Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

N-alpha-Aminoacyl Colchicines as Promising Anticancer Agents

Author(s): Ana Marzo-Mas, Laura Conesa-Milián, Sam Noppen, Sandra Liekens, Eva Falomir*, Juan Murga, Miguel Carda and Juan A. Marco

Volume 17, Issue 1, 2021

Published on: 03 December, 2019

Page: [21 - 32] Pages: 12

DOI: 10.2174/1573406415666191203112406

Price: $65

Abstract

Background: In the last years, many efforts have been made to find colchicine derivatives with reduced toxicity. Additionally, the deregulation of amino acid uptake by cancer cells provides an opportunity to improve anticancer drug effectiveness.

Objective: To design new colchicine derivatives with reduced cytotoxicity and enhanced selectivity by means of introducing aminoacyl groups.

Methods: 34 colchicine analogues bearing L- and D-amino acid pendants were synthetized and characterized by NMR, IR and MS techniques. Cytotoxicity and antimitotic properties were assessed by spectrophotometry and cell cycle assays. Oncogene downregulation was studied by RTqPCR whereas in vivo studies were performed in SCID mice.

Results: Compounds exhibit high antiproliferative activities at the nanomolar level while being, in general, less cytotoxic than colchicine. Most compounds inhibit the polymerization of tubulin in a way similar to colchicine itself, with L-amino acid derivatives being the most active in the inhibition of tubulin polymerization. All selected compounds caused cell cycle arrest at the G2/M phase when tested at 1 μM. More specifically, Boc-L-proline derivative 6 arrested half of the population and showed one of the highest Selectivity Indexes. Derivatives 1 (Boc-glycine), 27 (D-leucine) and 31 (Boc-glycine-glycine) proved fairly active in downregulating the expression of the c-Myc, hTERT and VEGF oncogenes, with compound 6 (Boc-L-proline) having the highest activity. This compound was shown to exert a potent anti-tumor effect when administered intraperitoneally (LD50 > 100 mg/kg for 6, compared with 2.5 mg/kg for colchicine).

Conclusion: Compound 6 offers an opportunity to be used in cancer therapy with less toxicity problems than colchicine.

Keywords: Colchicine, L- and D- amino acid, cancer, non-toxic, cell cycle, tubulin, in vivo, oncogene downregulation.

Graphical Abstract

[1]
(a)Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
(b)Dumontet, C.; Jordan, M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
(c)Stanton, R.A.; Gernert, K.M.; Nettles, J.H.; Aneja, R. Drugs that target dynamic microtubules: a new molecular perspective. Med. Res. Rev., 2011, 31(3), 443-481.
[http://dx.doi.org/10.1002/med.20242] [PMID: 21381049]
(d)Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther., 2014, 13(2), 275-284.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
(e)van Vuuren, R.J.; Visagie, M.H.; Theron, A.E.; Joubert, A.M. Antimitotic drugs in the treatment of cancer. Cancer Chemother. Pharmacol., 2015, 76(6), 1101-1112.
[http://dx.doi.org/10.1007/s00280-015-2903-8] [PMID: 26563258]
[2]
Jordan, M.A.; Kamath, K. How do microtubule-targeted drugs work? An overview. Curr. Cancer Drug Targets, 2007, 7(8), 730-742.
[http://dx.doi.org/10.2174/156800907783220417] [PMID: 18220533]
[3]
Pandey, D.K.; Malik, T.; Dey, A.; Singh, J.; Banik, R.M. Improved growth and colchicine concentration in Gloriosa superba on mycorrhizal inoculation supplemented with phosphorus-fertilizer. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(2), 439-446.
[http://dx.doi.org/10.4314/ajtcam.v11i2.30] [PMID: 25435630]
[4]
Ozkaya, N.; Yalçinkaya, F. Colchicine treatment in children with familial Mediterranean fever. Clin. Rheumatol., 2003, 22(4-5), 314-317.
[http://dx.doi.org/10.1007/s10067-003-0739-9] [PMID: 14579163]
[5]
(a)Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202.
[http://dx.doi.org/10.1038/nature02393] [PMID: 15014504]
(b)Bhattacharyya, B.; Panda, D.; Gupta, S.; Banerjee, M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med. Res. Rev., 2008, 28(1), 155-183.
[http://dx.doi.org/10.1002/med.20097] [PMID: 17464966]
[6]
(a)Chang, D.J.; Kim, W.J. Discovery of structurally simplified analogs of colchicine as an immunosuppressant. Bioorg. Med. Chem. Lett., 2014, 24(14), 3121-3125.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.007] [PMID: 24881570]
(b)Huczyński, A.; Rutkowski, J.; Popiel, K.; Maj, E.; Wietrzyk, J.; Stefańska, J.; Majcher, U.; Bartl, F. Synthesis, antiproliferative and antibacterial evaluation of C-ring modified colchicine analogues. Eur. J. Med. Chem., 2015, 90, 296-301.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.037] [PMID: 25437616]
(c)Singh, B.; Kumar, A.; Joshi, P.; Guru, S.K.; Kumar, S.; Wani, Z.A.; Mahajan, G.; Hussain, A.; Qazi, A.K.; Kumar, A.; Bharate, S.S.; Gupta, B.D.; Sharma, P.R.; Hamid, A.; Saxena, A.K.; Mondhe, D.M.; Bhushan, S.; Bharate, S.B.; Vishwakarma, R.A. Colchicine derivatives with potent anticancer activity and reduced P-glycoprotein induction liability. Org. Biomol. Chem., 2015, 13(20), 5674-5689.
[http://dx.doi.org/10.1039/C5OB00406C] [PMID: 25895604]
(d)Thomopoulou, P.; Sachs, J.; Teusch, N.; Mariappan, A.; Gopalakrishnan, J.; Schmalz, H.G. Mariappan; A.; Gopalakrishnan, J.; Schmalz, H-G. New colchicine-derived triazoles and their influence on cytotoxicity and microtubule morphology. ACS Med. Chem. Lett., 2015, 7(2), 188-191.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00418] [PMID: 26985296]
[7]
Cosentino, L.; Redondo-Horcajo, M.; Zhao, Y.; Santos, A.R.; Chowdury, K.F.; Vinader, V.; Abdallah, Q.M.A.; Abdel-Rahman, H.; Fournier-Dit-Chabert, J.; Shnyder, S.D.; Loadman, P.M.; Fang, W.S.; Díaz, J.F.; Barasoain, I.; Burns, P.A.; Pors, K. Synthesis and biological evaluation of colchicine B-ring analogues tethered with halogenated benzyl moieties. J. Med. Chem., 2012, 55(24), 11062-11066.
[http://dx.doi.org/10.1021/jm301151t] [PMID: 23176628]
[8]
(a)Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
(b)Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[9]
von Rahden, B.H.A.; Stein, H.J.; Pühringer-Oppermann, F.; Sarbia, M. c-myc amplification is frequent in esophageal adenocarcinoma and correlated with the upregulation of VEGF-A expression. Neoplasia, 2006, 8(9), 702-707.
[http://dx.doi.org/10.1593/neo.06277] [PMID: 16984727]
[10]
(a)Vilanova, C.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Marco, J.A. Inhibitory effect of pironetin analogue/colchicine hybrids on the expression of the VEGF, hTERT and c-Myc genes. Bioorg. Med. Chem. Lett., 2015, 25(16), 3194-3198.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.092] [PMID: 26094121]
(b)Marzo-Mas, A.; Falomir, E.; Murga, J.; Carda, M.; Marco, J.A. Effects on tubulin polymerization and down-regulation of c-Myc, hTERT and VEGF genes by colchicine haloacetyl and haloaroyl derivatives. Eur. J. Med. Chem., 2018, 150, 591-600.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.019] [PMID: 29550732]
[11]
Bagnato, J.D.; Eilers, A.L.; Horton, R.A.; Grissom, C.B. Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumortargeted cytotoxin. J. Org. Chem., 2004, 69, 8987-8996.
[12]
Iwaszkiewicz-Grzes, D.; Cholewinski, G.; Kot-Wasik, A.; Trzonkowski, P.; Dzierzbicka, K. Synthesis and biological activity of mycophenolic acid-amino acid derivatives. Eur. J. Med. Chem., 2013, 69, 863-871.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.026] [PMID: 24121309]
[13]
Liu, Y.; Zhao, C.; Bergbreiter, D.E.; Romo, D. Simultaneous deprotection and purification of BOC-amines based on ionic resin capture. J. Org. Chem., 1998, 63, 3471-3473.
[http://dx.doi.org/10.1021/jo972001o]
[14]
Rodríguez-Nieto, S.; Medina, M.A.; Quesada, A.R. A re-evaluation of fumagillin selectivity towards endothelial cells. Anticancer Res., 2001, 21(5), 3457-3460.
[PMID: 11848509]
[15]
Hulpia, F.; Noppen, S.; Schols, D.; Andrei, G.; Snoeck, R.; Liekens, S.; Vervaeke, P.; Van Calenbergh, S. Synthesis of a 3′-C-ethynyl-β-d-ribofuranose purine nucleoside library: Discovery of C7-deazapurine analogs as potent antiproliferative nucleosides. Eur. J. Med. Chem., 2018, 157, 248-267.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.062] [PMID: 30098481]
[16]
Minn, A.J.; Gupta, G.P.; Siegel, P.M.; Bos, P.D.; Shu, W.; Giri, D.D.; Viale, A.; Olshen, A.B.; Gerald, W.L.; Massagué, J. Genes that mediate breast cancer metastasis to lung. Nature, 2005, 436(7050), 518-524.
[http://dx.doi.org/10.1038/nature03799] [PMID: 16049480]
[17]
Lancaster, O.M.; Le Berre, M.; Dimitracopoulos, A.; Bonazzi, D.; Zlotek-Zlotkiewicz, E.; Picone, R.; Duke, T.; Piel, M.; Baum, B. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev. Cell, 2013, 25(3), 270-283.
[http://dx.doi.org/10.1016/j.devcel.2013.03.014] [PMID: 23623611]
[18]
Welti, J.; Loges, S.; Dimmeler, S.; Carmeliet, P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Invest., 2013, 123(8), 3190-3200.
[http://dx.doi.org/10.1172/JCI70212] [PMID: 23908119]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy