Research Article

卷积神经网络可视化识别双相情感障碍风险基因

卷 20, 期 6, 2020

页: [429 - 441] 页: 13

弟呕挨: 10.2174/1566524019666191129111753

价格: $65

摘要

背景:双相情感障碍(BD)是一种慢性情绪障碍,具有复杂的遗传结构。但是,其遗传分子机制仍不清楚,因此不足以进行诊断和治疗。 方法和结果:在本文中,我们提出了一个基于单核苷酸多态性(SNP)的BD预测模型,该模型由全基因组关联研究(GWAS)筛选,该模型由卷积神经网络(CNN)构建,该模型预测了这种病。根据GWAS阈值的差异,将两组数据命名为P001组和P005组。并为两组数据设置了不同的卷积神经网络。使用组P001数据训练的模型的训练精度为96%,测试精度为91%。使用组P005数据训练的模型的训练精度为94.5%,测试精度为92%。同时,我们使用梯度加权类别激活映射(Grad-CAM)解释预测模型,间接识别BD的高风险SNP。最后,我们将这些高风险的SNP与人类基因注释信息进行了比较。 结论:P001组的模型预测结果产生了137个风险基因,其中22个与BD的发生有关。 P005组的模型预测结果产生了407个风险基因,据报道其中51个与BD的发生有关。

关键词: 躁郁症,SNP,风险基因,CNN,Grad-CAM,GWAS。

[1]
Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet 2016; 387(10027): 1561-72.
[http://dx.doi.org/10.1016/S0140-6736(15)00241-X] [PMID: 26388529.]
[2]
John A, McGregor J, Jones I, et al. Premature mortality among people with severe mental illness - New evidence from linked primary care data. Schizophr Res 2018; 199: 154-62.
[http://dx.doi.org/10.1016/j.schres.2018.04.009] [PMID: 29728293]
[3]
Nielsen RE, Kugathasan P, Straszek S, Jensen SE, Licht RW. Why are somatic diseases in bipolar disorder insufficiently treated? Int J Bipolar Disord 2019; 7(1): 12.
[http://dx.doi.org/10.1186/s40345-019-0147-y] [PMID: 31055668]
[4]
Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 2016; 21(12): 1696-709.
[http://dx.doi.org/10.1038/mp.2016.3] [PMID: 26903267]
[5]
Chen J, Peng H, Han G, Cai H, Cai J. HOGMMNC: a higher order graph matching with multiple network constraints model for gene-drug regulatory modules identification. Bioinformatics 2019; 35(4): 602-10.
[http://dx.doi.org/10.1093/bioinformatics/bty662] [PMID: 30052773]
[6]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[7]
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE 1998; 86(11): 2278-324.
[http://dx.doi.org/10.1109/5.726791]
[8]
Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences arXiv preprint arXiv: 14042188 2014.
[9]
Salagre E, Dodd S, Aedo A, et al. Towards precision psychiatry in bipolar disorder: Staging 2.0. Front Psychiatry 2018; 9: 641.
[http://dx.doi.org/10.3389/fpsyt.2018.00641] [PMID: 30555363]
[10]
Sun Q, Yue Q, Zhu F, et al. The Identification research of bipolar disorder based on CNN. J Phys Conf Ser 2019; 1168(3)032125
[http://dx.doi.org/10.1088/1742-6596/1168/3/032125]
[11]
Xie Z, Yang X, Deng X, Ma M, Shu K. A genome-wide association study and complex network identify four core hub genes in bipolar disorder. Int J Mol Sci 2017; 18(12): 2763.
[http://dx.doi.org/10.3390/ijms18122763] [PMID: 29257106]
[12]
Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447(7145): 661-78.
[http://dx.doi.org/10.1038/nature05911] [PMID: 17554300]
[13]
Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81(3): 559-75.
[http://dx.doi.org/10.1086/519795] [PMID: 17701901]
[14]
Turner SD. qqman: An R package for visualizing GWAS results using QQ and manhattan plots. bioRxiv 2014; 1005165
[16]
Abadi M, Barham P, Chen J, et al. Tensorflow: A system for large-scale machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) 265-83.
[17]
Hinton GE, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors arXiv preprint arXiv:12070580: 2012.
[18]
Selvaraju RR, Cogswell M, Das A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision. 618-26.
[http://dx.doi.org/10.1109/ICCV.2017.74]
[19]
LeNail ANN-SVG. Publication-ready neural network architecture schematics. Journal of Open Source Software 2019; 4: 747.
[http://dx.doi.org/10.21105/joss.00747]
[20]
Brown GR, Hem V, Katz KS, et al. Gene: a gene-centered information resource at NCBI. Nucleic Acids Res 2015; 43(Database issue): D36-42.
[http://dx.doi.org/10.1093/nar/gku1055] [PMID: 25355515]
[21]
Chang SH, Gao L, Li Z, Zhang WN, Du Y, Wang J. BDgene: a genetic database for bipolar disorder and its overlap with schizophrenia and major depressive disorder. Biol Psychiatry 2013; 74(10): 727-33.
[http://dx.doi.org/10.1016/j.biopsych.2013.04.016] [PMID: 23764453]
[22]
Green EK, Hamshere M, Forty L, et al. WTCCC. Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case-control sample. Mol Psychiatry 2013; 18(12): 1302-7.
[http://dx.doi.org/10.1038/mp.2012.142] [PMID: 23070075]
[23]
Xu W, Cohen-Woods S, Chen Q, et al. Genome-wide association study of bipolar disorder in Canadian and UK populations corroborates disease loci including SYNE1 and CSMD1. BMC Med Genet 2014; 15(1): 2.
[http://dx.doi.org/10.1186/1471-2350-15-2] [PMID: 24387768]
[24]
Chen X, Long F, Cai B, Chen X, Chen G. A novel relationship for schizophrenia, bipolar and major depressive disorder Part 7: A hint from chromosome 7 high density association screen. Behav Brain Res 2015; 293: 241-51.
[http://dx.doi.org/10.1016/j.bbr.2015.06.043] [PMID: 26192912]
[25]
Jamain S, Cichon S, Etain B, et al. Common and rare variant analysis in early-onset bipolar disorder vulnerability. PLoS One 2014; 9(8)e104326
[http://dx.doi.org/10.1371/journal.pone.0104326] [PMID: 25111785]
[26]
Malhotra D, McCarthy S, Michaelson JJ, et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 2011; 72(6): 951-63.
[http://dx.doi.org/10.1016/j.neuron.2011.11.007] [PMID: 22196331]
[27]
Yosifova A, Mushiroda T, Stoianov D, et al. Case-control association study of 65 candidate genes revealed a possible association of a SNP of HTR5A to be a factor susceptible to bipolar disease in Bulgarian population. J Affect Disord 2009; 117(1-2): 87-97.
[http://dx.doi.org/10.1016/j.jad.2008.12.021] [PMID: 19328558]
[28]
Cho CH, Lee HJ, Woo HG, Choi JH, Greenwood TA, Kelsoe JR. CDH13 and HCRTR2 may be associated with hypersomnia symptom of bipolar depression: a genome-wide functional enrichment pathway analysis. Psychiatry Investig 2015; 12(3): 402-7.
[http://dx.doi.org/10.4306/pi.2015.12.3.402] [PMID: 26207136]
[29]
Steinberg S, de Jong S, Mattheisen M, et al. Common variant at 16p11.2 conferring risk of psychosis. Mol Psychiatry 2014; 19(1): 108-14.
[http://dx.doi.org/10.1038/mp.2012.157] [PMID: 23164818]
[30]
Georgieva L, Rees E, Moran JL, et al. De novo CNVs in bipolar affective disorder and schizophrenia. Hum Mol Genet 2014; 23(24): 6677-83.
[http://dx.doi.org/10.1093/hmg/ddu379] [PMID: 25055870]
[31]
Szczepankiewicz A, Leszczyńska-Rodziewicz A, Pawlak J, et al. Epistatic interaction between CRHR1 and AVPR1b variants as a predictor of major depressive disorder. Psychiatr Genet 2013; 23(6): 239-46.
[http://dx.doi.org/10.1097/YPG.0000000000000007] [PMID: 23962971]
[32]
Ollila HM, Soronen P, Silander K, et al. Findings from bipolar disorder genome-wide association studies replicate in a Finnish bipolar family-cohort. Mol Psychiatry 2009; 14(4): 351-3.
[http://dx.doi.org/10.1038/mp.2008.122] [PMID: 19308021]
[33]
Moskvina V, Craddock N, Holmans P, et al. Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 2009; 14(3): 252-60.
[http://dx.doi.org/10.1038/mp.2008.133] [PMID: 19065143]
[34]
Zeng Z, Wang T, Li T, et al. Common SNPs and haplotypes in DGKH are associated with bipolar disorder and schizophrenia in the Chinese Han population. Mol Psychiatry 2011; 16(5): 473-5.
[http://dx.doi.org/10.1038/mp.2010.86] [PMID: 20733578]
[35]
Drago A, Crisafulli C, Sidoti A, Calabrò M, Serretti A. The microtubule-associated molecular pathways may be genetically disrupted in patients with Bipolar Disorder. Insights from the molecular cascades. J Affect Disord 2016; 190: 429-38.
[http://dx.doi.org/10.1016/j.jad.2015.10.016] [PMID: 26551401]
[36]
Koefoed P, Andreassen OA, Bennike B, et al. Combinations of SNPs related to signal transduction in bipolar disorder. PLoS One 2011; 6(8)e23812
[http://dx.doi.org/10.1371/journal.pone.0023812] [PMID: 21897858]
[37]
Noor A, Lionel AC, Cohen-Woods S, et al. Copy number variant study of bipolar disorder in Canadian and UK populations implicates synaptic genes. Am J Med Genet B Neuropsychiatr Genet 2014; 165B(4): 303-13.
[http://dx.doi.org/10.1002/ajmg.b.32232] [PMID: 24700553]
[38]
Byrne EM, Heath AC, Madden P A F, et al. Testing the role of circadian genes in conferring risk for psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2014; 165B(3): 254-60.
[http://dx.doi.org/10.1002/ajmg.b.32230] [PMID: 24687905]
[39]
Gonzalez S, Camarillo C, Rodriguez M, et al. A genome-wide linkage scan of bipolar disorder in Latino families identifies susceptibility loci at 8q24 and 14q32. Am J Med Genet B Neuropsychiatr Genet 2014; 165B(6): 479-91.
[http://dx.doi.org/10.1002/ajmg.b.32251] [PMID: 25044503]
[40]
Karlsson R, Graae L, Lekman M, et al. MAGI1 copy number variation in bipolar affective disorder and schizophrenia. Biol Psychiatry 2012; 71(10): 922-30.
[http://dx.doi.org/10.1016/j.biopsych.2012.01.020] [PMID: 22381734]
[41]
Sklar P, Ripke S, Scott LJ, et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43(10): 977-83.
[http://dx.doi.org/10.1038/ng.943] [PMID: 21926972]
[42]
Zain MA, Roffeei SN, Zainal NZ, Kanagasundram S, Mohamed Z. Nonsynonymous polymorphisms of the PDLIM5 gene association with the occurrence of both bipolar disorder and schizophrenia. Psychiatr Genet 2013; 23(6): 258-61.
[http://dx.doi.org/10.1097/YPG.0000000000000015]] [PMID: 24064681]
[43]
Le Hellard S, Lee AJ, Underwood S, et al. Haplotype analysis and a novel allele-sharing method refines a chromosome 4p locus linked to bipolar affective disorder. Biol Psychiatry 2007; 61(6): 797-805.
[http://dx.doi.org/10.1016/j.biopsych.2006.06.029] [PMID: 16996484]
[44]
Lencz T, Guha S, Liu C, et al. Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder. Nat Commun 2013; 4: 2739.
[http://dx.doi.org/10.1038/ncomms3739] [PMID: 24253340]
[45]
Hattori E, Toyota T, Ishitsuka Y, et al. Preliminary genome-wide association study of bipolar disorder in the Japanese population. [J] Am J Med Genet B Neuropsychiatr Genet 2009; 150B(8): 1110-7.
[http://dx.doi.org/10.1002/ajmg.b.30941] [PMID: 19259986]
[46]
Crisafulli C, Shim DS, Andrisano C, et al. Case-control association study of 14 variants of CREB1, CREBBP and CREM on diagnosis and treatment outcome in major depressive disorder and bipolar disorder. Psychiatry Res 2012; 198(1): 39-46.
[http://dx.doi.org/10.1016/j.psychres.2011.08.022] [PMID: 22386572]
[47]
Jan WC, Yang SY, Chuang LC, et al. Exploring the associations between genetic variants in genes encoding for subunits of calcium channel and subtypes of bipolar disorder. J Affect Disord 2014; 157: 80-6.
[http://dx.doi.org/10.1016/j.jad.2013.12.044] [PMID: 24581832]
[48]
Fiorentino A, O’Brien NL, Locke DP, et al. Analysis of ANK3 and CACNA1C variants identified in bipolar disorder whole genome sequence data. Bipolar Disord 2014; 16(6): 583-91.
[http://dx.doi.org/10.1111/bdi.12203] [PMID: 24716743]
[49]
Detera-Wadleigh SD, Liu CY, Maheshwari M, et al. Sequence variation in DOCK9 and heterogeneity in bipolar disorder. Psychiatr Genet 2007; 17(5): 274-86.
[http://dx.doi.org/10.1097/YPG.0b013e328133f352] [PMID: 17728666]
[50]
Johnson C, Drgon T, McMahon FJ, Uhl GR. Convergent genome wide association results for bipolar disorder and substance dependence. Am J Med Genet B Neuropsychiatr Genet 2009; 150B(2): 182-90.
[http://dx.doi.org/10.1002/ajmg.b.30900] [PMID: 19127564]
[51]
McQuillin A, Bass N, Anjorin A, et al. Analysis of genetic deletions and duplications in the University College London bipolar disorder case control sample. Eur J Hum Genet 2011; 19(5): 588-92.
[http://dx.doi.org/10.1038/ejhg.2010.221] [PMID: 21206513]
[52]
Bergen SE, O’Dushlaine CT, Ripke S, et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry 2012; 17(9): 880-6.
[http://dx.doi.org/10.1038/mp.2012.73] [PMID: 22688191]
[53]
Huang J, Perlis RH, Lee PH, et al. Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. Am J Psychiatry 2010; 167(10): 1254-63.
[http://dx.doi.org/10.1176/appi.ajp.2010.09091335] [http://dx.doi.org/20713499]]
[54]
Forero DA, Herteleer L, De Zutter S, et al. A network of synaptic genes associated with schizophrenia and bipolar disorder. Schizophr Res 2016; 172(1-3): 68-74.
[http://dx.doi.org/10.1016/j.schres.2016.02.012] [PMID: 26899345]
[55]
Kuo PH, Chuang LC, Liu JR, et al. Identification of novel loci for bipolar I disorder in a multi-stage genome-wide association study. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51: 58-64.
[http://dx.doi.org/10.1016/j.pnpbp.2014.01.003] [PMID: 24444492]
[56]
Kostyrko A, Hauser J, Rybakowski JK, Trzeciak WH. Screening of chromosomal region 21q22.3 for mutations in genes associated with neuronal Ca2+ signalling in bipolar affective disorder. Acta Biochim Pol 2006; 53(2): 317-20.
[PMID: 16733555]
[57]
Hamshere ML, Green EK, Jones IR, et al. Genetic utility of broadly defined bipolar schizoaffective disorder as a diagnostic concept. Br J Psychiatry 2009; 195(1): 23-9.
[http://dx.doi.org/10.1192/bjp.bp.108.061424] [PMID: 19567891]
[58]
Anitha A, Nakamura K, Yamada K, et al. Gene and expression analyses reveal enhanced expression of pericentrin 2 (PCNT2) in bipolar disorder. Biol Psychiatry 2008; 63(7): 678-85.
[http://dx.doi.org/10.1016/j.biopsych.2007.07.010] [http://dx.doi.org/17884020]
[59]
Kirov G, Lowry CA, Stephens M, et al. Screening ABCG1, the human homologue of the Drosophila white gene, for polymorphisms and association with bipolar affective disorder. Mol Psychiatry 2001; 6(6): 671-7.
[http://dx.doi.org/10.1038/sj.mp.4000899] [PMID: 11673795]
[60]
Rezazadeh M, Gharesouran J, Mirabzadeh A, Khorram Khorshid HR, Biglarian A, Ohadi M. A primate-specific functional GTTT-repeat in the core promoter of CYTH4 is linked to bipolar disorder in human. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56: 161-7.
[http://dx.doi.org/10.1016/j.pnpbp.2014.09.001] [PMID: 25240857]
[61]
Georgi B, Craig D, Kember RL, et al. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate. PLoS Genet 2014; 10(3)e1004229
[http://dx.doi.org/10.1371/journal.pgen.1004229] [PMID: 24625924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy