Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Arthrophytum scoparium Extract Improves Memory Impairment and Affects Acetylcholinesterase Activity In Mice Brain

Author(s): Med A. Smach*, Jawhar Hafsa, Bassem Charfeddine, Hedi Dridi, Khalifa Limem and Ben A. Jihene

Volume 21, Issue 6, 2020

Page: [480 - 487] Pages: 8

DOI: 10.2174/1389201020666191202142226

Price: $65

Abstract

Background: Arthrophytum scoparium (Pomel) Iljin (Amaranthaceae family) has been widely used in traditional Tunisian medicine to treat many disorders such as migraine, headache, and neurological disorders. This study investigates the effect of Arthrophytum scoparium Aqueous Extract (ASAE) on cognitive impairments and oxidative injury induced by galactose (10%) in a mouse model.

Materials and Methods: The mice were divided randomly into 4 experimental groups, including the control group (saline water 9 ‰), Galactose group, Scop group (300 mg/kg/d), and Scop+Gal group (300 mg/kg/d). Mice received the corresponding solutions by intraperitoneal injection (i.p.) for 7 days before the Y-maze active tests. Galactose 10% was given to all groups except control and Scop groups, 30 min before the trial. Levels of Acetylcholinesterase Activity (AChE), Ascorbic Acid (AA), Gluthatione (GSH) and Malondialdehyde (MDA) in mice brains were examined.

Results: Chronic administration of galactose significantly impaired cognitive performance in Y maze, caused marked oxidative damages and a significant increase in the acetylcholinesterase activity as compared to other groups. On the contrary, ASAE (300 mg/kg) treatment suppressed galactoseinduced oxidative damage by ameliorating the increased levels of GSH and AA. Moreover, ASAE treatment reduced brain AChE activities in the galactose-induced model.

Conclusion: These findings suggest that ASAE exerts potent anti-amnesic effects via the modulation of cholinergic and antioxidant activities. The observed pharmacological activities should be further evaluated by detailed experimental studies and validated by clinical trials.

Keywords: Antioxidant activity, AChE, avoidance errors, discrimination errors, Y mize active test, Arthrophytum scoparium.

Graphical Abstract

[1]
Smach, M.A.; Hafsa, J.; Charfeddine, B.; Dridi, H.; Limem, K. Effects of sage extract on memory performance in mice and acetylcholinesterase activity. Ann. Pharm. Fr., 2015, 73(4), 281-288.
[http://dx.doi.org/10.1016/j.pharma.2015.03.005] [PMID: 25934446]
[2]
Kim, H.K.; Kim, M.; Kim, S.; Kim, M.; Chung, J.H. Effects of green tea polyphenol on cognitive and acetylcholinesterase activities. Biosci. Biotechnol. Biochem., 2004, 68(9), 1977-1979.
[http://dx.doi.org/10.1271/bbb.68.1977] [PMID: 15388975]
[3]
Nunomura, A.; Castellani, R.J.; Zhu, X.; Moreira, P.I.; Perry, G.; Smith, M.A. Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2006, 65(7), 631-641.
[http://dx.doi.org/10.1097/01.jnen.0000228136.58062.bf] [PMID: 16825950]
[4]
Fukui, K.; Omoi, N.O.; Hayasaka, T.; Shinnkai, T.; Suzuki, S.; Abe, K.; Urano, S. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann. N. Y. Acad. Sci., 2002, 959, 275-284.
[5]
Patki, G.; Solanki, N.; Atrooz, F.; Allam, F.; Salim, S. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress. Brain Res., 2013, 1539, 73-86.
[http://dx.doi.org/10.1016/j.brainres.2013.09.033]
[6]
Guan, Z.Z. Cross-talk between oxidative stress and modifications of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer’s disease. Acta Pharmacol. Sin., 2008, 29(7), 773-780.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00819.x] [PMID: 18565274]
[7]
Upadhyaya, P.; Seth, V.; Ahmad, M. Therapy of Alzheimers disease: An update. Afr. J. Pharm. Pharmacol., 2010, 4(6), 408-421.
[8]
Rajadurai, M.; Mainzen, S.; Prince, P.Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology, 2006, 228(2-3), 259-268.
[http://dx.doi.org/10.1016/j.tox.2006.09.005] [PMID: 17084010]
[9]
Kumar, A.; Naidu, P.S.; Seghal, N.; Padi, S.S.V. Effect of curcumin on intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. J. Med. Food, 2007, 10(3), 486-494.
[http://dx.doi.org/10.1089/jmf.2006.076] [PMID: 17887943]
[10]
Alkam, T.; Nitta, A.; Mizoguchi, H.; Itoh, A.; Nabeshima, T. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Abeta(25-35). Behav. Brain Res., 2007, 180(2), 139-145.
[http://dx.doi.org/10.1016/j.bbr.2007.03.001] [PMID: 17420060]
[11]
Frank, B.; Gupta, S. A review of antioxidants and Alzheimer’s disease. Ann. Clin. Psychiatry, 2005, 17(4), 269-286.
[http://dx.doi.org/10.1080/10401230500296428] [PMID: 16402761]
[12]
Howes, M-J.R.; Houghton, P.J. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol. Biochem. Behav., 2003, 75(3), 513-527.
[http://dx.doi.org/10.1016/S0091-3057(03)00128-X] [PMID: 12895669]
[13]
Li, Y.; Plitzko, I.; Zaugg, J.; Hering, S.; Hamburger, M. HPLC-based activity profiling for GABA(A) receptor modulators: a new dihydroisocoumarin from Haloxylon scoparium. J. Nat. Prod., 2010, 73(4), 768-770.
[http://dx.doi.org/10.1021/np900803w] [PMID: 20210326]
[14]
Ben Salah, H.; Jarraya, R.; Martin, M-T.; Veitch, N.C.; Grayer, R.J.; Simmonds, M.S.J.; Damak, M. Flavonol triglycosides from the leaves of Hammada scoparia (POMEL) ILJIN. Chem. Pharm. Bull. (Tokyo), 2002, 50(9), 1268-1270.
[http://dx.doi.org/10.1248/cpb.50.1268] [PMID: 12237550]
[15]
Sathiyamoorthy, P.; Lugasi-Evgi, H.; Schlesinger, P.; Kedar, I.; Gopas, J.; Pollack, Y.; Golan-Goldhirsh, A. Screening for cytotoxic and antimalarial activities in Desert plants of the Negev and Bedouin Market plant products. Pharm. Biol., 1999, 37, 188-195.
[http://dx.doi.org/10.1076/phbi.37.3.188.6298]
[16]
Bnouham, M.; Mekhfi, H.; Legssyer, A.; Ziyyat, A. Ethnopharmacology Forum Medicinal plants used in the treatment of diabetes in Morocco. Int. J. Diabetes Metab., 2002, 10, 33-50.
[17]
Ali, T.; Badshah, H.; Kim, T.H.; Kim, M.O. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model. J. Pineal Res., 2015, 58(1), 71-85.
[http://dx.doi.org/10.1111/jpi.12194] [PMID: 25401971]
[18]
Lu, J.; Wu, D.M.; Zheng, Y.L.; Hu, B.; Zhang, Z.F.; Ye, Q.; Liu, C.M.; Shan, Q.; Wang, Y.J. Ursolic acid attenuates D-galactose-induced inflammatory response in mouse prefrontal cortex through inhibiting AGEs/RAGE/NF-κB pathway activation. Cereb. Cortex, 2010a, 20(11), 2540-2548.
[http://dx.doi.org/10.1093/cercor/bhq002] [PMID: 20133359]
[19]
Kumar, A.; Prakash, A.; Dogra, S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem. Toxicol., 2010, 48(2), 626-632.
[http://dx.doi.org/10.1016/j.fct.2009.11.043] [PMID: 19941926]
[20]
Li, J.J.; Zhu, Q.; Lu, Y.P.; Zhao, P.; Feng, Z.B.; Qian, Z.M.; Zhu, L. Ligustilide prevents cognitive impairment and attenuates neurotoxicity in D-galactose induced aging mice brain. Brain Res., 2015, 1595, 19-28.
[http://dx.doi.org/10.1016/j.brainres.2014.10.012] [PMID: 25446001]
[21]
Lei, H.; Wang, B.; Li, W.P.; Yang, Y.; Zhou, A.W.; Chen, M.Z. Anti-aging effect of astragalosides and its mechanism of action. Acta Pharmacol. Sin., 2003, 24(3), 230-234.
[PMID: 12617771]
[22]
Cui, X.; Wang, L.; Zuo, P.; Han, Z.; Fang, Z.; Li, W.; Liu, J. D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. Biogerontology, 2004, 5(5), 317-325.
[http://dx.doi.org/10.1007/s10522-004-2570-3] [PMID: 15547319]
[23]
Wei, H.; Li, L.; Song, Q.; Ai, H.; Chu, J.; Li, W. Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behav. Brain Res., 2005, 157(2), 245-251.
[http://dx.doi.org/10.1016/j.bbr.2004.07.003] [PMID: 15639175]
[24]
Wong, C-C.; Li, H-B.; Cheng, K-W.; Chen, F. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem., 2006, 97, 705-711.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.049]
[25]
Bahorun, T.; Gressier, B.; Trotin, F. Oxigen species scavenging activity of phenolic extract from howthorn fresh plant organs and pharmaceutical preparation. Arzneimittelforschung, 1996, 46(11), 1086-1089.
[26]
Maataoui, B.S.; Hmyene, A.; Hilali, S. Activités anti-radicalaires d’extraits de jus de fruits du figuier de barbarie (Opuntia ficus indica). Leban. Sci. J., 2006, 7(1), 3-8.
[27]
Morimitsu, Y.; Yoshida, K.; Esaki, S.; Hirota, A. Protein glycation inhibitors from thyme (Thymus vulgaris). Biosci. Biotechnol. Biochem., 1995, 59(11), 2018-2021.
[http://dx.doi.org/10.1271/bbb.59.2018] [PMID: 8541639]
[28]
Ellman, G.L.; Callaway, E. Erythrocyte cholinesterase-levels in mental patients. Nature, 1961, 192, 1216.
[http://dx.doi.org/10.1038/1921216a0] [PMID: 13890018]
[29]
Lan, Z.; Liu, J.; Chen, L.; Fu, Q.; Luo, J.; Qu, R.; Kong, L.; Ma, S. Danggui-Shaoyao-San ameliorates cognition deficits and attenuates oxidative stress-related neuronal apoptosis in d-galactose-induced senescent mice. J. Ethnopharmacol., 2012, 141(1), 386-395.
[http://dx.doi.org/10.1016/j.jep.2012.02.050] [PMID: 22414474]
[30]
Organization for Economic Development 2001. Guideline for Testing of Chemicals.Guidance, 425.
[31]
Jagota, S.K.; Dani, H.M. A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal. Biochem., 1982, 127(1), 178-182.
[http://dx.doi.org/10.1016/0003-2697(82)90162-2] [PMID: 7165085]
[32]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[33]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem.,, 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[34]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[35]
Kaddour, S.M.; Zerargui, F.; Arrar, L.; Baghiani, A. Acute, sub-acute and antioxidant activities of Arthrophytum scoparium aerial parts. IJPSR, 2019, 10(9), 4167-4175.
[36]
Turner, P.V.; Brabb, T.; Pekow, C.; Vasbinder, M.A. Administration of substances to laboratory animals: routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci., 2011, 50(5), 600-613.
[PMID: 22330705]
[37]
Sridharamurthy, N.; Ashok, B.; Yogananda, R. Evaluation of antioxidant and acetylcholinesterase inhibitory activity of Peltophorum pterocarpum in scopolamine treated rats. Int. J. Drug Dev. Res., 2012, 4, 115-127.
[38]
Kumar, A.; Prakash, A.; Dogra, S. Centella asiatica attenuates d-galactose-induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Int. J. Alzheimers Dis., 2011, 2011347569
[http://dx.doi.org/10.4061/2011/347569] [PMID: 21629743]
[39]
Zhong, S.Z.; Ge, Q.H.; Qu, R.; Li, Q.; Ma, S.P. Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by d-galactose in ICR mice. J. Neurol. Sci., 2009, 277(1-2), 58-64.
[http://dx.doi.org/10.1016/j.jns.2008.10.008] [PMID: 19007942]
[40]
Myhrstad, M.C.; Carlsen, H.; Nordström, O.; Blomhoff, R.; Moskaug, J.O. Flavonoids increase the intracellular glutathione level by transactivation of the γ-glutamylcysteine synthetase catalytical subunit promoter. Free Radic. Biol. Med., 2002, 32(5), 386-393.
[http://dx.doi.org/10.1016/S0891-5849(01)00812-7] [PMID: 11864778]
[41]
Williams, C.M.; El Mohsen, M.A.; Vauzour, D.; Rendeiro, C.; Butler, L.T.; Ellis, J.A.; Whiteman, M.; Spencer, J.P. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic. Biol. Med., 2008, 45(3), 295-305.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.008] [PMID: 18457678]
[42]
Youdim, K.A.; Qaiser, M.Z.; Begley, D.J.; Rice-Evans, C.A.; Abbott, N.J. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic. Biol. Med., 2004, 36(5), 592-604.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.11.023] [PMID: 14980703]
[43]
Chao, H.C.; Najjaa, H.; Villareal, M.O.; Ksouri, R.; Han, J.; Neffati, M.; Isoda, H. Arthrophytum scoparium inhibits melanogenesis through the down-regulation of tyrosinase and melanogenic gene expressions in B16 melanoma cells. Exp. Dermatol., 2013, 22, 131-36.
[44]
El-Shazly, A.M.; Dora, G.; Wink, M. Alkaloids of Haloxylon salicornicum (Moq.) Bunge ex Boiss. (Chenopodiaceae). Pharmazie, 2005, 60(12), 949-952.
[PMID: 16398274]
[45]
Shahidi, S.; Komaki, A.; Mahmoodi, M.; Atrvash, N.; Ghodrati, M. Ascorbic acid supplementation could affect passive avoidance learning and memory in rat. Brain Res. Bull., 2008, 76(1-2), 109-113.
[http://dx.doi.org/10.1016/j.brainresbull.2008.01.003] [PMID: 18395619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy