Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Ampelopsin可改善阿尔茨海默氏病的认知障碍以及海马中炎性细胞因子和氧化应激的影响

卷 17, 期 1, 2020

页: [44 - 51] 页: 8

弟呕挨: 10.2174/1567205016666191203153447

价格: $65

conference banner
摘要

背景:神经炎症和氧化应激对阿尔茨海默氏病(AD)病理生理发展中的认知缺陷有重要影响。在本研究中,我们研究了Ampelopsin(AMP)对促炎细胞因子(PIC,IL-1β,IL-6和TNF-α)以及氧化应激产物8-isoprostaglandinF2α(8-isoPGF2α的产物)的影响氧化应激);使用AD的大鼠模型,在海马中添加8-羟基-2''-脱氧鸟苷(8-OHdG,蛋白质氧化的关键生物标记)。 方法:采用ELISA法检测PICs和氧化应激产物。免疫印迹法检测NADPH氧化酶(NOX)。空间工作记忆测试和莫里斯水迷宫被用来评估认知功能。 结果:我们观察到了AD大鼠海马中IL-1β,IL-6和TNF-α以及8-isoPGF2α和8-OHdG的扩增。 AMP减弱了PIC的上调和氧化应激的产生。 AMP还抑制AD大鼠海马中的NOX4。值得注意的是,AMP可以大大改善AD大鼠的学习能力,这与PIC的信号通路和氧化应激有关。 结论:AMP通过抑制神经炎症和氧化应激的信号通路,在改善AD大鼠记忆障碍中起着重要作用,表明AMP作为替代性替代干预措施,有望预防和缓解AD认知功能障碍的发展。

关键词: 神经炎症,氧化应激,海马,阿尔茨海默氏病,ampelspsin,神经退行性疾病。

[1]
Burns A, Iliffe S. Alzheimer’s disease. BMJ 338: b158. (2009).
[http://dx.doi.org/10.1136/bmj.b158] [PMID: 19196745]
[2]
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 362(4): 329-44. (2010).
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[3]
Marttinen M, Takalo M, Natunen T, Wittrahm R, Gabbouj S, Kemppainen S, et al. Molecular mechanisms of synaptotoxicity and neuroinflammation in Alzheimer’s Disease. Front Neurosci 12: 963. (2018).
[http://dx.doi.org/10.3389/fnins.2018.00963] [PMID: 30618585]
[4]
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog Neurobiol 174: 53-89. (2019).
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.006] [PMID: 30599179]
[5]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1) a006189 (2011).
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[6]
Piton M, Hirtz C, Desmetz C, Milhau J, Lajoix AD, Bennys K, et al. Alzheimer’s disease: advances in drug development. J Alzheimers Dis 65(1): 3-13. (2018).
[http://dx.doi.org/10.3233/JAD-180145] [PMID: 30040716]
[7]
Su F, Bai F, Zhang Z. Inflammatory cytokines and alzheimer’s disease: a review from the perspective of genetic polymorphisms. Neurosci Bull 32(5): 469-80. (2016).
[http://dx.doi.org/10.1007/s12264-016-0055-4] [PMID: 27568024]
[8]
Wang X, Li GJ, Hu HX, Ma C, Ma D-H, Liu X-L, et al. Cerebral mTOR signal and pro-inflammatory cytokines in Alzheimer’s disease rats. Transl Neurosci 7(1): 151-7. (2016).
[http://dx.doi.org/10.1515/tnsci-2016-0022] [PMID: 28123835]
[9]
Liu D, Zhao D, Zhao Y, Wang Y, Zhao Y, Wen C. Inhibition of microRNA-155 alleviates cognitive impairment in Alzheimer’s disease and involvement of neuroinflammation. Curr Alzheimer Res 16(6): 473-82. (2019).
[http://dx.doi.org/10.2174/1567205016666190503145207] [PMID: 31456514]
[10]
Sochocka M, Koutsouraki ES, Gasiorowski K, Leszek J. Vascular oxidative stress and mitochondrial failure in the pathobiology of Alzheimer’s disease: a new approach to therapy. CNS Neurol Disord Drug Targets 12(6): 870-81. (2013).
[http://dx.doi.org/10.2174/18715273113129990072] [PMID: 23469836]
[11]
Yan MH, Wang X, Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62: 90-101. (2013).
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014] [PMID: 23200807]
[12]
Butterfield DA, Swomley AM, Sultana R. Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 19(8): 823-35. (2013).
[http://dx.doi.org/10.1089/ars.2012.5027] [PMID: 23249141]
[13]
Zhou J, Xie G, Yan X. Encyclopedia of traditional chinese medicines – molecular structures, pharmacological activities, natural sources and applications. Springer Science & Business Media. (2011).
[14]
Hou X, Zhang J, Ahmad H, Zhang H, Xu Z, Wang T. Evaluation of antioxidant activities of ampelopsin and its protective effect in lipopolysaccharide-induced oxidative stress piglets. PLoS One 9(9) e108314 (2014).
[http://dx.doi.org/10.1371/journal.pone.0108314] [PMID: 25268121]
[15]
Liang X, Zhang T, Shi L, Kang C, Wan J, Zhou Y, et al. Ampelopsin protects endothelial cells from hyperglycemia-induced oxidative damage by inducing autophagy via the AMPK signaling pathway. Biofactors 41(6): 463-75. (2015).
[http://dx.doi.org/10.1002/biof.1248] [PMID: 26644014]
[16]
Weng L, Zhang H, Li X, Zhan H, Chen F, Han L, et al. Ampelopsin attenuates lipopolysaccharide-induced inflammatory response through the inhibition of the NF-κB and JAK2/STAT3 signaling pathways in microglia. Int Immunopharmacol 44: 1-8. (2017).
[http://dx.doi.org/10.1016/j.intimp.2016.12.018] [PMID: 27998743]
[17]
Swanson LW. Brain Maps: Structure of the rat brain, 2nd. New York: Elsevier. (1998).
[18]
Kou X, Shen K, An Y, Qi S, Dai WX, et al. Ampelopsin inhibits H2O2-induced apoptosis by ERK and Akt signaling pathways and up-regulation of heme oxygenase-1. Phytother Res 26(7): 988-94. (2012).
[http://dx.doi.org/10.1002/ptr.3671] [PMID: 22144097]
[19]
Pflieger A, Waffo Teguo P, Papastamoulis Y, Chaignepain S, Subra F, Munir S, et al. Natural stilbenoids isolated from grapevine exhibiting inhibitory effects against HIV-1 integrase and eukaryote MOS1 transposase in vitro activities. PLoS One 8(11) e81184 (2013).
[http://dx.doi.org/10.1371/journal.pone.0081184] [PMID: 24312275]
[20]
Qi S, Xin Y, Guo Y, Diao Y, Kou X, Luo L, et al. Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways. Int Immunopharmacol 12(1): 278-87. (2012).
[http://dx.doi.org/10.1016/j.intimp.2011.12.001] [PMID: 22193240]
[21]
Zhang B, Dong S, Cen X, Wang X, Liu X, Zhang H, et al. Ampelopsin sodium exhibits antitumor effects against bladder carcinoma in orthotopic xenograft models. Anticancer Drugs 23(6): 590-6. (2012).
[http://dx.doi.org/10.1097/CAD.0b013e32835019f9] [PMID: 22241170]
[22]
Zhou Y, Shu F, Liang X, Chang H, Shi L, Peng X, et al. Ampelopsin induces cell growth inhibition and apoptosis in breast cancer cells through ROS generation and endoplasmic reticulum stress pathway. PLoS One 9(2) e89021 (2014).
[http://dx.doi.org/10.1371/journal.pone.0089021] [PMID: 24551210]
[23]
Kim JY, Jeong HY, Lee HK, Kim S-H, Hwang BY, Bae K, et al. Neuroprotection of the leaf and stem of Vitis amurensis and their active compounds against ischemic brain damage in rats and excitotoxicity in cultured neurons. Phytomedicine 19(2): 150-9. (2012).
[http://dx.doi.org/10.1016/j.phymed.2011.06.015] [PMID: 21778042]
[24]
Ye XL, Lu LQ, Li W, Lou Q, Guo HG, Shi QJ. Oral administration of ampelopsin protects against acute brain injury in rats following focal cerebral ischemia. Exp Ther Med 13(5): 1725-34. (2017).
[http://dx.doi.org/10.3892/etm.2017.4197] [PMID: 28565759]
[25]
Dung HV, Cuong TD, Chinh NM, Quyen D, Kim JA, Su J, et al. Compounds from the aerial parts of Piper bavinum and their anti-cholinesterase activity. Arch Pharm Res 38(5): 677-82. (2015).
[http://dx.doi.org/10.1007/s12272-014-0432-3] [PMID: 25005067]
[26]
Papastamoulis Y, Richard T, Nassra M, Badoc A, Krisa S, Harakat D, et al. Viniphenol A, a complex resveratrol hexamer from Vitis vinifera stalks: structural elucidation and protective effects against amyloid-β-induced toxicity in PC12 cells. J Nat Prod 77(2): 213-7. (2014).
[http://dx.doi.org/10.1021/np4005294] [PMID: 24521157]
[27]
Lecanu L, Papadopoulos V. Modeling Alzheimer’s disease with non-transgenic rat models. Alzheimers Res Ther 5(3): 17. (2013).
[http://dx.doi.org/10.1186/alzrt171] [PMID: 23634826]
[28]
Lecanu L, Greeson J, Papadopoulos V. Beta-amyloid and oxidative stress jointly induce neuronal death, amyloid deposits, gliosis, and memory impairment in the rat brain. Pharmacology 76(1): 19-33. (2006).
[http://dx.doi.org/10.1159/000088929] [PMID: 16224201]
[29]
Nakamura S, Murayama N, Noshita T, Annoura H, Ohno T. Progressive brain dysfunction following intracerebroventricular infusion of beta(1-42)-amyloid peptide. Brain Res 912(2): 128-36. (2001).
[http://dx.doi.org/10.1016/S0006-8993(01)02704-4] [PMID: 11532428]
[30]
Rose-John S, Heinrich PC. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J 300(Pt 2): 281-90. (1994).
[http://dx.doi.org/10.1042/bj3000281] [PMID: 8002928]
[31]
Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T, et al. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58(3): 573-81. (1989).
[http://dx.doi.org/10.1016/0092-8674(89)90438-8] [PMID: 2788034]
[32]
MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal 14(6): 477-92. (2002).
[http://dx.doi.org/10.1016/S0898-6568(01)00262-5] [PMID: 11897488]
[33]
Probert L. TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience 302: 2-22. (2015).
[http://dx.doi.org/10.1016/j.neuroscience.2015.06.038] [PMID: 26117714]
[34]
Altenhöfer S, Kleikers PW, Radermacher KA, Scheurer P, Hermans JJR, Schiffers P, et al. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 69(14): 2327-43. (2012).
[http://dx.doi.org/10.1007/s00018-012-1010-9] [PMID: 22648375]
[35]
Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51(5): 951-66. (2011).
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.026] [PMID: 21277369]
[36]
Lam GY, Huang J, Brumell JH. The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Semin Immunopathol 32(4): 415-30. (2010).
[http://dx.doi.org/10.1007/s00281-010-0221-0] [PMID: 20803017]
[37]
Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, et al. Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580(2): 497-504. (2006).
[http://dx.doi.org/10.1016/j.febslet.2005.12.049] [PMID: 16386251]
[38]
Suzuki Y, Hattori K, Hamanaka J, Murase T, Egashira Y, Mishiro K, et al. Pharmacological inhibition of TLR4-NOX4 signal protects against neuronal death in transient focal ischemia. Sci Rep 2: 896. (2012).
[http://dx.doi.org/10.1038/srep00896] [PMID: 23193438]
[39]
Kallenborn-Gerhardt W, Schröder K, Del Turco D, Lu R, Kynast K, Kosowski J, et al. NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci 32(30): 10136-45. (2012).
[http://dx.doi.org/10.1523/JNEUROSCI.6227-11.2012] [PMID: 22836249]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy