Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Machine Learning as a Proposal for a Better Application of Food Nanotechnology Regulation in the European Union

Author(s): Ricardo Santana *, Enrique Onieva, Robin Zuluaga, Aliuska Duardo-Sánchez and Piedad Gañán

Volume 20, Issue 4, 2020

Page: [324 - 332] Pages: 9

DOI: 10.2174/1568026619666191205152538

Price: $65

Abstract

Aims: Given the current gaps of scientific knowledge and the need of efficient application of food law, this paper makes an analysis of principles of European food law for the appropriateness of applying biological activity Machine Learning prediction models to guarantee public safety.

Background: Cheminformatic methods are able to design and create predictive models with high rate of accuracy saving time, costs and animal sacrifice. It has been applied on different disciplines including nanotechnology.

Objective: Given the current gaps of scientific knowledge and the need of efficient application of food law, this paper makes an analysis of principles of European food law for the appropriateness of applying biological activity Machine Learning prediction models to guarantee public safety.

Methods: A systematic study of the regulation and the incorporation of predictive models of biological activity of nanomaterials was carried out through the analysis of the express nanotechnology regulation on foods, applicable in European Union.

Results: It is concluded Machine Learning could improve the application of nanotechnology food regulation, especially methods such as Perturbation Theory Machine Learning (PTML), given that it is aligned with principles promoted by the standards of Organization for Economic Co-operation and Development, European Union regulations and European Food Safety Authority.

Conclusion: To our best knowledge this is the first study focused on nanotechnology food regulation and it can help to support technical European Food Safety Authority Opinions for complementary information.

Keywords: Nanotechnology, Regulation, Toxicity, Safety, Cheminformatics, Machine learning.

« Previous
Graphical Abstract

[1]
D, Forrest. Regulating nanotechnology development, 1989.Available from:. https://research.lifeboat.com/forrest.htm
[2]
Fiedler, F.A.; Reynolds, G.H. Legal problems of nanotechnology: an overview. South. Calif. Interdiscip. Law J., 1993, 3, 593-630.
[3]
Bowman, D.M.; Hodge, G.A. Nanotechnology: Mapping the wild regulatory frontier. Futures, 2006, 38, 1060-1073.
[http://dx.doi.org/10.1016/j.futures.2006.02.017]
[4]
Bowman, D.M.; Hodge, G.A. A small matter of regulation: an international review of nanotechnology regulation. Columbia Sci. Technol. Law Rev., 2007, 8, 1-36.
[5]
Reynolds, G.H. Nanotechnology and regulatory policy: three futures. Harv. J. Law Technol., 2003, 17, 179-208.
[6]
Wejnert, J. Regulatory mechanisms for molecular nanotechnology. Jurimetrics, 2004, 44, 323-350.
[7]
Eleftheriadou, M.; Pyrgiotakis, G.; Demokritou, P. Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality. Curr. Opin. Biotechnol., 2017, 44, 87-93.
[http://dx.doi.org/10.1016/j.copbio.2016.11.012] [PMID: 27992831]
[8]
Magnuson, B.A. In: Benefits and challenges of the application of nanotechnology to food; Technical proceedings of the 2007 nanotechnology and clean tech conference and trade show. , 2007; pp. 20-24.
[9]
Oomen, A.G.; Bos, P.M.J.; Fernandes, T.F.; Hund-Rinke, K.; Boraschi, D.; Byrne, H.J.; Aschberger, K.; Gottardo, S.; von der Kammer, F.; Kühnel, D.; Hristozov, D.; Marcomini, A.; Migliore, L.; Scott-Fordsmand, J.; Wick, P.; Landsiedel, R. Concern-driven integrated approaches to nanomaterial testing and assessment--report of the NanoSafety Cluster Working Group 10. Nanotoxicology, 2014, 8(3), 334-348.
[http://dx.doi.org/10.3109/17435390.2013.802387] [PMID: 23641967]
[10]
WG, G. Regulations & risk governance., Available at:. https://www.nanosafetycluster.eu/working-groups/wg-g-regulations-risk-governance.html (Accessed 2019).
[12]
Dasgupta, S.; Auth, T.; Gompper, G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett., 2014, 14(2), 687-693.
[http://dx.doi.org/10.1021/nl403949h] [PMID: 24383757]
[13]
NanoSafer. Available at:. http://www.nanosafer.org/
[14]
Stoffen Manager. Available at:. https://nano.stoffenmanager.com/.
[15]
Karin, Aschberger. Inventory of Nanotechnology applications in the agricultural, feed and food sector. EFSA J., 2014, 125.
[http://dx.doi.org/10.2903/sp.efsa.2014.EN-621]
[16]
Coles, D.; Frewer, L.J. Nanotechnology applied to European food production - A review of ethical and regulatory issues. Trends Food Sci. Technol., 2013, 34, 32-43.
[http://dx.doi.org/10.1016/j.tifs.2013.08.006]
[17]
Maynard, A.D.; Aitken, R.J.; Butz, T.; Colvin, V.; Donaldson, K.; Oberdörster, G.; Philbert, M.A.; Ryan, J.; Seaton, A.; Stone, V.; Tinkle, S.S.; Tran, L.; Walker, N.J.; Warheit, D.B. Safe handling of nanotechnology. Nature, 2006, 444(7117), 267-269.
[http://dx.doi.org/10.1038/444267a] [PMID: 17108940]
[18]
Peter, K; Mar, G.; Terumi, M.; Hoseok, S.; Jihane, E.G. OECD council recommendation on the safety testing and assessment of manufacured nanomaterials. 2017.
[19]
Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R. Re‐evaluation of silicon dioxide (E 551) as a food additive. EFSA J., 2018, 16(1), 1-70.
[http://dx.doi.org/10.2903/j.efsa.2018.5088]
[20]
Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R. Safety and bioavailability of silver hydrosol as a source of silver added for nutritional purposes to food supplements. EFSA J., 2018, 16(3), 1-9.
[http://dx.doi.org/10.2903/j.efsa.2018.5237]
[21]
EFSA. Scientific Opinion on the re‐evaluation of iron oxides and hydroxides (E 172) as food additives. EFSA J., 2015, 13(12), 1-57.
[http://dx.doi.org/10.2903/j.efsa.2015.4317]
[22]
EFSA. Scientific Opinion on re-evaluation of calcium carbonate (E 170) as a food additive. EFSA J., 2011, 9(7), 1-73.
[http://dx.doi.org/10.2903/j.efsa.2011.2318]
[23]
EFSA. Re‐evaluation of titanium dioxide (E 171) as a food additive. EFSA J., 2016, 14, 1-83.
[24]
EFSA. Evaluation of di‐calcium malate, used as a novel food ingredient and as a source of calcium in foods for the general population, food supplements, total diet replacement for weight control and food for special medical purposes. EFSA J., 2018, 16, 1-16.
[25]
EFSA. Scientific opinion on the re‐evaluation of silver (E 174) as food additive. EFSA J., 2016, 14, 1-64.
[26]
EFSA. Re‐evaluation of calcium silicate (E 552), magnesium silicate (E 553a(i)), magnesium trisilicate (E 553a(ii)) and talc (E 553b) as food additives. EFSA J., 2018, 16, 1-50.
[27]
EFSA. Scientific Opinion on the re-evaluation of gold (E 175) as a food additive. EFSA J., 2016, 14, 1-43.
[28]
EFSA. Scientific Opinion on the re‐evaluation of vegetable carbon (E 153) as a food additive. EFSA J., 2012, 10, 1-34.
[29]
Mitchell, J.B. Machine learning methods in chemoinformatics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2014, 4(5), 468-481.
[http://dx.doi.org/10.1002/wcms.1183] [PMID: 25285160]
[30]
Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T.P.; Michalkova, A.; Hwang, H.M.; Toropov, A.; Leszczynska, D.; Leszczynski, J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol., 2011, 6(3), 175-178.
[http://dx.doi.org/10.1038/nnano.2011.10] [PMID: 21317892]
[31]
Duardo-Sanchez, A.; González Díaz, H. Legal issues for chem-bioinformatics models at biosciencies frontiers. Front. Biosci., 2012, E5, 361-374.
[http://dx.doi.org/10.2741/E621]
[32]
Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L.; Sandín-España, P. Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. Sci. Total Environ., 2018, 634, 1530-1539.
[http://dx.doi.org/10.1016/j.scitotenv.2018.04.033] [PMID: 29710651]
[33]
European Court. Case C 111/16, 2017.
[34]
NanoPuzzles. Available at:. nanopuzzles.eu/
[35]
Modeling Assay Platform. Available at:. https://fys.kuleuven.be/ apps/modenptox/
[36]
European Court. Case C-58/10, 2011.
[37]
European Court. Case C-282/15, 2017.
[38]
European Court. Case C-333/08, 2010.
[39]
European Court. Case C 236/01, 2003.
[40]
Törnqvist, E.; Annas, A.; Granath, B.; Jalkesten, E.; Cotgreave, I.; Öberg, M. Strategic focus on 3R principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS One, 2014, 9(7) e101638
[http://dx.doi.org/10.1371/journal.pone.0101638] [PMID: 25054864]
[41]
OECD. Guidance document on the validation of (Quantitative) structure-activity relationship [(Q)SAR] models. 2014.
[42]
Kar, S.; Gajewicz, A.; Puzyn, T.; Roy, K. Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Toxicol. In Vitro, 2014, 28(4), 600-606.
[http://dx.doi.org/10.1016/j.tiv.2013.12.018] [PMID: 24412539]
[43]
Epa, V.C.; Burden, F.R.; Tassa, C.; Weissleder, R.; Shaw, S.; Winkler, D.A. Modeling biological activities of nanoparticles. Nano Lett., 2012, 12(11), 5808-5812.
[http://dx.doi.org/10.1021/nl303144k] [PMID: 23039907]
[44]
Chau, Y.T.; Yap, C.W. Quantitative nanostructure–activity relationship modelling of nanoparticles. Rsc Adv., 2012, 2, 8489-8496.
[http://dx.doi.org/10.1039/c2ra21489j]
[45]
Wang, X.Z.; Yang, Y.; Li, R.F.; Mcguinnes, C.; Adamson, J.; Megson, I.L.; Donaldson, K. Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles. Nanotoxicology, 2014, 8, 465-476.
[http://dx.doi.org/10.3109/17435390.2013.796534]
[46]
Sayes, C.; Ivanov, I. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal., 2010, 30(11), 1723-1734.
[http://dx.doi.org/10.1111/j.1539-6924.2010.01438.x] [PMID: 20561263]
[47]
Oksel, C.; Ma, C.Y.; Liu, J.J.; Wilkins, T.; Wang, X.Z. Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity. Adv. Exp. Med. Biol., 2017, 947, 103-142.
[http://dx.doi.org/10.1007/978-3-319-47754-1_5] [PMID: 28168667]
[48]
González-Díaz, H.; Arrasate, S.; Gómez-SanJuan, A.; Sotomayor, N.; Lete, E.; Besada-Porto, L.; Ruso, J.M. General theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry. Curr. Top. Med. Chem., 2013, 13(14), 1713-1741.
[http://dx.doi.org/10.2174/1568026611313140011] [PMID: 23889050]
[49]
Ferreira da Costa, J.; Silva, D.; Caamaño, O.; Brea, J.M.; Loza, M.I.; Munteanu, C.R.; Pazos, A.; García-Mera, X.; González-Díaz, H. Perturbation theory/machine learning model of chembl data for dopamine targets: docking, synthesis, and assay of new l-prolyl-l-leucyl-glycinamide peptidomimetics. ACS Chem. Neurosci., 2018, 9(11), 2572-2587.
[http://dx.doi.org/10.1021/acschemneuro.8b00083] [PMID: 29791132]
[50]
Kleandrova, V.V.; Luan, F.; González-Díaz, H.; Ruso, J.M.; Speck-Planche, A.; Cordeiro, M.N. Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environ. Sci. Technol., 2014, 48(24), 14686-14694.
[http://dx.doi.org/10.1021/es503861x] [PMID: 25384130]
[51]
Luan, F.; Kleandrova, V.V.; González-Díaz, H.; Ruso, J.M.; Melo, A.; Speck-Planche, A.; Cordeiro, M.N. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach. Nanoscale, 2014, 6(18), 10623-10630.
[http://dx.doi.org/10.1039/C4NR01285B] [PMID: 25083742]
[52]
Kleandrova, V.V.; Luan, F.; González-Díaz, H.; Ruso, J.M.; Melo, A.; Speck-Planche, A.; Cordeiro, M.N. Computational ecotoxicology: simultaneous prediction of ecotoxic effects of nanoparticles under different experimental conditions. Environ. Int., 2014, 73, 288-294.
[http://dx.doi.org/10.1016/j.envint.2014.08.009] [PMID: 25173945]
[53]
Torquato, P.; Ripa, O.; Giusepponi, D.; Galarini, R.; Bartolini, D.; Wallert, M.; Pellegrino, R.; Cruciani, G.; Lorkowski, S.; Birringer, M.; Mazzini, F.; Galli, F. Analytical strategies to assess the functional metabolome of vitamin E. J. Pharm. Biomed. Anal., 2016, 124, 399-412.
[http://dx.doi.org/10.1016/j.jpba.2016.01.056] [PMID: 26947319]
[54]
Arrasate, S.; Duardo-Sánchez, A. Perturbation theory machine learning models: theory, regulatory issues, and applications to organic synthesis, medicinal chemistry, protein research, and technology. Curr. Top. Med. Chem., 2018, 18(14), 1203-1213.
[http://dx.doi.org/10.2174/1568026618666180810124031] [PMID: 30095052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy