Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

1,3-Dipolar Cycloadditions Involving Allenes: Synthesis of Five-Membered Rings

Author(s): Ana L. Cardoso* and Maria I.L. Soares*

Volume 23, Issue 27, 2019

Page: [3064 - 3134] Pages: 71

DOI: 10.2174/1385272823666191203122959

Price: $65

conference banner
Abstract

The 1,3-dipolar cycloaddition reaction is a powerful and versatile strategy for the synthesis of carbocyclic and heterocyclic five-membered rings. Herein, the most recent developments on the [3+2] cycloaddition reactions using allenes acting either as dipolarophiles or 1,3-dipole precursors, are highlighted. The recent contributions on the phosphine- and transition metal-catalyzed [3+2] annulations involving allenes as substrates are also covered, with the exception of those in which the formation of a 1,3-dipole (or synthetic equivalent) is not invoked.

This review summarizes the most relevant research in which allenes are used as building blocks for the construction of structurally diverse five-membered rings via [3+2] annulation reactions.

Keywords: Allenes, allenoates, annulation, carbocycles, cycloaddition, dipoles, five-membered ring, heterocycles, phosphine catalysis.

« Previous
Graphical Abstract

[1]
Smith, L.I. Aliphatic diazo compounds, nitrones, and structurally analogous compounds - Systems capable of undergoing 1, 3-additions. Chem. Rev., 1938, 23, 193-285.
[http://dx.doi.org/10.1021/cr60075a001]
[2]
Huisgen, R. 1,3‐Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl., 1963, 2, 565-632.
[http://dx.doi.org/10.1002/anie.196305651]
[3]
Huisgen, R. Kinetics and mechanism of 1,3‐dipolar cycloadditions. Angew. Chem. Int. Ed. Engl., 1963, 2, 633-645.
[http://dx.doi.org/10.1002/anie.196306331]
[4]
Pellissier, H. Asymmetric 1,3-dipolar cycloadditions. Tetrahedron, 2007, 63, 3235-3285.
[http://dx.doi.org/10.1016/j.tet.2007.01.009]
[5]
Hashimoto, T.; Maruoka, K. Recent advances of catalytic asymmetric 1,3-dipolar cycloadditions. Chem. Rev., 2015, 115(11), 5366-5412.
[http://dx.doi.org/10.1021/cr5007182] [PMID: 25961125]
[6]
Singh, M.S.; Chowdhury, S.; Koley, S. Progress in 1,3-dipolar cycloadditions in the recent decade: an update to strategic development towards the arsenal of organic synthesis. Tetrahedron, 2016, 72, 1603-1644.
[http://dx.doi.org/10.1016/j.tet.2016.02.031]
[7]
Pineiro, M.; Pinho e Melo, T.M.V.D. Microwave-assisted 1,3-dipolar cycloaddition: an eco-friendly approach to five-membered heterocycles. Eur. J. Org. Chem., 2009, (31), 5287-5307.
[http://dx.doi.org/10.1002/ejoc.200900644]
[8]
Martina, K.; Tagliapietra, S.; Veselov, V.V.; Cravotto, G. Green protocols in heterocycle syntheses via 1,3-dipolar cycloadditions. Front Chem., 2019, 7, 95.
[http://dx.doi.org/10.3389/fchem.2019.00095] [PMID: 30863745]
[9]
Ma, S. Some typical advances in the synthetic applications of allenes. Chem. Rev., 2005, 105(7), 2829-2872.
[http://dx.doi.org/10.1021/cr020024j] [PMID: 16011326]
[10]
Ma, S. Recent advances in the chemistry of allenes. Aldrichim Acta, 2007, 40, 91-102.
[11]
Hassan, H.H.A.M. Recent progress in the chemistry of allenes. Curr. Org. Synth., 2007, 4, 413-439.
[http://dx.doi.org/10.2174/157017907782408798]
[12]
Pinho e Melo, T.M.V.D. Allenes as dipolarophiles and 1,3-dipole precursors: synthesis of carbocyclic and heterocyclic compounds. Curr. Org. Chem., 2009, 13, 1406-1431.
[http://dx.doi.org/10.2174/138527209789055090]
[13]
Pinho e Melo, T.M.V.D. Allenes as building blocks in heterocyclic chemistry. Monatsh. Chem., 2011, 142, 681-697.
[http://dx.doi.org/10.1007/s00706-011-0505-7]
[14]
Yu, S.; Ma, S. Allenes in catalytic asymmetric synthesis and natural product syntheses. Angew. Chem. Int. Ed. Engl., 2012, 51(13), 3074-3112.
[http://dx.doi.org/10.1002/anie.201101460] [PMID: 22271630]
[15]
López, F.; Mascareñas, J.L. Allenes as three-carbon units in catalytic cycloadditions: new opportunities with transition-metal catalysts. Chemistry, 2011, 17(2), 418-428.
[http://dx.doi.org/10.1002/chem.201002366] [PMID: 21207554]
[16]
Wei, Y.; Shi, M. Lu’s [3+2] cycloaddition of allenes with electrophiles: discovery, development and synthetic application. Org. Chem. Front., 2017, 4, 1876-1890.
[http://dx.doi.org/10.1039/C7QO00285H]
[17]
Mascareñas, J.L.; Varela, I.; López, F. Allenes and derivatives in gold(I)- and platinum(II)-catalyzed formal cycloadditions. Acc. Chem. Res., 2019, 52(2), 465-479.
[http://dx.doi.org/10.1021/acs.accounts.8b00567] [PMID: 30640446]
[18]
Laia, F.M.R.; Pinho e Melo, T.M.V.D. Reactivity of allenoates toward aziridines: [3+2] and formal [3+2] cycloadditions. Tetrahedron Lett., 2009, 50, 6180-6182.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.088]
[19]
Yu, J.; He, L.; Chen, X-H.; Song, J.; Chen, W-J.; Gong, L-Z. Highly enantioselective catalytic 1,3-dipolar cycloaddition involving 2,3-allenoate dipolarophiles. Org. Lett., 2009, 11(21), 4946-4949.
[http://dx.doi.org/10.1021/ol9020964] [PMID: 19813752]
[20]
Wang, Y.; Chen, Y. A facile synthesis of novel endo-selective polycyclic spiropyrrolidine oxindoles via 1,3-dipolar cycloaddition of α,γ-dialkylallenoate esters. Tetrahedron Lett., 2017, 58, 1545-1547.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.065]
[21]
Huang, Z.; Dai, Z.; Zhu, J.; Yang, F.; Zhou, Q. Synthesis of functionalized 2,5-dihydropyrrole derivatives via a convenient [3 + 2] annulation of azomethine ylides with allenoates. Org. Biomol. Chem., 2018, 16(36), 6638-6646.
[http://dx.doi.org/10.1039/C8OB01946K] [PMID: 30178817]
[22]
Wang, B.; Liu, H.; Wang, Q.; Yuan, C.; Jia, H.; Liu, C.; Guo, H. Thermal [3+2] cycloaddition of phthalazinium dicyanomethanide with allenoates. Tetrahedron, 2017, 73, 5926-5931.
[http://dx.doi.org/10.1016/j.tet.2017.08.036]
[23]
Li, F.; Chen, J.; Hou, Y.; Li, Y.; Wu, X.Y.; Tong, X. 1,3-Dipolar cycloadditions of 4-acetoxy allenoates: access to 2,3-dihydropyrazoles, 2,3-dihydroisoxazoles, and indolizines. Org. Lett., 2015, 17(21), 5376-5379.
[http://dx.doi.org/10.1021/acs.orglett.5b02724] [PMID: 26469697]
[24]
Fan, X.S.; Wang, Y.Y.; He, Y.; Guo, S.H.; Zhang, X.Y. Synthesis of 1,2,3-trisubstituted indolizines, pyrrolo[1,2-a]quinolines, and pyrrolo[2,1-a]isoquinolines from 1,2-allenyl ketones. Eur. J. Org. Chem., 2014, (4), 713-717.
[http://dx.doi.org/10.1002/ejoc.201301719]
[25]
Coldham, I.; Hufton, R. Intramolecular dipolar cycloaddition reactions of azomethine ylides. Chem. Rev., 2005, 105(7), 2765-2810.
[http://dx.doi.org/10.1021/cr040004c] [PMID: 16011324]
[26]
Pankova, A.S.; Kuznetsov, M.A. Recent advances in the chemistry of 2-acylaziridines. Synthesis, 2017, 49, 5093-5104.
[http://dx.doi.org/10.1055/s-0036-1590889]
[27]
Singh, G.S.; Sudheesh, S.; Keroletswe, N. Recent applications of aziridine ring expansion reactions in heterocyclic synthesis. ARKIVOC, 2018, 50-113.
[28]
Laia, F.M.R.; Cardoso, A.L.; Beja, A.M.; Silva, M.R.; Pinho e Melo, T.M.V.D. Reactivity of allenoates towards aziridines: Synthesis of functionalized methylenepyrrolidines and pyrroles. Tetrahedron, 2010, 66, 8815-8822.
[http://dx.doi.org/10.1016/j.tet.2010.09.081]
[29]
Cardoso, A.L.; Henriques, M.S.; Paixão, J.A.; Pinho, E. Melo, T.M.V.D. (1H-Tetrazol-5-yl)-allenes: building blocks for tetrazolyl heterocycles. J. Org. Chem., 2016, 81(19), 9028-9036.
[http://dx.doi.org/10.1021/acs.joc.6b01679] [PMID: 27606692]
[30]
Laia, F.M.R.; Pinho e Melo, T.M.V.D. Synthesis and reactivity of aziridines with internal dipolarophiles: An approach to 1,4-dihydrochromeno[4,3-b]pyrroles and 3-methylenechromano[4,3-b]pyrroles. Synthesis, 2015, 47, 2781-2790.
[http://dx.doi.org/10.1055/s-0034-1378717]
[31]
Laia, F.M.R.; Gomes, C.S.B.; Pinho e Melo, T.M.V.D. Reactivity of sarcosine and 1,3-thiazolidine-4-carboxylic acid towards salicylaldehyde-derived alkynes and allenes. Tetrahedron, 2013, 69, 10081-10090.
[http://dx.doi.org/10.1016/j.tet.2013.09.052]
[32]
Na, R.; Liu, H.; Li, Z.; Wang, B.; Liu, J.; Wang, M-A.; Wang, M.; Zhong, J.; Guo, H. Thermal [3+2] cycloaddition reaction of azomethine imines with allenoates for dinitrogen-fused heterocycles. Tetrahedron, 2012, 68, 2349-2356.
[http://dx.doi.org/10.1016/j.tet.2012.01.029]
[33]
Zhang, L.; Jing, C.F.; Liu, H.L.; Wang, B.; Li, Z.; Jiang, H.; Yu, H.; Guo, H. Thermal [3+2] cycloaddition of aromatic azomethine imines with allenoates. Synthesis, 2013, 45, 53-64.
[34]
Zhang, X.; Yuan, C.; Zhang, C.; Gao, X.; Wang, B.; Sun, Z.; Xiao, Y.; Guo, H. Thermal [3+2] cycloaddition of N-iminoquiazoline ylides with allenoates for synthesis of tetrahydropyrazoloquinazoline derivatives. Tetrahedron, 2016, 72, 8274-8281.
[http://dx.doi.org/10.1016/j.tet.2016.10.064]
[35]
Li, Z.; Yu, H.; Zhang, L.; Liu, H.L.; Na, R.S.; Bian, Q.H.; Wang, M.; Guo, H. Thermal [3+2] cycloaddition reaction of N-acyliminophenanthridinium betaine with allenoates: Facile access to phenanthridine-fused tetracyclic heterocycles. Lett. Org. Chem., 2014, 11, 220-224.
[http://dx.doi.org/10.2174/1570178610666131120003018]
[36]
Chen, Z.; Gao, L.; Ye, S.; Ding, Q.; Wu, J. Silver triflate-copper(II) acetate cooperative catalysis in a cascade reaction for concise synthesis of 2-carbonyl H-pyrazolo[5,1-a]isoquinolines. Chem. Commun. (Camb.), 2012, 48(33), 3975-3977.
[http://dx.doi.org/10.1039/c2cc30413a] [PMID: 22421796]
[37]
Gupta, E.; Zaheer, M.K.; Kant, R.; Mohanan, K. Additive-free regio- and diastereoselective construction of fully-substituted isoxazolidines employing diazo compounds. Org. Chem. Front., 2019, 6, 1109-1113.
[http://dx.doi.org/10.1039/C8QO01421C]
[38]
Molchanov, A.P.; Malinina, Y.V.; Kostikov, R.R.; Stepakov, A.V. Regioselective cycloaddition of C,N-diarylnitrones to arylallenes and of N-aryl-C-carbamoylnitrones to methyl buta-2,3-dienoate. Russ. J. Org. Chem., 2015, 51, 368-372.
[http://dx.doi.org/10.1134/S1070428015030136]
[39]
Anderson, L.L.; Kroc, M.A.; Reidl, T.W.; Son, J. Cascade reactions of nitrones and allenes for the synthesis of indole derivatives. J. Org. Chem., 2016, 81(20), 9521-9529.
[http://dx.doi.org/10.1021/acs.joc.6b01758] [PMID: 27682854]
[40]
Kapur, A.; Kumar, K.; Singh, L.; Singh, P.; Elango, M.; Subramanian, V.; Gupta, V.; Kanwal, P.; Ishar, M.P.S. Domino routes to substituted benzoindolizines: tandem reorganization of 1,3-dipolar cycloadducts of nitrones with allenic esters/ketones and alternative cycloaddition-palladium catalyzed cyclization pathway. Tetrahedron, 2009, 65, 4593-4603.
[http://dx.doi.org/10.1016/j.tet.2009.03.076]
[41]
Bhella, S.S.; Pannu, A.P.S.; Elango, M.; Kapoor, A.; Hundal, M.S.; Ishar, M.P.S. Investigations on synthesis of indole based constrained mimetic scaffolds through 1,3-dipolar cycloadditions of the C-(3-indolyl)-N-phenylnitrone with a variety of olefinic and allenic dipolarophiles under microwave irradiation. Tetrahedron, 2009, 65, 5928-5935.
[http://dx.doi.org/10.1016/j.tet.2009.05.093]
[42]
Mo, D.L.; Wink, D.J.; Anderson, L.L. Solvent-controlled bifurcated cascade process for the selective preparation of dihydrocarbazoles or dihydropyridoindoles. Chemistry, 2014, 20(41), 13217-13225.
[http://dx.doi.org/10.1002/chem.201403268] [PMID: 25168915]
[43]
Garcia-Castro, M.; Kremer, L.; Reinkemeier, C.D.; Unkelbach, C.; Strohmann, C.; Ziegler, S.; Ostermann, C.; Kumar, K. De novo branching cascades for structural and functional diversity in small molecules. Nat. Commun., 2015, 6, 6516.
[http://dx.doi.org/10.1038/ncomms7516] [PMID: 25784617]
[44]
Malinina, J.; Tran, T.Q.; Stepakov, A.V.; Gurzhiy, V.V.; Starova, G.L.; Kostikov, R.R.; Molchanov, A.P. [3+2] Cycloaddition reactions of arylallenes with C-(N-arylcarbamoyl)- and C, C-bis(methoxycarbonyl)nitrones and subsequent rearrangements. Tetrahedron Lett., 2014, 55, 3663-3666.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.107]
[45]
Kroc, M.A.; Markiewicz, M.; Pace, W.H.; Wink, D.J.; Anderson, L.L. Catalyst-controlled cascade synthesis of bridged bicyclic tetrahydrobenz[b]azepine-4-ones. Chem. Commun. (Camb.), 2019, 55(16), 2309-2312.
[http://dx.doi.org/10.1039/C8CC10313E] [PMID: 30720032]
[46]
Amrutha, U.; Babu, B. P.; Prathapan, S. Metal free synthesis of 1-azaspiro 4.4 nonane-3-one system via reactions of nitrones with 1,1-disubstituted allenes J. Het. Chem, (12). 2019, 1-8.
[47]
Lee, W.; Yuan, M.; Acha, C.; Onwu, A.; Gutierrez, O. Mechanism of nitrones and allenoates cascade reactions for the synthesis of dihydro[1,2-a]indoles. Org. Biomol. Chem., 2019, 17(7), 1767-1772.
[http://dx.doi.org/10.1039/C8OB02346H] [PMID: 30456397]
[48]
Wu, X.; Na, R.; Liu, H.; Liu, J.; Wang, M.; Zhong, J.; Guo, H. Sequential [3+2] cycloaddition/rearrangement reaction of imidazolone nitrones and allenoates for the efficient synthesis of functionalized imidazolidinone. Tetrahedron Lett., 2012, 53, 342-344.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.049]
[49]
Efremova, M.M.; Novikov, A.S.; Kostikov, R.R.; Panikorovsky, T.L.; Ivanov, A.V.; Molchanov, A.P. Regio- and diastereoselectivity of the cycloaddition of nitrones with N-propadienylindole and pyrroles. Tetrahedron, 2018, 74, 174-183.
[http://dx.doi.org/10.1016/j.tet.2017.11.056]
[50]
Inagaki, F.; Kobayashi, H.; Mukai, C. Regioselective intramolecular [3+2] annulation of allene-nitrones. Chem. Pharm. Bull. (Tokyo), 2012, 60(3), 381-384.
[http://dx.doi.org/10.1248/cpb.60.381] [PMID: 22382420]
[51]
Shang, X.; Liu, K.; Zhang, Z.; Xu, X.; Li, P.; Li, W. Direct access to spirobiisoxazoline via the double 1,3-dipolar cycloaddition of nitrile oxide with allenoate. Org. Biomol. Chem., 2018, 16(6), 895-898.
[http://dx.doi.org/10.1039/C7OB03040A] [PMID: 29345711]
[52]
Sun, W.; Jiang, F.; Liu, H.; Gao, X.; Jia, H.; Zhang, C.; Guo, H. Double [3+2] cycloaddition of nitrile oxides with allenoates: synthesis of spirobidihydroisoxazoles. Chin. Chem. Lett., 2019, 30, 363-366.
[http://dx.doi.org/10.1016/j.cclet.2018.04.024]
[53]
Swapnaja, K.J.M.; Yennam, S.; Chavali, M. Design and synthesis of spirobiisoxazoline dibenzoquinone derivatives via [3+2] double 1,3-dipolar cycloaddition reaction. Tetrahedron Lett., 2019, 60, 461-464.
[http://dx.doi.org/10.1016/j.tetlet.2018.12.067]
[54]
Molteni, G.; Ponti, A. Site- and regioselectivity of nitrile oxide-allene cycloadditions: DFT-based semiquantitative predictions. J. Org. Chem., 2017, 82(19), 10710-10714.
[http://dx.doi.org/10.1021/acs.joc.7b01866] [PMID: 28849926]
[55]
Padwa, A.; Craig, S.P.; Chiacchio, U.; Kline, D.N. Site selectivity in the reactions of various 1,3-dipoles with (phenylsulfonyl)-1,2-propadiene. J. Org. Chem., 1988, 53, 2232-2238.
[http://dx.doi.org/10.1021/jo00245a020]
[56]
Broggini, G.; Molteni, G.; Zecchi, G. New mechanistic evidence on the reactions between sulfonylallenes and nitrile oxides. J. Org. Chem., 1994, 59, 8271-8274.
[http://dx.doi.org/10.1021/jo00105a055]
[57]
Bruche, L.; Gelmi, M.L.; Zecchi, G. 1,3-Dipolar cycloadditions of 3,5-dichloro-2,4,6-trimethylbenzonitrile oxide to (phenylsulfonyl)allenes. J. Org. Chem., 1985, 50, 3206-3208.
[http://dx.doi.org/10.1021/jo00217a037]
[58]
Broggini, G.; Bruche, L.; Zecchi, G.; Pilati, T. 1,3-Dipolar cycloadditions to nitrogen-substituted allenes. J. Chem. Soc., Perkin Trans. 1, 1990, 533-539.
[http://dx.doi.org/10.1039/P19900000533]
[59]
Liu, H.; Jia, H.; Wang, B.; Xiao, Y.; Guo, H. Synthesis of spirobidihydropyrazole through double 1,3-dipolar cycloaddition of nitrilimines with allenoates. Org. Lett., 2017, 19(18), 4714-4717.
[http://dx.doi.org/10.1021/acs.orglett.7b01961] [PMID: 28858517]
[60]
Soleymani, M. DFT study of double 1,3-dipolar cycloaddition of nitrilimines with allenoates. Monatsh. Chem., 2018, 149, 2183-2193.
[http://dx.doi.org/10.1007/s00706-018-2311-y]
[61]
Utecht, G.; Mlostoń, G.; Jasińsk, M. A straightforward access to trifluoromethylated spirobipyrazo-lines through a double (3+2)-cycloaddition of fluorinated nitrile imines with alkoxyallenes. Synlett, 2018, 29, 1753-1758.
[http://dx.doi.org/10.1055/s-0037-1610454]
[62]
Feldman, K.S.; Iyer, M.R. Allenyl azide cycloaddition chemistry. Synthesis of pyrrolidine-containing bicycles and tricycles via the possible intermediacy of azatrimethylenemethane species. J. Am. Chem. Soc., 2005, 127(13), 4590-4591.
[http://dx.doi.org/10.1021/ja050757w] [PMID: 15796521]
[63]
Faza, O.N.; Feldman, K.S.; López, C.S. Cyclization cascade of allenyl azides: synergy between theory and experiment. Curr. Org. Chem., 2010, 14(15), 1646-1657.
[http://dx.doi.org/10.2174/138527210793563305] [PMID: 22347808]
[64]
Feldman, K.S.; Antoline, J.F. Allenyl azide cycloaddition chemistry: application to the total synthesis of (±)-meloscine. Org. Lett., 2012, 14(3), 934-937.
[http://dx.doi.org/10.1021/ol203463n] [PMID: 22242696]
[65]
Feldman, K.S.; Antoline, J.F. Synthesis studies on the Melodinus alkaloid meloscine. Tetrahedron, 2013, 69(5), 1434-1445.
[http://dx.doi.org/10.1016/j.tet.2012.12.032] [PMID: 23316092]
[66]
Feldman, K.S.; Hester, D.K., II; Iyer, M.R.; Munson, P.J.; Silva López, C.; Faza, O.N. Allenyl azide cycloaddition chemistry. 2,3-cyclopentennelated indole synthesis through indolidene intermediates. J. Org. Chem., 2009, 74(14), 4958-4974.
[http://dx.doi.org/10.1021/jo900659w] [PMID: 19472993]
[67]
Feldman, K.S.; Gonzalez, I.Y.; Glinkerman, C.M. Intramolecular [3 + 2] cyclocondensations of alkenes with indolidenes and indolidenium cations. J. Am. Chem. Soc., 2014, 136(43), 15138-15141.
[http://dx.doi.org/10.1021/ja508421e] [PMID: 25322063]
[68]
Feldman, K.S.; Gonzalez, I.Y.; Glinkerman, C.M. Indolidenes and indolidenium intermediates in the synthesis of cyclopent[b]indoles: mechanistic studies on intramolecular cyclizations. J. Org. Chem., 2015, 80(23), 11849-11862.
[http://dx.doi.org/10.1021/acs.joc.5b01777] [PMID: 26348264]
[69]
Feldman, K.S.; Folda, T.S. Studies on the synthesis of the alkaloid (−)-Gilbertine via indolidene chemistry. J. Org. Chem., 2016, 81(11), 4566-4575.
[http://dx.doi.org/10.1021/acs.joc.6b00348] [PMID: 27177249]
[70]
Dauban, P.; Malik, G. A masked 1,3-dipole revealed from aziridines. Angew. Chem. Int. Ed. Engl., 2009, 48(48), 9026-9029.
[http://dx.doi.org/10.1002/anie.200904941] [PMID: 19882612]
[71]
Cardoso, A.L.; Pinho e Melo, T.M.V.D. Aziridines in formal [3+2] cycloadditions: synthesis of five-membered heterocycles. Eur. J. Org. Chem., 2012, 6479-6501.
[http://dx.doi.org/10.1002/ejoc.201200406]
[72]
Cardoso, A.L.; Nunes, R.M.D.; Arnaut, L.G.; Pinho e Melo, T.M.V.D. Synthesis of pyrroles in supercritical carbon dioxide: formal [3+2] cycloaddition of 2-benzoyl-aziridines and allenoates. Synthesis, 2011, 3516-3522.
[73]
Chen, X-H.; Zhang, W-Q.; Gong, L-Z. Asymmetric organocatalytic three-component 1,3-dipolar cycloaddition: control of stereochemistry via a chiral Brønsted acid activated dipole. J. Am. Chem. Soc., 2008, 130(17), 5652-5653.
[http://dx.doi.org/10.1021/ja801034e] [PMID: 18386896]
[74]
Yu, J.; Chen, W-J.; Gong, L-Z. Kinetic resolution of racemic 2,3-allenoates by organocatalytic asymmetric 1,3-dipolar cycloaddition. Org. Lett., 2010, 12(18), 4050-4053.
[http://dx.doi.org/10.1021/ol101544c] [PMID: 20715835]
[75]
Wang, C.S.; Zhu, R.Y.; Zheng, J.; Shi, F.; Tu, S.J. Enantioselective construction of spiro[indoline-3,2′-pyrrole] framework via catalytic asymmetric 1,3-dipolar cycloadditions using allenes as equivalents of alkynes. J. Org. Chem., 2015, 80(1), 512-520.
[http://dx.doi.org/10.1021/jo502516e] [PMID: 25479415]
[76]
Lei, Y.; Xing, J-J.; Xu, Q.; Shi, M. Synthesis of 5,6-dihydropyrazolo[5,1-a]isoquinoline and ethyl (Z)-3-acetoxy-3-tosylpent-4-enoate through tertiary-amine-catalyzed [3+2] annulation. Eur. J. Org. Chem., 2016, 3486-3490
[http://dx.doi.org/10.1002/ejoc.201600577]
[77]
Nair, V.; Biju, A.T.; Mohanan, K.; Suresh, E. Novel synthesis of highly functionalized pyrazolines and pyrazoles by triphenylphosphine-mediated reaction of dialkyl azodicarboxylate with allenic esters. Org. Lett., 2006, 8(11), 2213-2216.
[http://dx.doi.org/10.1021/ol0604623] [PMID: 16706489]
[78]
Li, Y.; Du, S.; Dub, Z.; Chenb, C. A theoretical study of DABCO and PPh3 catalyzed annulations of allenoates with azodicarboxylate. RSC Advances, 2016, 6, 82260-82269.
[http://dx.doi.org/10.1039/C6RA19308K]
[79]
Lopes, S.M.M.; Nunes, C.M.; Pinho e Melo, T.M.V.D. 4-Isoxazolines and pyrroles from allenoates. Tetrahedron, 2010, 66, 6078-6084.
[http://dx.doi.org/10.1016/j.tet.2010.06.010]
[80]
Guo, H.; Fan, Y.C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine Organocatalysis. Chem. Rev., 2018, 118(20), 10049-10293.
[http://dx.doi.org/10.1021/acs.chemrev.8b00081] [PMID: 30260217]
[81]
Karanam, P.; Reddy, G.M.; Koppolu, S.R.; Lin, W. Recent topics of phosphine-mediated reactions. Tetrahedron Lett., 2018, 59, 59-76.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.051]
[82]
Ni, H.; Chan, W.L.; Lu, Y. Phosphine-catalyzed asymmetric organic reactions. Chem. Rev., 2018, 118(18), 9344-9411.
[http://dx.doi.org/10.1021/acs.chemrev.8b00261] [PMID: 30204423]
[83]
Gao, Y-N.; Shi, M. Phosphine-mediated enantioselective synthesis of carbocycles and heterocycles. Chin. Chem. Lett., 2017, 28, 493-502.
[http://dx.doi.org/10.1016/j.cclet.2016.12.001]
[84]
Li, W.; Zhang, J. Recent developments in the synthesis and utilization of chiral β-aminophosphine derivatives as catalysts or ligands. Chem. Soc. Rev., 2016, 45(6), 1657-1677.
[http://dx.doi.org/10.1039/C5CS00469A] [PMID: 26776280]
[85]
Wang, T.; Han, X.; Zhong, F.; Yao, W.; Lu, Y. Amino acid-derived bifunctional phosphines for enantioselective transformations. Acc. Chem. Res., 2016, 49(7), 1369-1378.
[http://dx.doi.org/10.1021/acs.accounts.6b00163] [PMID: 27310293]
[86]
Wei, Y.; Shi, M. Applications of chiral phosphine-based organocatalysts in catalytic asymmetric reactions. Chem. Asian J., 2014, 9(10), 2720-2734.
[http://dx.doi.org/10.1002/asia.201402109] [PMID: 24819715]
[87]
Gomez, C.; Betzer, J-F.; Voituriez, A.; Marinetti, A. Phosphine organocatalysis in the synthesis of natural products and bioactive compounds. ChemCatChem, 2013, 5, 1055-1065.
[http://dx.doi.org/10.1002/cctc.201200442]
[88]
Fan, Y.C.; Kwon, O. Advances in nucleophilic phosphine catalysis of alkenes, allenes, alkynes, and MBHADs. Chem. Commun. (Camb.), 2013, 49(99), 11588-11619.
[http://dx.doi.org/10.1039/c3cc47368f] [PMID: 24196409]
[89]
Zhao, Q.Y.; Lian, Z.; Wei, Y.; Shi, M. Development of asymmetric phosphine-promoted annulations of allenes with electron-deficient olefins and imines. Chem. Commun. (Camb.), 2012, 48(12), 1724-1732.
[http://dx.doi.org/10.1039/C1CC15793K] [PMID: 22073396]
[90]
Wang, Z.; Xu, X.; Kwon, O. Phosphine catalysis of allenes with electrophiles. Chem. Soc. Rev., 2014, 43(9), 2927-2940.
[http://dx.doi.org/10.1039/C4CS00054D] [PMID: 24663290]
[91]
Cristau, H-J.; Viala, J.; Cristol, H. Inversion de polarité par les groupes phosphorés: inversion de régiosélectivité dans l’addition des nucléophiles sur les allènes activés par des groupes attracteurs. Bull. Soc. Chim. Fr., 1985, 980-988.
[92]
Zhang, C.; Lu, X. Phosphine-catalyzed cycloaddition reaction of 2,3-butadienoates with electron-deficient olefins. J. Org. Chem., 1995, 60, 2906-2908.
[http://dx.doi.org/10.1021/jo00114a048]
[93]
Xu, Z.; Lu, X. Phosphine-catalyzed [3+2] cycloaddition reaction of methyl 2,3-butadienoate and N-tosylimines. A novel approach to nitrogen heterocycles. Tetrahedron Lett., 1997, 38, 3461-3464.
[http://dx.doi.org/10.1016/S0040-4039(97)00656-4]
[94]
Xu, Z.; Lu, X. A novel [3+2] cycloaddition approach to nitrogen heterocycles via phosphine-catalyzed reactions of 2,3-butadienoates or 2-butynoates and dimethyl acetylenodicarboxylate with imines: a convenient synthesis of pentabromopseudilin. J. Org. Chem., 1998, 63, 5031-5041.
[http://dx.doi.org/10.1021/jo9723063]
[95]
Cai, L.; Zhang, K.; Kwon, O. Catalytic asymmetric total synthesis of (−)-actinophyllic acid. J. Am. Chem. Soc., 2016, 138(10), 3298-3301.
[http://dx.doi.org/10.1021/jacs.6b00567] [PMID: 26910382]
[96]
Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.; Yu, Z-X. An unexpected role of a trace amount of water in catalyzing proton transfer in phosphine-catalyzed (3 + 2) cycloaddition of allenoates and alkenes. J. Am. Chem. Soc., 2007, 129(12), 3470-3471.
[http://dx.doi.org/10.1021/ja068215h] [PMID: 17319666]
[97]
Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z.X. Mechanism, regioselectivity, and the kinetics of phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes. Chemistry, 2008, 14(14), 4361-4373.
[http://dx.doi.org/10.1002/chem.200701725] [PMID: 18357587]
[98]
Yu, Z-X.; Liang, Y.; Liu, S. Phosphine- and water-cocatalyzed [3+2] cycloaddition reactions of 2-methyl-2,3-butadienoate with fumarates: a computational and experimental study. Synlett, 2009, (6), 905-909.
[http://dx.doi.org/10.1055/s-0028-1088203]
[99]
Zhu, X.F.; Henry, C.E.; Kwon, O. Stable tetravalent phosphonium enolate zwitterions. J. Am. Chem. Soc., 2007, 129(21), 6722-6723.
[http://dx.doi.org/10.1021/ja071990s] [PMID: 17488018]
[100]
Huang, G.T.; Lankau, T.; Yu, C-H. A computational study: reactivity difference between phosphine- and amine-catalyzed cycloadditions of allenoates and enones. J. Org. Chem., 2014, 79(4), 1700-1711.
[http://dx.doi.org/10.1021/jo402609v] [PMID: 24437625]
[101]
Huang, G.T.; Lankau, T.; Yu, C-H. A computational study of the activation of allenoates by Lewis bases and the reactivity of intermediate adducts. Org. Biomol. Chem., 2014, 12(37), 7297-7309.
[http://dx.doi.org/10.1039/C4OB01177E] [PMID: 25110957]
[102]
Dudding, T.; Kwon, O.; Mercier, E. Theoretical rationale for regioselection in phosphine-catalyzed allenoate additions to acrylates, imines, and aldehydes. Org. Lett., 2006, 8(17), 3643-3646.
[http://dx.doi.org/10.1021/ol061095y] [PMID: 16898781]
[103]
Mercier, E.; Fonovic, B.; Henry, C.; Kwon, O.; Dudding, T. Phosphine triggered [3+2] allenoate–acrylate annulation: a mechanistic enlightenment. Tetrahedron Lett., 2007, 48, 3617-3620.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.030]
[104]
Wang, D.; Wang, G-P.; Sun, Y-L.; Zhu, S-F.; Wei, Y.; Zhou, Q-L.; Shi, M. Chiral phosphine-catalyzed tunable cycloaddition reactions of allenoates with benzofuranone-derived olefins for a highly regio-, diastereo- and enantioselective synthesis of spiro-benzofuranones. Chem. Sci. (Camb.), 2015, 6(12), 7319-7325.
[http://dx.doi.org/10.1039/C5SC03135D] [PMID: 29861963]
[105]
Ni, H.; Yu, Z.; Yao, W.; Lan, Y.; Ullah, N.; Lu, Y. Catalyst-controlled regioselectivity in phosphine catalysis: the synthesis of spirocyclic benzofuranones via regiodivergent [3 + 2] annulations of aurones and an allenoate. Chem. Sci. (Camb.), 2017, 8(8), 5699-5704.
[http://dx.doi.org/10.1039/C7SC02176C] [PMID: 28989609]
[106]
Li, W.; Li, Y.; Zhou, G.; Wu, X.; Zhang, J. Gold(I)-catalyzed regiodivergent rearrangements: 1,2- and 1,2′-alkyl migration in skipped alkynyl ketones. Chemistry, 2012, 18(47), 15113-15121.
[http://dx.doi.org/10.1002/chem.201201727] [PMID: 23042122]
[107]
Kumari, A.L.; Swamy, K.C. Divergence in the reactivity between amine- and phosphine-catalyzed cycloaddition reactions of allenoates with enynals: one-pot gold-catalyzed synthesis of trisubstituted benzofurans from the [3 + 2] cycloadduct via 1,2-alkyl migration and dehydrogenation. J. Org. Chem., 2015, 80(8), 4084-4096.
[http://dx.doi.org/10.1021/acs.joc.5b00415] [PMID: 25793444]
[108]
Guan, X-Y.; Wei, Y.; Shi, M. Phosphine-catalyzed tandem reaction of allenoates with nitroalkenes. Org. Lett., 2010, 12(21), 5024-5027.
[http://dx.doi.org/10.1021/ol102191p] [PMID: 20936863]
[109]
Zhang, X-N.; Shi, M. Phosphine-catalyzed [3 + 2] cycloaddition of 4,4-cicyano-2-ethylenebut-3-enoates with benzyl buta-2,3-dienoate and penta-3,4-dien-2-one. ACS Catal., 2013, 3, 507-512.
[http://dx.doi.org/10.1021/cs300751a]
[110]
Tian, J.; He, Z. Phosphine-catalyzed [3+2] annulation of α-substituted allenoates with ester-activated α, β-unsaturated imines: a novel variation of the Lu [3+2] cycloaddition reaction. Chem. Commun. (Camb.), 2013, 49(20), 2058-2060.
[http://dx.doi.org/10.1039/c3cc38264h] [PMID: 23370501]
[111]
Henry, C.E.; Kwon, O. Phosphine-catalyzed synthesis of highly functionalized coumarins. Org. Lett., 2007, 9(16), 3069-3072.
[http://dx.doi.org/10.1021/ol071181d] [PMID: 17629288]
[112]
Wang, Y.; Yu, Z.H.; Zheng, H.F.; Shi, D.Q. DABCO and Bu3P catalyzed [4 + 2] and [3 + 2] cycloadditions of 3-acyl-2H-chromen-ones and ethyl 2,3-butadienoate. Org. Biomol. Chem., 2012, 10(38), 7739-7746.
[http://dx.doi.org/10.1039/c2ob26300a] [PMID: 22903632]
[113]
Soares, M.I.L.; Gomes, C.S.B.; Nunes, S.C.C.; Pais, A.A.C.C.; Pinho-e-Melo, T.M.V.D. Phosphane-catalyzed [3+2] annulation of allenoates with 3-nitro-2H-chromenes: synthesis of tetrahydrocyclopenta[c]chromenes. Eur. J. Org. Chem., 2019, 31-32, 5441-5451.
[http://dx.doi.org/10.1002/ejoc.201900564]
[114]
Zhang, X-C.; Cao, S-H.; Wei, Y.; Shi, M. Phosphine- and nitrogen-containing Lewis base catalyzed highly regioselective and geometric selective cyclization of isatin derived electron-deficient alkenes with ethyl 2,3-butadienoate. Org. Lett., 2011, 13(5), 1142-1145.
[http://dx.doi.org/10.1021/ol1031798] [PMID: 21302966]
[115]
Zhang, X-C.; Cao, S-H.; Wei, Y.; Shi, M. Phosphine-catalyzed highly diastereoselective [3+2] cyclization of isatin derived electron-deficient alkenes with α-allenic esters. Chem. Commun. (Camb.), 2011, 47(5), 1548-1550.
[http://dx.doi.org/10.1039/C0CC04289G] [PMID: 21109885]
[116]
Gomez, C.; Gicquel, M.; Carry, J.C.; Schio, L.; Retailleau, P.; Voituriez, A.; Marinetti, A. Phosphine-catalyzed synthesis of 3,3-spirocyclopenteneo-xindoles from γ-substituted allenoates: systematic studies and targeted applications. J. Org. Chem., 2013, 78(4), 1488-1496.
[http://dx.doi.org/10.1021/jo302460d] [PMID: 23343506]
[117]
Jia, X.; Guo, S.; Wang, R.; Li, J.; Li, C.; Deng, H. Triphenylphosphine-catalyzed [3+2] cycloaddition of allenoate and active olefins: syntheses of spirooxindole derivatives. Synlett, 2011, (15), 2256-2258.
[http://dx.doi.org/10.1055/s-0030-1261188]
[118]
Li, X.; Wang, F.; Dong, N.; Cheng, J.P. Phosphine-containing Lewis base catalyzed cyclization of benzofuranone type electron-deficient alkenes with allenoates: a facile synthesis of spirocyclic benzofuranones. Org. Biomol. Chem., 2013, 11(9), 1451-1455.
[http://dx.doi.org/10.1039/c3ob27288e] [PMID: 23344672]
[119]
Luo, W.; Hu, H.; Nian, S.; Qi, L.; Ling, F.; Zhong, W. Phosphine-catalyzed [3 + 2] annulation reaction: highly regio- and diastereoselective synthesis of 2-azaspiro[4.4]nonene-1,3-diones. Org. Biomol. Chem., 2017, 15(36), 7523-7526.
[http://dx.doi.org/10.1039/C7OB01957B] [PMID: 28871299]
[120]
Xiao, W-J.; Chen, J-R.; Zou, Y-Q.; Li, C.; Rong, J.; Yan, H. Phosphine-catalyzed [3+2] cycloadditions of 2-phenyl-4-arylidene-5(4H)-pxazolones with allenoate: a concise synthesis of aspartic acid analogues. Synlett, 2011, 1000-1004.
[121]
Santos, B.S.; Pinho e Melo, T.M.V.D. Synthesis of chiral spirocyclopentenyl-b-lactams through phosphane-catalyzed [3+2] annulation of allenoates with 6-alkylidenepenicillanates. Eur. J. Org. Chem., 2013, 6(85), 3901-3909.
[http://dx.doi.org/10.1002/ejoc.201300153]
[122]
Abel, A.S.; Averin, A.D.; Savelyev, E.N.; Orlinson, B.S.; Novakov, I.A.; Beletskaya, I.P. Phosphine-catalyzed [3+2] cycloaddition of ethyl buta-2,3-dienoate to adamantane-containing N-substituted maleimides. Mendeleev Commun., 2017, 27, 550-552.
[http://dx.doi.org/10.1016/j.mencom.2017.11.003]
[123]
Lopes, S.M.M.; Santos, B.S.; Palacios, F.; Pinho-e-Melo, T.M.V.D. Microwave-assisted reactions of allenic esters: [3+2] anellations and allenoate-Claisen rearrangement. ARKIVOC, 2010, (5), 70-81.
[124]
Cui, L-Y.; Guo, S-H.; Li, B.; Zhang, X-Y.; Fan, X-S. Synthesis of cyclopentenyl and cyclohexenyl ketones via [3+2] and [4+2] annulations of 1,2-allenic ketones. Chin. Chem. Lett., 2014, 25, 55-57.
[http://dx.doi.org/10.1016/j.cclet.2013.10.008]
[125]
Yuan, C.; Tan, H.; Jiang, X-F.; Liu, S.; Jiang, L.; Cao, Q-Y.; Xu, X-J.; Deng, X-Y.; Pan, G-N.; Chen, J-Y.; Cui, H-L. Phosphine-catalyzed [3+2] cycloaddition and vinylation of indole-derived α, α-dicyanoolefins with γ-substituted allenoates. Asian J. Org. Chem., 2019, 8, 1893-1902.
[http://dx.doi.org/10.1002/ajoc.201900393]
[126]
Li, E.; Chang, M.; Liang, L.; Huang, Y. Divergent phosphine-catalyzed [2+4] or [3+2] cycloaddition reactions of γ-substituted allenoates with oxadienes. Eur. J. Org. Chem., 2015, 2015(4), 710-714.
[http://dx.doi.org/10.1002/ejoc.201403369]
[127]
Baskar, B.; Wittstein, K.; Sankar, M.G.; Khedkar, V.; Schürmann, M.; Kumar, K. Stereoselective cascade double-annulations provide diversely ring-fused tetracyclic benzopyrones. Org. Lett., 2012, 14(23), 5924-5927.
[http://dx.doi.org/10.1021/ol3028412] [PMID: 23151202]
[128]
Guan, X-Y.; Shi, M. Phosphine-mediated [3+2] cycloaddition reactions of ethyl 5,5-diarylpenta-2,3,4-trienoates with arylmethylidenemalononitriles and N-tosylimines. J. Org. Chem., 2009, 74(5), 1977-1981.
[http://dx.doi.org/10.1021/jo802489t] [PMID: 19173598]
[129]
Wang, L-F.; Cao, X-P.; Shi, Z-F.; An, P.; Chow, H-F. A phosphine-catalyzed regioselective [3+2] cycloaddition of ethyl 5,5-diarylpenta-2,3,4-trienoate with aromatic aldehydes and α, β-unsaturated carbonyl compounds. Adv. Synth. Catal., 2014, 356, 3383-3390.
[http://dx.doi.org/10.1002/adsc.201301000]
[130]
Jin, L.W.; Jiang, F.; Chen, K.W.; Du, B.X.; Mei, G.J.; Shi, F. Phosphine-catalyzed regiospecific (3 + 2) cyclization of 3-nitroindoles with allene esters. Org. Biomol. Chem., 2019, 17(16), 3894-3901.
[http://dx.doi.org/10.1039/C9OB00432G] [PMID: 30938404]
[131]
Liu, K.; Wang, G.; Cheng, S-J.; Jiang, W-F.; He, C.; Ye, Z-S. Phosphine-catalyzed dearomative 3+2 annulation of 3-nitroindoles and allenoates. Tetrahedron Lett., 2019, 60, 1885-1890.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.016]
[132]
Cerveri, A.; Faza, O.N.; López, C.S.; Grilli, S.; Monari, M.; Bandini, M. Phosphine-catalyzed stereoselective dearomatization of 3-NO2-indoles with allenoates. J. Org. Chem., 2019, 84(10), 6347-6355.
[http://dx.doi.org/10.1021/acs.joc.9b00559] [PMID: 31009560]
[133]
Birbaum, L.; Gillard, L.; Gérard, H.; Oulyadi, H.; Vincent, G.; Moreau, X.; De Paolis, M.; Chataigner, I. Dearomatization of 3-nitroindoles with highly g-functionalized allenoates in formal (3+2) cycloadditions. Chemistry, 2019, 25(60), 13688-13693.
[http://dx.doi.org/10.1002/chem.201903455] [PMID: 31507002]
[134]
Zhao, J.Q.; Yang, L.; You, Y.; Wang, Z.H.; Xie, K.X.; Zhang, X.M.; Xu, X.Y.; Yuan, W.C. Phosphine-catalyzed dearomative (3 + 2) annulation of 2-nitrobenzofurans and nitrobenzothiophenes with allenoates. Org. Biomol. Chem., 2019, 17(21), 5294-5304.
[http://dx.doi.org/10.1039/C9OB00775J] [PMID: 31090776]
[135]
Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. Asymmetric [3 + 2] cycloaddition of 2,3-butadienoates with electron-deficient olefins catalyzed by novel chiral 2,5-dialkyl-7-phenyl-7-phosphabicyclo[2.2.1]heptanes. J. Am. Chem. Soc., 1997, 119, 3836-3837.
[http://dx.doi.org/10.1021/ja9644687]
[136]
Wallace, D.J.; Reamer, R.A. New synthesis of a selective estrogen receptor modulator using an enatioselective phosphine-mediated 2+3 cycloaddition. Tetrahedron Lett., 2013, 54, 4425-4428.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.023]
[137]
Fujiwara, Y.; Fu, G.C. Application of a new chiral phosphepine to the catalytic asymmetric synthesis of highly functionalized cyclopentenes that bear an array of heteroatom-substituted quaternary stereocenters. J. Am. Chem. Soc., 2011, 133(31), 12293-12297.
[http://dx.doi.org/10.1021/ja2049012] [PMID: 21766794]
[138]
Pinto, N.; Neel, M.; Panossian, A.; Retailleau, P.; Frison, G.; Voituriez, A.; Marinetti, A. Expanding the scope of enantioselective ferroPHANE-promoted [3+2] annulations with alpha, beta-unsaturated ketones. Chemistry, 2010, 16(3), 1033-1045.
[http://dx.doi.org/10.1002/chem.200901893] [PMID: 19938005]
[139]
Neel, M.; Panossian, A.; Voituriez, A.; Marinetti, A. Stereoselective synthesis of planar chiral 2,2′-diarylsubstituted ferrocene derivatives as precursors for new 2-phospha[3]ferrocenophanes. J. Organomet. Chem., 2012, 716, 187-192.
[http://dx.doi.org/10.1016/j.jorganchem.2012.06.033]
[140]
Pinto, N.; Retailleau, P.; Voituriez, A.; Marinetti, A. Organocatalytic enantioselective desymmetrization of cyclic enones via phosphine promoted [3+2] annulations. Chem. Commun. (Camb.), 2011, 47(3), 1015-1017.
[http://dx.doi.org/10.1039/C0CC03164J] [PMID: 21063612]
[141]
Duvvuru, D.; Pinto, N.; Gomez, C.; Betzer, J-F.; Retailleau, P.; Voituriez, A.; Marinetti, A. Heterocyclic spiranes and dispiranes via enantioselective phosphine catalyzed [3+2] annulations. Adv. Synth. Catal., 2012, 354, 408-414.
[http://dx.doi.org/10.1002/adsc.201100748]
[142]
Marco-Martínez, J.; Marcos, V.; Reboredo, S.; Filippone, S.; Martín, N. Asymmetric organocatalysis in fullerenes chemistry: enantioselective phosphine-catalyzed cycloaddition of allenoates onto C60. Angew. Chem. Int. Ed. Engl., 2013, 52(19), 5115-5119.
[http://dx.doi.org/10.1002/anie.201301292] [PMID: 23580259]
[143]
Voituriez, A.; Pinto, N.; Neel, M.; Retailleau, P.; Marinetti, A. An organocatalytic [3+2] cyclisation strategy for the highly enantioselective synthesis of spirooxindoles. Chemistry, 2010, 16(42), 12541-12544.
[http://dx.doi.org/10.1002/chem.201001791] [PMID: 20853298]
[144]
Wang, D.; Wei, Y.; Shi, M. Construction of adjacent spiro-quaternary and tertiary stereocenters through phosphine-catalyzed asymmetric [3+2] annulation of allenoates with alkylidene azlactones. Chem. Commun. (Camb.), 2012, 48(22), 2764-2766.
[http://dx.doi.org/10.1039/c2cc17709a] [PMID: 22310936]
[145]
Steurer, M.; Jensen, K.L.; Worgull, D.; Jørgensen, K.A. Enantioselective one-pot synthesis of α-amino esters by a phosphine-catalyzed [3+2]-cycloaddition reaction. Chemistry, 2012, 18(1), 76-79.
[http://dx.doi.org/10.1002/chem.201103502] [PMID: 22162097]
[146]
Schuler, M.; Voituriez, A.; Marinetti, A. Studies on the asymmetric, phosphine-promoted [3+2] annulations of allenic esters with 2-aryl-1,1-dicyanoalkenes. Tetrahedron Asymmetry, 2010, 21, 1569-1573.
[http://dx.doi.org/10.1016/j.tetasy.2010.04.014]
[147]
Gicquel, M.; Zhang, Y.; Aillard, P.; Retailleau, P.; Voituriez, A.; Marinetti, A. Phosphahelicenes in asymmetric organocatalysis: [3+2] cyclizations of γ-substituted allenes and electron-poor olefins. Angew. Chem. Int. Ed. Engl., 2015, 54(18), 5470-5473.
[http://dx.doi.org/10.1002/anie.201500299] [PMID: 25753678]
[148]
Gao, Z.; Wang, C.; Yuan, C.; Zhou, L.; Sun, Z.; Xiao, Y.; Guo, H. Phosphine‐catalyzed asymmetric [3+2] annulation of chalcones with allenoates for enantioselective synthesis of functionalized cyclopentenes. RSC Advances, 2015, 5, 105359-105362.
[http://dx.doi.org/10.1039/C5RA20603K]
[149]
García Ruano, J.L.; Núñez, A., Jr; Martín, M.R.; Fraile, A. Totally regio- and stereoselective behavior of mono- and diactivated cyclic alkenes in the Lu reaction: synthesis of enantiopure functionalized cyclopentanes. J. Org. Chem., 2008, 73(23), 9366-9371.
[http://dx.doi.org/10.1021/jo801896a] [PMID: 18954109]
[150]
Núñez, A., Jr; Martín, M.R.; Fraile, A.; García Ruano, J.L. Abnormal behaviour of allenylsulfones under Lu’s reaction conditions: synthesis of enantiopure polyfunctionalised cyclopentenes. Chemistry, 2010, 16(18), 5443-5453.
[http://dx.doi.org/10.1002/chem.200903185] [PMID: 20376826]
[151]
Lee, S.Y.; Fujiwara, Y.; Nishiguchi, A.; Kalek, M.; Fu, G.C. Phosphine-catalyzed enantioselective intramolecular [3+2] annulations to generate fused ring systems. J. Am. Chem. Soc., 2015, 137(13), 4587-4591.
[http://dx.doi.org/10.1021/jacs.5b01985] [PMID: 25815702]
[152]
Gao, Y-W.; Niu, H-Y.; Zhang, Q-Y.; Xie, M-S.; Qu, G-R.; Guo, H-M. Regio- and enantioselective [3+2] cycloaddition of α-purine substituted acrylates with allenes: an approach to chiral carbocyclic nucleosides. Adv. Synth. Catal., 2018, 360, 2813-2819.
[http://dx.doi.org/10.1002/adsc.201800523]
[153]
Cowen, B.J.; Miller, S.J. Enantioselective [3+2]-cycloadditions catalyzed by a protected, multifunctional phosphine-containing α-amino acid. J. Am. Chem. Soc., 2007, 129(36), 10988-10989.
[http://dx.doi.org/10.1021/ja0734243] [PMID: 17711278]
[154]
Holland, M.C.; Gilmour, R.; Houk, K.N. Importance of intermolecular hydrogen bonding for the stereochemical control of allene-enone (3+2) annulations catalyzed by a bifunctional, amino acid derived phosphine catalyst. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 2022-2027.
[http://dx.doi.org/10.1002/anie.201508980] [PMID: 26732907]
[155]
Xiao, H.; Chai, Z.; Zheng, C.W.; Yang, Y.Q.; Liu, W.; Zhang, J.K.; Zhao, G. Asymmetric [3+2] cycloadditions of allenoates and dual activated olefins catalyzed by simple bifunctional N-acyl aminophosphines. Angew. Chem. Int. Ed. Engl., 2010, 49(26), 4467-4470.
[http://dx.doi.org/10.1002/anie.201000446] [PMID: 20480471]
[156]
Han, X.; Wang, Y.; Zhong, F.; Lu, Y. Enantioselective [3 + 2] cycloaddition of allenes to acrylates catalyzed by dipeptide-derived phosphines: facile creation of functionalized cyclopentenes containing quaternary stereogenic centers. J. Am. Chem. Soc., 2011, 133(6), 1726-1729.
[http://dx.doi.org/10.1021/ja1106282] [PMID: 21226456]
[157]
Yu, Z.; Jin, Z.; Duan, M.; Bai, R.; Lu, Y.; Lan, Y. Toward a predictive understanding of phosphine-catalyzed [3+2] annulation of allenoates with acrylate or imine. J. Org. Chem., 2018, 83(17), 9729-9740.
[http://dx.doi.org/10.1021/acs.joc.8b01259] [PMID: 30113828]
[158]
Lu, Y.; Han, X.; Wang, S-X.; Zhong, F. Formation of functionalized cyclopentenes via catalytic asymmetric [3+2] cycloaddition of acrylamides with an allenoate promoted by dipeptide-derived phosphines. Synthesis, 2011, 1859-1864.
[http://dx.doi.org/10.1055/s-0030-1260460]
[159]
Zhou, W.; Wang, H.; Tao, M.; Zhu, C-Z.; Lin, T-Y.; Zhang, J. Phosphine-catalyzed enantioselective [3 + 2] cycloadditions of γ-substituted allenoates with β-perfluoroalkyl enones. Chem. Sci. (Camb.), 2017, 8(6), 4660-4665.
[http://dx.doi.org/10.1039/C7SC01432E] [PMID: 28936335]
[160]
Zhao, Q.; Han, X.; Wei, Y.; Shi, M.; Lu, Y. Asymmetric [3+2] annulation of allenes with maleimides catalyzed by dipeptide-derived phosphines: facile creation of functionalized bicyclic cyclopentenes containing two tertiary stereogenic centers. Chem. Commun. (Camb.), 2012, 48(7), 970-972.
[http://dx.doi.org/10.1039/C2CC16904E] [PMID: 22143407]
[161]
Dakas, P.Y.; Parga, J.A.; Höing, S.; Schöler, H.R.; Sterneckert, J.; Kumar, K.; Waldmann, H. Discovery of neuritogenic compound classes inspired by natural products. Angew. Chem. Int. Ed. Engl., 2013, 52(36), 9576-9581.
[http://dx.doi.org/10.1002/anie.201302045] [PMID: 23733315]
[162]
Ni, H.; Yao, W.; Lu, Y. Enantioselective [3 + 2] annulation of α-substituted allenoates with β, γ-unsaturated N-sulfonylimines catalyzed by a bifunctional dipeptide phosphine. Beilstein J. Org. Chem., 2016, 12, 343-348.
[http://dx.doi.org/10.3762/bjoc.12.37] [PMID: 26977194]
[163]
Neel, M.; Gouin, J.; Voituriez, A.; Marinetti, A. Phosphine-catalyzed [3+2] cyclizations: Applications to the enantioselective synthesis of cyclopentene-fused chromanones and dihydroquinolinones. Synthesis, 2011, 42(46), 2003-2009.
[164]
Yao, W.; Yu, Z.; Wen, S.; Ni, H.; Ullah, N.; Lan, Y.; Lu, Y. Chiral phosphine-mediated intramolecular [3 + 2] annulation: enhanced enantioselectivity by achiral Brønsted acid. Chem. Sci. (Camb.), 2017, 8(7), 5196-5200.
[http://dx.doi.org/10.1039/C7SC00952F] [PMID: 28970906]
[165]
Wang, H.; Zhang, J.; Tu, Y.; Zhang, J. Phosphine-catalyzed enantioselective dearomative[3+2]-cycloaddition of 3-nitroindoles and 2-nitrobenzofurans. Angew. Chem. Int. Ed. Engl., 2019, 58(16), 5422-5426.
[http://dx.doi.org/10.1002/anie.201900036] [PMID: 30860302]
[166]
Li, K.; Gonçalves, T.P.; Huang, K-W.; Lu, Y. Dearomatization of 3-nitroindoles by a phosphine-catalyzed enantioselective [3+2] annulation reaction. Angew. Chem. Int. Ed. Engl., 2019, 58(16), 5427-5431.
[http://dx.doi.org/10.1002/anie.201900248] [PMID: 30770616]
[167]
Yang, X-H.; Li, J-P.; Wang, D-C.; Xie, M-S.; Qu, G-R.; Guo, H-M. Enantioselective dearomative [3+2] cycloaddition of 2-nitrobenzofurans with aldehyde-derived Morita-Baylis-Hillman carbonates. Chem. Commun. (Camb.), 2019, 55(62), 9144-9147.
[http://dx.doi.org/10.1039/C9CC04542B] [PMID: 31304482]
[168]
Chan, W.L.; Tang, X.; Zhang, F.; Quek, G.; Mei, G.J.; Lu, Y. Phosphine-catalyzed (3+2) annulation of isoindigos with allenes: enantioselective formation of two vicinal quaternary stereogenic centers. Angew. Chem. Int. Ed. Engl., 2019, 58(19), 6260-6264.
[http://dx.doi.org/10.1002/anie.201900758] [PMID: 30746821]
[169]
Zhu, Z.; Guo, Y.; Wang, X.; Wu, F.; Wu, Y. Synthesis of fluorinated 3-pyrrolines and pyrroles via [3+2] annulation of N-aryl fluorinated imines with allenoates catalyzed by phosphine. J. Fluor. Chem., 2017, 195, 102-107.
[http://dx.doi.org/10.1016/j.jfluchem.2016.12.010]
[170]
Chen, X-Y.; Lin, R-C.; Ye, S. Catalytic [2+2] and [3+2] cycloaddition reactions of allenoates with cyclic ketimines. Chem. Commun. (Camb.), 2012, 48(9), 1317-1319.
[http://dx.doi.org/10.1039/C2CC16055B] [PMID: 22179283]
[171]
Wang, Y-Q.; Zhang, Y.; Dong, H.; Zhang, J.; Zhao, J. Phosphane-catalyzed [3+2] cycloaddition reaction of allenoate and cyclic imines: a simple and efficient method for synthesis of benzo-fused cyclic sulfamidate heterocycles. Eur. J. Org. Chem., 2013, 3764-3770.
[http://dx.doi.org/10.1002/ejoc.201201756]
[172]
Yu, H.; Zhang, L.; Yang, Z.; Li, Z.; Zhao, Y.; Xiao, Y.; Guo, H. Phosphine-catalyzed [3 + 2] cycloaddition of sulfamate-derived cyclic imines with allenoate: synthesis of sulfamate-fused dihydropyrroles. J. Org. Chem., 2013, 78(17), 8427-8436.
[http://dx.doi.org/10.1021/jo401107v] [PMID: 23895382]
[173]
Kinderman, S.; van Maarseveen, J.; Hiemstra, H. Phosphine-catalyzed [3+2] annulation of cyanoallenes. Synlett, 2011, 1693-1696
[http://dx.doi.org/10.1055/s-0030-1260804]
[174]
Yang, L-J.; Wang, S.; Nie, J.; Li, S.; Ma, J-A. Bisphosphine-triggered one-pot sequential [3 + 2]/[3 + 2] annulation of allenoates with cyclic ketimines. Org. Lett., 2013, 15(20), 5214-5217.
[http://dx.doi.org/10.1021/ol402364t] [PMID: 24090146]
[175]
Yang, L-J.; Li, S.; Wang, S.; Nie, J.; Ma, J-A. Nucleophilic Lewis base dependent addition reactions of allenoates with trifluoromethylated cyclic ketimines. J. Org. Chem., 2014, 79(8), 3547-3558.
[http://dx.doi.org/10.1021/jo500356t] [PMID: 24693927]
[176]
Xiao, H.; Kong, X.; Liu, L.; Luo, S.; Fan, S.; Qian, H. PPh3-Mediated [3+2] cycloaddition reaction between bis-substituted allenoate and N-tosylaldimines to construct 2-pyrrolines. Synlett, 2018, 29, 1244-1248.
[http://dx.doi.org/10.1055/s-0037-1609489]
[177]
Henry, C.E.; Xu, Q.; Fan, Y.C.; Martin, T.J.; Belding, L.; Dudding, T.; Kwon, O. Hydroxyproline-derived pseudoenantiomeric [2.2.1] bicyclic phosphines: asymmetric synthesis of (+)- and (-)-pyrrolines. J. Am. Chem. Soc., 2014, 136(34), 11890-11893.
[http://dx.doi.org/10.1021/ja505592h] [PMID: 25099350]
[178]
Andrews, I.P.; Kwon, O. Enantioselective total synthesis of (+)-ibophyllidine via an asymmetric phosphine-catalyzed [3 + 2] annulation. Chem. Sci. (Camb.), 2012, 3(8), 2510-2514.
[http://dx.doi.org/10.1039/c2sc20468a] [PMID: 22798981]
[179]
Sankar, M.G.; Garcia-Castro, M.; Golz, C.; Strohmann, C.; Kumar, K. Engaging allene-derived zwitterions in an unprecedented mode of asymmetric [3+2]-annulation reaction. Angew. Chem. Int. Ed. Engl., 2016, 55(33), 9709-9713.
[http://dx.doi.org/10.1002/anie.201603936] [PMID: 27345724]
[180]
Smaligo, A.J.; Vardhineedi, S.; Kwon, O. Carvone-derived P-stereogenic phosphines: Design, synthesis, and use in allene-imine [3+2] annulation. ACS Catal., 2018, 8(6), 5188-5192.
[http://dx.doi.org/10.1021/acscatal.8b01081] [PMID: 30393576]
[181]
Kitagaki, S.; Nakamura, K.; Kawabata, C.; Ishikawa, A.; Takenaga, N.; Yoshida, K. Planar chiral [2.2]paracyclophane-based phosphine-phenols: use in enantioselective [3 + 2] annulations of allenoates and N-tosylimines. Org. Biomol. Chem., 2018, 16(10), 1770-1778.
[http://dx.doi.org/10.1039/C8OB00248G] [PMID: 29464253]
[182]
Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Versatile enantioselective [3+2] cyclization between imines and allenoates catalyzed by dipeptide-based phosphines. Angew. Chem. Int. Ed. Engl., 2012, 51(3), 767-770.
[http://dx.doi.org/10.1002/anie.201106672] [PMID: 22162303]
[183]
Nguyen, T-H.; Toffano, M.; Bournaud, C.; Vo-Thanh, G. Synthesis of chiral thiourea–phosphine organocatalysts derived from L-proline. Tetrahedron Lett., 2014, 55, 6377-6380.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.004]
[184]
Han, X.; Chan, W.L.; Yao, W.; Wang, Y.; Lu, Y. Phosphine-mediated highly enantioselective spirocyclization with ketimines as substrates. Angew. Chem. Int. Ed. Engl., 2016, 55(22), 6492-6496.
[http://dx.doi.org/10.1002/anie.201600453] [PMID: 27080309]
[185]
Sankar, M.G.; Garcia-Castro, M.; Golz, C.; Strohmannb, C.; Kumar, K. L-Isoleucine derived bifunctional phosphine catalyses asymmetric [3+2]-annulation of allenyl-esters and -ketones with ketimines. RSC Advances, 2016, 6, 56537-56543.
[http://dx.doi.org/10.1039/C6RA12387B]
[186]
Wang, T.; Ye, S. Phosphine-catalyzed [3 + 2] cycloaddition of allenoates with trifluoromethylketones: synthesis of dihydrofurans and tetrahydrofurans. Org. Biomol. Chem., 2011, 9(14), 5260-5265.
[http://dx.doi.org/10.1039/c1ob05444a] [PMID: 21629902]
[187]
Saunders, L.B.; Miller, S.J. Divergent reactivity in amine- and phosphine-catalyzed C–C bond-forming reactions of allenoates with 2,2,2-trifluoroacetophenones. ACS Catal., 2011, 1, 1347-1350.
[http://dx.doi.org/10.1021/cs200406d]
[188]
Na, R.; Jing, C.; Xu, Q.; Jiang, H.; Wu, X.; Shi, J.; Zhong, J.; Wang, M.; Benitez, D.; Tkatchouk, E.; Goddard, W.A.; Guo, H.; Kwon, O. Phosphine-catalyzed annulations of azomethine imines: allene-dependent [3 + 2], [3 + 3], [4 + 3], and [3 + 2 + 3] pathways. J. Am. Chem. Soc., 2011, 133(34), 13337-13348.
[http://dx.doi.org/10.1021/ja200231v] [PMID: 21812448]
[189]
Jing, C.; Na, R.; Wang, B.; Liu, H.; Zhang, L.; Liu, J.; Wang, M.; Zhong, J.; Kwon, O.; Guo, H. Phosphine-catalyzed [3+2] and [4+3] annulation reactions of C, N-cyclic azomethine imines with allenoates. Adv. Synth. Catal., 2012, 354(6), 1023-1034.
[http://dx.doi.org/10.1002/adsc.201100831] [PMID: 25525424]
[190]
Wang, D.; Lei, Y.; Wei, Y.; Shi, M. A phosphine-catalyzed novel asymmetric [3+2] cycloaddition of C, N-Cyclic azomethine imines with δ-substituted allenoates. Chemistry, 2014, 20(47), 15325-15329.
[http://dx.doi.org/10.1002/chem.201405191] [PMID: 25319410]
[191]
Gao, L.; Ye, S.; Ding, Q.; Chen, Z.; Wu, J. An efficient approach to H-pyrazolo[5,1-a]isoquinolines via a silver triflate-catalyzed reaction of N′-(2-alkynylbenzylidene)hydrazide with allenoate. Tetrahedron, 2012, 68, 2765-2769.
[http://dx.doi.org/10.1016/j.tet.2012.02.013]
[192]
Jia, Z-J.; Daniliuc, C.G.; Antonchick, A.P.; Waldmann, H. Phosphine-catalyzed dearomatizing [3+2] annulations of isoquinolinium methylides with allenes. Chem. Commun. (Camb.), 2015, 51(6), 1054-1057.
[http://dx.doi.org/10.1039/C4CC08555H] [PMID: 25434405]
[193]
Yuan, C.; Zhou, L.; Sun, Z.; Guo, H. Phosphine-catalyzed [3+2] cycloaddition of phthalazinium dicyanomethanides with allenoates: highly efficient synthesis of 1,2,3,10b-tetrahydropyrrolo[2,1-a] phthalazine derivatives. RSC Advances, 2016, 6, 77931-77936.
[http://dx.doi.org/10.1039/C6RA13643E]
[194]
Huang, Z.; Bao, Y.; Zhang, Y.; Yang, F.; Lu, T.; Zhou, Q. Hydroxy-assisted regio- and stereoselective synthesis of functionalized 4-methylenepyrrolidine derivatives via phosphine-catalyzed [3+2] cycloaddition of allenoates with o-hydroxyaryl azomethine ylides. J. Org. Chem., 2017, 82(23), 12726-12734.
[http://dx.doi.org/10.1021/acs.joc.7b02560] [PMID: 29125296]
[195]
Wu, X-Y.; Gao, Y-N.; Shi, M. Phosphine-catalyzed [3+2] annulation of N-2,2,2-trifluoroethylisatin ketimines with γ-substituted allenoates: synthesis of spiro indoline-3,2′-pyrrole. Eur. J. Org. Chem., 2019, 2019, 1620-1626.
[http://dx.doi.org/10.1002/ejoc.201801794]
[196]
Li, E.; Huang, Y. Phosphine-catalyzed domino reaction: a novel sequential [2+3] and [3+2] annulation reaction of γ-substituent allenoates to construct bicyclic[3, 3, 0]octene derivatives. Chem. Commun. (Camb.), 2014, 50(8), 948-950.
[http://dx.doi.org/10.1039/C3CC47716A] [PMID: 24301468]
[197]
Li, E.; Jin, H.; Huang, Y. Phosphine-catalyzed [3+2] annulation of γ-substituted allenoates: novel access to functionalized cyclopentenes and bicyclic[3, 3, 0]octene derivatives. ChemistrySelect, 2018, 3, 12007-12010.
[http://dx.doi.org/10.1002/slct.201802800]
[198]
Li, E.; Jin, H.; Jia, P.; Dong, X.; Huang, Y. Bifunctional-phosphine-catalyzed sequential annulations of allenoates and ketimines: construction of functionalized poly-heterocycle rings. Angew. Chem. Int. Ed. Engl., 2016, 55(38), 11591-11594.
[http://dx.doi.org/10.1002/anie.201605189] [PMID: 27529614]
[199]
France, S.; Phun, L.H. Enantio- and diastereoselective Rh(II)-catalyzed 1,3-dipolar cycloadditions of carbonyl ylides and their recent applications in complex molecule synthesis. Curr. Org. Synth., 2010, 7, 332-347.
[http://dx.doi.org/10.2174/157017910791414463]
[200]
Rout, L.; Harned, A.M. Allene carboxylates as dipolarophiles in Rh-catalyzed carbonyl ylide cycloadditions. Chemistry, 2009, 15(47), 12926-12928.
[http://dx.doi.org/10.1002/chem.200902208] [PMID: 19894232]
[201]
Krishnamurthi, J.; Nambu, H.; Takeda, K.; Anada, M.; Yamano, A.; Hashimoto, S. Enantioselective cycloaddition of carbonyl ylides with arylallenes using Rh2(S-TCPTTL)4. Org. Biomol. Chem., 2013, 11(32), 5374-5382.
[http://dx.doi.org/10.1039/c3ob41236a] [PMID: 23852012]
[202]
Lu, T.; Lu, Z.; Ma, Z.X.; Zhang, Y.; Hsung, R.P. Allenamides: a powerful and versatile building block in organic synthesis. Chem. Rev., 2013, 113(7), 4862-4904.
[http://dx.doi.org/10.1021/cr400015d] [PMID: 23550917]
[203]
Manoni, E.; Bandini, M. N-Allenyl amides and O-allenyl ethers in enantioselective catalysis. Eur. J. Org. Chem., 2016, (19), 3135-3142.
[http://dx.doi.org/10.1002/ejoc.201600304]
[204]
Wang, Y.; Zhang, P.; Qian, D.; Zhang, J. Highly regio-, diastereo-, and enantioselective gold(I)-catalyzed intermolecular annulations with N-allenamides at the proximal C=C bond. Angew. Chem. Int. Ed. Engl., 2015, 54(49), 14849-14852.
[http://dx.doi.org/10.1002/anie.201507165] [PMID: 26391106]
[205]
López, E.; González, J.; López, L.A. Unusual regioselectivity in the gold(I)-catalyzed [3+2] carbocycloaddition reaction of vinyldiazo compounds and N-allenamides. Adv. Synth. Catal., 2016, 358, 1428-1432.
[http://dx.doi.org/10.1002/adsc.201501039]
[206]
López, E.; Lonzi, G.; González, J.; López, L.A. Gold-catalyzed intermolecular formal (3+2) cycloaddition of stabilized vinyldiazo derivatives and electronically unbiased allenes. Chem. Commun. (Camb.), 2016, 52(60), 9398-9401.
[http://dx.doi.org/10.1039/C6CC04106J] [PMID: 27373716]
[207]
Singh, R.R.; Pawar, S.K.; Huang, M-J.; Liu, R-S. Gold-catalyzed [3+2]-annulations of α-aryl diazonitriles with ynamides and allenamides to yield 1-amino-1H-indenes. Chem. Commun. (Camb.), 2016, 52(76), 11434-11437.
[http://dx.doi.org/10.1039/C6CC04308A] [PMID: 27709151]
[208]
Chakrabarty, I.; Inamdar, S.M.; Akram, M.O.; Gade, A.B.; Banerjee, S.; Bera, S.; Patil, N.T. [3+2]-Annulation of platinum-bound azomethine ylides with distal C=C bonds of N-allenamides. Chem. Commun. (Camb.), 2016, 53, 196-199.
[http://dx.doi.org/10.1039/C6CC07874E] [PMID: 27917422]
[209]
Lu, K.; Ding, F.; Qin, L.; Jia, X.; Xu, C.; Zhao, X.; Yao, Q.; Yu, P. Synthesis of substituted pyrroles via copper-catalyzed cyclization of ethyl allenoates with activated isocyanides. Chem. Asian J., 2016, 11(15), 2121-2125.
[http://dx.doi.org/10.1002/asia.201600761] [PMID: 27348611]
[210]
Zheng, H-F.; Yu, Z-H.; Yuan, W.; Tang, Z-L.; Clough, J.; Gu, Y-C.; Shi, D-Q. FeCl3-mediated three-component cascade reaction: an effective approach to the construction of highly functionalized pyrrolo[1,2-c]quinazolinones. Chemistry, 2014, 20(6), 1711-1719.
[http://dx.doi.org/10.1002/chem.201304028] [PMID: 24382830]
[211]
López, F.; Mascareñas, J.L. Recent developments in gold-catalyzed cycloaddition reactions. Beilstein J. Org. Chem., 2011, 7, 1075-1094.
[http://dx.doi.org/10.3762/bjoc.7.124] [PMID: 21915211]
[212]
Garayalde, D.; Nevado, C. Gold-containing and gold-generated 1, n-dipoles as useful platforms toward cycloadditions and cyclizations. ACS Catal., 2012, 2, 1462-1479.
[http://dx.doi.org/10.1021/cs300043w]
[213]
Zi, W.; Dean Toste, F. Recent advances in enantioselective gold catalysis. Chem. Soc. Rev., 2016, 45(16), 4567-4589.
[http://dx.doi.org/10.1039/C5CS00929D] [PMID: 26890605]
[214]
Zhou, W.; Li, X-X.; Li, G-H.; Wu, Y.; Chen, Z. Gold catalyzed [3+2] cycloaddition of N-allenyl amides with azomethine imines. Chem. Commun. (Camb.), 2013, 49(34), 3552-3554.
[http://dx.doi.org/10.1039/c3cc41258j] [PMID: 23519035]
[215]
Li, G-H.; Zhou, W.; Li, X-X.; Bi, Q-W.; Wang, Z.; Zhao, Z-G.; Hu, W-X.; Chen, Z. Gold catalyzed enantioselective intermolecular [3+2] dipolar cycloaddition of N-allenyl amides with nitrones. Chem. Commun. (Camb.), 2013, 49(42), 4770-4772.
[http://dx.doi.org/10.1039/c3cc41769g] [PMID: 23589837]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy