigues, C.M. miR-34a regulates mouse neural stem cell differentiation. PLoS One, 2011, 6(8)e21396
[21]
Merkely, B.; Gara, E.; Lendvai, Z. Signalling via PI3K/FOXO1A pathway modulates formation and survival of human embryonic stem cell-derived endothelial cells. Stem Cells Dev., 2015, 24(7), 869-878.
[22]
Xiong, X.; Xie, R.; Zhang, H. PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways. Neurobiol. Dis., 2014, 66, 43-52.
[23]
Puthanveetil, P.; Wan, A.; Rodrigues, B. FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovasc. Res., 2013, 97(3), 393-403.
[24]
Abuzenadah, A.; Al-Saedi, S.; Karim, S.; Al-Qahtani, M. Role of overexpressed transcription factor FOXO1 in fatal cardiovascular septal defects in patau syndrome: Molecular and therapeutic strategies. Int. J. Mol. Sci., 2018, 19(11) pii: E3547
[25]
Zhao, Y.; Yu, Y.; Tian, X. Association study to evaluate FoxO1 and FoxO3 gene in CHD in Han Chinese. PLoS One, 2014, 9(1)e86252
[26]
Hou, J.; Wang, S.; Shang, Y.C.; Chong, Z.Z.; Maiese, K. Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr. Neurovasc. Res., 2011, 8(3), 220-235.
[27]
Maiese, K.; Hou, J.; Chong, Z.Z.; Shang, Y.C. Erythropoietin, forkhead proteins, and oxidative injury: Biomarkers and biology. Sci World, 2009, 9, 1072-1074.
[28]
Maiese, K. Forkhead transcription factors: New considerations for Alzheimer’s disease and dementia. J. Transl. Sci., 2016, 2(4), 241-247.
[29]
Maiese, K. Forkhead transcription factors: Formulating a FOXO target for cognitive loss. Curr. Neurovasc. Res., 2017, 14(4), 415-420.
[30]
Rong, Z.; Pan, R.; Xu, Y.; Zhang, C.; Cao, Y.; Liu, D. Hesperidin pretreatment protects hypoxia-ischemic brain injury in neonatal rat. Neuroscience, 2013, 255, 292-299.
[31]
Qi, X.F.; Li, Y.J.; Chen, Z.Y.; Kim, S.K.; Lee, K.J.; Cai, D.Q. Involvement of the FoxO3a pathway in the ischemia/reperfusion injury of cardiac microvascular endothelial cells. Exp. Mol. Pathol., 2013, 95(2), 242-247.
[32]
Dong, L.; Zhou, S.; Yang, X.; Chen, Q.; He, Y.; Huang, W. Magnolol protects against oxidative stress-mediated neural cell damage by modulating mitochondrial dysfunction and PI3K/Akt signaling. J. Mol. Neurosci., 2013, 50(3), 469-481.
[33]
Wang, S.; Chong, Z.Z.; Shang, Y.C.; Maiese, K. WISP1 neuroprotection requires FoxO3a post-translational modulation with autoregulatory control of SIRT1. Curr. Neurovasc. Res., 2013, 10(1), 54-60.
[34]
Yang, Y.; Su, Y.; Wang, D. Tanshinol attenuates the deleterious effects of oxidative stress on osteoblastic differentiation via Wnt/FoxO3a signaling. Oxid. Med. Cell. Longev., 2013, 2013 351895
[35]
Li, P.; Song, X.; Zhang, D. Resveratrol improves left ventricular remodeling in chronic kidney disease via Sirt1-mediated regulation of FoxO1 activity and MnSOD expression. Biofactors, 2019, 46(1), 168-179.