Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Organo or Metal Complex Catalyzed Synthesis of Five-membered Oxygen Heterocycles

Author(s): Navjeet Kaur*, Neha Ahlawat, Pooja Grewal, Pranshu Bhardwaj and Yamini Verma

Volume 23, Issue 25, 2019

Page: [2822 - 2847] Pages: 26

DOI: 10.2174/1385272823666191122111351

Price: $65

Abstract

The reactions involving the formation of C-O bond using metal as a catalyst have emerged to be one of the most influential reactions for the synthesis of heterocycles in modern organic chemistry. Catalysis by metals offers diverse opportunities to invent new organic reactions with a promising range of selectivities such as chemoselectivity, regioselectivity, diastereoselectivity, and enantioselectivity. The methodologies used earlier for synthesis were less approachable to the organic chemist because of their high cost, highly specified instrumentation and inconvenient methods. For both stereoselective and regioselective formation of five-membered O-containing heterocycles, cyclic reactions that are metal and non-metal-catalyzed have known to be very efficient. The present review article covers the applications of metal and non-metal as a catalyst for the synthesis of five-membered O-containing heterocycles.

Keywords: Catalysis, heterocycles, oxygen, furans, dioxolanes, synthesis.

Graphical Abstract

[1]
(a) Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
(b) Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev., 2015, 57, 478-564.
[http://dx.doi.org/10.1080/01614940.2015.1082824]
[2]
(a) Martins, M.A.P.; Cunico, W.; Pereira, C.M.P.; Flores, A.F.C.; Bonacorso, H.G.; Zanatta, N. 4-Alkoxy-1,1,1-trichloro-3-alken-2-ones: preparation and applications in heterocyclic synthesis. Curr. Org. Synth., 2004, 1, 391-403.
[http://dx.doi.org/10.2174/1570179043366611]
(b) Majumdar, P.; Pati, A.; Patra, M.; Behera, R.K.; Behera, A.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chem. Rev., 2014, 114(5), 2942-2977.
[http://dx.doi.org/10.1021/cr300122t] [PMID: 24506477]
(c) Hodges, J.C.; Wang, W.; Riley, F. Synthesis of a spirocyclic indoline lactone. J. Org. Chem., 2004, 69(7), 2504-2508.
[http://dx.doi.org/10.1021/jo0499569] [PMID: 15049651]
[3]
(a) Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
(b) Kaur, N. Applications of palladium dibenzylideneacetone as catalyst in the synthesis of five-membered N-heterocycles. Synth. Commun., 2019, 49, 1205-1230.
[http://dx.doi.org/] [http://dx.doi.org/10.1080/00397911.2018.1540048]
(c) Kaur, N. Copper catalyzed synthesis of seven and higher-membered heterocycles. Synth. Commun., 2019, 49, 879-916.
[http://dx.doi.org/10.1080/00397911.2018.1543780]
(d) Kaur, N. Ionic liquid assisted synthesis of S-heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194, 165-185.
[http://dx.doi.org/10.1080/10426507.2018.1539492]
(e) Kaur, N. Nickel catalysis: six membered heterocycle syntheses. Synth. Commun., 2019, 49, 1103-1133.
[http://dx.doi.org/10.1080/00397911.2019.1568499]
(f) Kaur, N. Seven-membered N-heterocycles: metal and non-metal assisted synthesis. Synth. Commun., 2019, 49, 987-1030.
[http://dx.doi.org/10.1080/00397911.2019.1574351]
(g) Kaur, N. Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of five-membered O,N-heterocycles using metal and non-metal. Synth. Commun., 2019, 49, 1345-1384..
[http://dx.doi.org/10.1080/00397911.2019.1594308]
(h) Kaur, N. Synthetic routes to seven and higher membered S-heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194, 186-209.
[http://dx.doi.org/10.1080/10426507.2018.1539493]
(i) Kaur, N. Synthesis of six-membered N-heterocycles using ruthenium catalysts. Catal. Lett., 2019, 14, 1513-1539.
[http://dx.doi.org/10.1007/s10562-019-02746-2]
[4]
(a) Kaur, N. Benign approaches for the microwave-assisted synthesis of five-membered 1,2-N,N-heterocycles. J. Heterocycl. Chem., 2015, 52, 953-973.
[http://dx.doi.org/10.1002/jhet.2129]
(b) Kaur, N. Methods for metal and non-metal catalyzed synthesis of six-membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14, 531-556.
[http://dx.doi.org/10.2174/1570179413666161021104941]
(c) Kaur, N. Photochemical reactions: synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14, 972-998.
(d) Kaur, N. Ionic liquids: promising but challenging solvents for the synthesis of N-heterocycles. Mini Rev. Org. Chem., 2017, 14, 3-23.
[http://dx.doi.org/10.2174/1570193X13666161019120050]
(e) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46, 983-1020.
[http://dx.doi.org/10.1080/15533174.2014.989620]
(f) Kaur, N. Applications of gold catalysts for the synthesis of five-membered O-heterocycles. Inorg. Nano-Met. Chem, 2017, 47, 163-187.
(g) Orru, R.V.A.; de Greef, M. Recent advances in solution-phase multi-component methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 10, 1471-1499.
[http://dx.doi.org/10.1055/s-2003-40507]
(h) Kaur, N. Ruthenium catalysis in six-membered O-heterocycles synthesis. Synth. Commun., 2018, 48, 1551-1587.
[http://dx.doi.org/10.1080/00397911.2018.1457698]
(i)Kaur, N. Green synthesis of three to five-membered O-heterocycles using ionic liquids. Synth. Commun., 2018, 48, 1588-1613.
[http://dx.doi.org/10.1080/00397911.2018.1458243]
(j)Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and S-heterocycles. Synth. Commun., 2018, 48, 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671]
(k)Kaur, N. Photochemical mediated reactions in five-membered O-heterocycles synthesis. Synth. Commun., 2018, 48, 2119-2149.
[http://dx.doi.org/10.1080/00397911.2018.1485165]
(l)Kaur, N. Mercury-catalyzed synthesis of heterocycles. Synth. Commun., 2018, 48, 2715-2749.
[http://dx.doi.org/10.1080/00397911.2018.1497657]
(m)Kaur, N. Photochemical irradiation: seven and higher membered O-heterocycles. Synth. Commun., 2018, 48, 2935-2964.
[http://dx.doi.org/10.1080/00397911.2018.1514051]
(n)Kaur, N. Synthesis of seven and higher membered nitrogen containing heterocycles using photochemical irradiation. Synth. Commun., 2018, 48, 2815-2849.
[http://dx.doi.org/10.1080/00397911.2018.1501488]
(o)Kaur, N. Ruthenium catalyzed synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2018, 99, 82-107.
[http://dx.doi.org/10.1016/j.inoche.2018.11.011]
[5]
(a) Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
[http://dx.doi.org/10.1016/j.inoche.2014.09.024]
(b) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: solid-phase synthesis. Synth. Commun., 2014, 44, 1173-1211.
[http://dx.doi.org/10.1080/00397911.2012.760129]
(c) Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44, 1019-1042.
[http://dx.doi.org/10.1080/00397911.2012.760131]
(d) Kaur, N. Microwave-assisted synthesis of five membered O-heterocycles. Synth. Commun., 2014, 44, 3483-3508.
[http://dx.doi.org/10.1080/00397911.2013.800213]
(e) Kaur, N. Microwave-assisted synthesis of five membered O,N-heterocycles. Synth. Commun., 2014, 44, 3509-3537.
[http://dx.doi.org/10.1080/00397911.2013.800214]
(f) Kaur, N. Microwave-assisted synthesis of five membered O,N,N-heterocycles. Synth. Commun., 2014, 44, 3229-3247.
[http://dx.doi.org/10.1080/00397911.2013.798666]
(g) Kaur, N. Synthesis of six and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48, 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894]
(h) Kaur, N. Photochemical reactions as key steps in five-membered N-heterocycles synthesis. Synth. Commun., 2018, 48, 1259-1284.
[http://dx.doi.org/10.1080/00397911.2018.1443218]
(i)Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem., 2018, 39, 544-577.
[http://dx.doi.org/10.1080/17415993.2018.1457673]
[6]
(a) Kaur, N. Metal catalysts: applications in higher membered N-heterocycles synthesis. J. Iran. Chem. Soc., 2015, 12, 9-45.
[http://dx.doi.org/10.1007/s13738-014-0451-5]
(b) Kaur, N. Insight into microwave-assisted synthesis of benzo derivatives of five membered N,N-heterocycles. Synth. Commun., 2015, 45, 1269-1300.
[http://dx.doi.org/10.1080/00397911.2013.827725]
(c) Kaur, N. Synthesis of fused five-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45, 1379-1410.
[http://dx.doi.org/10.1080/00397911.2013.828078]
(d) Kaur, N. Microwave-assisted synthesis of seven membered S-heterocycles. Synth. Commun., 2014, 44, 3201-3228.
[http://dx.doi.org/10.1080/00397911.2013.798665]
(e) Kaur, N. Six membered N-heterocycles: microwave-assisted synthesis. Synth. Commun., 2015, 45, 1-34.
[http://dx.doi.org/10.1080/00397911.2013.813548]
(f) Kaur, N. Polycyclic six membered N-heterocycles: microwave-assisted synthesis. Synth. Commun., 2015, 45, 35-69.
[http://dx.doi.org/10.1080/00397911.2013.813549]
(g) Kaur, N. Copper catalysts in the synthesis of five-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15, 940-971.
[http://dx.doi.org/10.2174/1570179415666180815144442]
(h) Kaur, N. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synth. Commun., 2018, 48, 2457-2474.
[http://dx.doi.org/10.1080/00397911.2018.1487070]
(i)Ram, V.J.; Sethi, A.; Nath, M.; Pratap, R. Five-Membered Heterocycles”, The Chemistry of Heterocycles; Nomenclature and Chemistry of Three-to-Five Membered Heterocycles, 2019, pp. 149-478.
[http://dx.doi.org/10.1016/B978-0-08-101033-4.00005-X]
[7]
(a) Kaur, N. Microwave-assisted synthesis: fused five membered N-heterocycles. Synth. Commun., 2015, 45, 789-823.
[http://dx.doi.org/10.1080/00397911.2013.824984]
(b) Kaur, N. Six membered heterocycles with three and four N-heteroatoms: microwave-assisted synthesis. Synth. Commun., 2015, 45, 151-172.
[http://dx.doi.org/10.1080/00397911.2013.813550]
(c) Kaur, N. Application of microwave-assisted synthesis in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45, 173-201.
[http://dx.doi.org/10.1080/00397911.2013.816734]
(d) Kaur, N. Microwave-assisted synthesis of fused polycyclic six membered N-heterocycles. Synth. Commun., 2015, 45, 273-299.
[http://dx.doi.org/10.1080/00397911.2013.816735]
(e) Kaur, N. Review of microwave-assisted synthesis of benzo fused six-membered N,N-heterocycles. Synth. Commun., 2015, 45, 300-330.
[http://dx.doi.org/10.1080/00397911.2013.816736]
(f) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44, 1375-1413.
[http://dx.doi.org/10.1080/00397911.2013.772202]
[8]
(a) Kaur, N. Environmentally benign synthesis of five membered 1,3-N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45, 909-943.
[http://dx.doi.org/10.1080/00397911.2013.825808]
(b) Kaur, N. Advances in microwave-assisted synthesis for five membered N-heterocycles synthesis. Synth. Commun., 2015, 45, 432-457.
[http://dx.doi.org/10.1080/00397911.2013.824982]
(c) Kaur, N. Microwave-assisted synthesis of five membered S-heterocycles. J. Iranian Chem. Soc., 2014, 11, 523-564.
[http://dx.doi.org/10.1007/s13738-013-0325-2]
(d) Kaur, N. Review on the synthesis of six membered N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45, 1145-1182.
[http://dx.doi.org/10.1080/00397911.2013.827208]
(e) Kaur, N. Greener and expeditious synthesis of fused six-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45, 1493-1519.
[http://dx.doi.org/10.1080/00397911.2013.828236]
(f) Kaur, N. Applications of microwaves in the synthesis of polycyclic six membered N,N-heterocycles. Synth. Commun., 2015, 45, 1599-1631.
[http://dx.doi.org/10.1080/00397911.2013.828755]
(g) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: applications of microwaves. Synth. Commun., 2015, 45, 1711-1742.
[http://dx.doi.org/10.1080/00397911.2013.828756]
(h) Kaur, N. Palladium acetate and phosphine assisted synthesis of five-membered N-heterocycles. Synth. Commun., 2019, 49, 483-514.
[http://dx.doi.org/10.1080/00397911.2018.1536213]
(i)Kaur, N. Application of silver-promoted reactions in the synthesis of five-membered O-heterocycles. Synth. Commun., 2019, 49, 743-789.
[http://dx.doi.org/10.1080/00397911.2019.1570525]
(j)Kaur, N. Synthesis of seven and higher-membered heterocycles using ruthenium catalysts. Synth. Commun., 2019, 49, 617-661.
[http://dx.doi.org/10.1080/00397911.2018.1555711]
[9]
(a) Patil, N.T.; Yamamoto, Y. Coinage metal-assisted synthesis of heterocycles. Chem. Rev., 2008, 108(8), 3395-3442.
[http://dx.doi.org/10.1021/cr050041j] [PMID: 18611054 ]
(b) Kaur, N. Ultrasound assisted synthesis of six-membered N-heterocycles. Mini Rev. Org. Chem., 2018, 15, 520-536.
[http://dx.doi.org/10.2174/1570193x15666180221152535 ]
(c) Kaur, N. Synthesis of five-membered heterocycles containing nitrogen heteroatom under ultrasonic irradiation. Mini Rev. Org. Chem., 2019, 16, 481-503.
[http://dx.doi.org/10.2174/1570193X15666180709144028]
(d) Kaur, N. Ionic liquid promoted eco-friendly and efficient synthesis of six-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15, 1124-1146.
[http://dx.doi.org/10.2174/1570179415666180903102542]
(e) Kaur, N. Metal and non-metal catalysts in the synthesis of five-membered S-heterocycles. Curr. Org. Synth., 2019, 16, 258-275.
[http://dx.doi.org/10.2174/1570179416666181207144430]
(f) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Ahlawat, N.; Grewal, P. Ionic liquids in the synthesis of five-membered N,N-, N,N,N- and N,N,N,N-heterocycles. Curr. Org. Chem., 2019, 23, 1214-1238.
[http://dx.doi.org/10.2174/1385272823666190717101741]
[10]
(a) Kaur, N. Role of microwaves in the synthesis of fused five membered heterocycles with three N-heteroatoms. Synth. Commun., 2015, 45, 403-431.
[http://dx.doi.org/10.1080/00397911.2013.824981]
(b) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45, 539-568.
[http://dx.doi.org/10.1080/00397911.2013.824983]
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered N-heterocycles. Synth. Commun., 2014, 44, 2577-2614.
[http://dx.doi.org/10.1080/00397911.2013.783922]
(d) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44, 2615-2644.
[http://dx.doi.org/10.1080/00397911.2013.792354]
(e) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered O-heterocycles. Synth. Commun., 2014, 44, 2739-2755.
[http://dx.doi.org/10.1080/00397911.2013.796382]
[11]
(a) Alberico, D.; Scott, M.E.; Lautens, M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev., 2007, 107(1), 174-238.
[http://dx.doi.org/10.1021/cr0509760] [PMID: 17212475]
(b) Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4, 122-154.
[http://dx.doi.org/10.2174/2213337204666171103142349]
(c) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Photochemical reactions in five and six-membered polyheterocycles synthesis. Synth. Commun., 2019, 49, 2281-2318.
[http://dx.doi.org/10.1080/00397911.2019.1622732]
(d) Kaur, N. Cobalt-catalyzed C-N, C-O, C-S bond formation: synthesis of heterocycles. J. Iran. Chem. Soc., 2019, 16, 2525-2553.
[http://dx.doi.org/10.1007/s13738-019-01731-1]
[12]
Dick, A.R.; Sanford, M.S. Transition metal catalyzed oxidative functionalization of carbon-hydrogen bonds. Tetrahedron, 2006, 62, 2439-2463.
[http://dx.doi.org/10.1016/j.tet.2005.11.027]
[13]
(a) Kaur, N. Palladium catalysts: synthesis of five-membered N-heterocycles fused with other heterocycles. Catal. Rev., 2015, 57, 1-78.
[http://dx.doi.org/10.1080/01614940.2014.976118]
(b) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O,O-heterocycles. Synth. Commun., 2014, 44, 3082-3111.
[http://dx.doi.org/10.1080/00397911.2013.796384]
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O-heterocycles. Synth. Commun., 2014, 44, 3047-3081.
[http://dx.doi.org/10.1080/00397911.2013.796383]
(d) Nakamura, I.; Yamamoto, Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev., 2004, 104(5), 2127-2198.
[http://dx.doi.org/10.1021/cr020095i] [PMID: 15137788]
(e) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Application of titanium catalysts for the syntheses of heterocycles. Synth. Commun., 2019, 49, 1847-1894.
[http://dx.doi.org/10.1080/00397911.2019.1606922]
(f) Kaur, N. Ionic liquid: an efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles. Synth. Commun., 2019, 49, 1679-1707.
[http://dx.doi.org/10.1080/00397911.2019.1568149]
(g) Kaur, N. Multiple nitrogen-containing heterocycles: metal and non-metal assisted synthesis. Synth. Commun., 2019, 49, 1633-1658.
[http://dx.doi.org/10.1080/00397911.2018.1542497]
(h) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Nickel-catalyzed synthesis of five-membered heterocycles. Synth. Commun., 2019, 49, 1543-1577.
[http://dx.doi.org/10.1080/00397911.2019.1594306]
(i)Kaur, N. Gold and silver assisted synthesis of five-membered oxygen and nitrogen containing heterocycles. Synth. Commun., 2019, 49, 1459-1485.
[http://dx.doi.org/10.1080/00397911.2019.1575423]
(j)Kaur, N. Synthesis of six- and seven-membered and larger heterocylces using Au and Ag catalysts. Inorganic Nano-Metal Chem., 2018, 48, 541-568.
[http://dx.doi.org/10.1080/24701556.2019.1567544]
[14]
Zeni, G.; Larock, R.C. Synthesis of heterocycles via palladium-catalyzed oxidative addition. Chem. Rev., 2006, 106(11), 4644-4680.
[http://dx.doi.org/10.1021/cr0683966] [PMID: 17091931]
[15]
Jiménez-González, L.; García-Muñoz, S.; Alvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Silver-catalyzed asymmetric synthesis of 2,3-dihydrobenzofurans: a new chiral synthesis of pterocarpans. Chemistry, 2006, 12(34), 8762-8769.
[http://dx.doi.org/10.1002/chem.200600332] [PMID: 16953512]
[16]
Li, Z.; He, C. Recent advances in silver-catalyzed nitrene, carbene, and silylene-transfer reactions. Eur. J. Org. Chem., 2006, 19, 4313-4322.
[http://dx.doi.org/10.1002/ejoc.200500602]
[17]
Babu, J.L.; Khare, A.; Vankar, Y.D. Bi(OTf)3 and SiO2-Bi(OTf)3 as effective catalysts for the Ferrier rearrangement. Molecules, 2005, 10(8), 884-892.
[http://dx.doi.org/10.3390/10080884] [PMID: 18007357]
[18]
Salvador, J.A.R.; Pinto, R.M.A.; Silvestreb, S.M. Recent advances of bismuth(III) salts in organic chemistry: Application to the synthesis of heterocycles of pharmaceutical interest. Curr. Org. Synth., 2009, 6, 426-470.
[http://dx.doi.org/10.2174/157017909789108701]
[19]
Bellina, F.; Anselmi, C.; Martina, F.; Rossi, R. Mucochloric acid: a useful synthon for the selective synthesis of 4-aryl-3-chloro-2(5H)-furanones, (Z)-4-aryl-5-[1-(aryl)methylidene]-3-chloro-2(5H)-furanones and 3,4-diaryl-2(5H)-furanones. Eur. J. Org. Chem., 2003, 2290-2302.
[http://dx.doi.org/10.1002/ejoc.200300097]
[20]
Saleem, M.; Kim, H.J.; Ali, M.S.; Lee, Y.S. An update on bioactive plant lignans. Nat. Prod. Rep., 2005, 22(6), 696-716.
[http://dx.doi.org/10.1039/b514045p] [PMID: 16311631]
[21]
Konaklieva, M.I.; Plotkin, B.J. Lactones: generic inhibitors of enzymes? Mini Rev. Med. Chem., 2005, 5(1), 73-95.
[http://dx.doi.org/10.2174/1389557053402828] [PMID: 15638793]
[22]
Wada, M.; Fukuma, T.; Morioka, M.; Takahashi, T.; Miyoshi, N. A novel aqueous Barbier-Grignard-type allylation of aldehydes in a Mg/BiCl3 bimetal system. Tetrahedron Lett., 1997, 38, 8045-8048.
[http://dx.doi.org/10.1016/S0040-4039(97)10105-8]
[23]
Wada, M.; Honna, M.; Kuramoto, Y.; Miyoshi, N. A Grignard type addition of allyl unit to carbonyl compounds containing a carboxyl group by using BiCl3-Zn(0)-allyl bromide. Bull. Chem. Soc. Jpn., 1997, 70, 2265-2267.
[http://dx.doi.org/10.1246/bcsj.70.2265]
[24]
Le Boisselier, V.; Postel, M.; Dunach, E. BiBr3-catalysed formation of cyclic carbonates from epoxides and DMF: a new oxidation reaction with molecular oxygen. Chem. Commun. (Camb.), 1997, 1, 95-96.
[http://dx.doi.org/10.1039/a606592i]
[25]
(a) Hou, X.L.; Cheung, H.Y.; Hon, T.Y.; Kwan, P.L.; Lo, T.H.; Tong, S.Y.; Wong, H.N.C. Regioselective synthesis of substituted furans. Tetrahedron, 1998, 54, 1955-2020.
[http://dx.doi.org/10.1016/S0040-4020(97)10303-9]
(b) Suhre, M.H.; Reif, M.; Kirsch, S.F. Gold(I)-catalyzed synthesis of highly substituted furans. Org. Lett., 2005, 7(18), 3925-3927.
[http://dx.doi.org/10.1021/ol0514101] [PMID: 16119933]
(c) Duc, D.X. Recent progress in the synthesis of furan. Mini Rev. Org. Chem., 2019, 16, 422-452.
[http://dx.doi.org/10.2174/1570193X15666180608084557]
[26]
Liu, Y.; Zhang, S.; Abreu, P.J.M. Heterocyclic terpenes: linear furano- and pyrroloterpenoids. Nat. Prod. Rep., 2006, 23(4), 630-651.
[http://dx.doi.org/10.1039/b604586c] [PMID: 16874393]
[27]
Williams, D.A.; Lemke, T.L. Foye’s Principles of Medicinal Chemistry, 5th ed; Lippincott Williams & Wilkins: Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo, 2002.
[28]
Yadav, J.S.; Reddy, B.V.S.; Eeshwaraiah, B.; Gupta, M.K. Bi(OTf)3/[bmim]BF4 as novel and reusable catalytic system for the synthesis of furan, pyrrole and thiophene derivatives. Tetrahedron Lett., 2004, 45, 5873-5876.
[http://dx.doi.org/10.1016/j.tetlet.2004.05.152]
[29]
Miller, L.L.; Christopfel, W.C. Synthesis of a soluble nonacenetriquinone via a bisisobenzofuran. J. Org. Chem., 1986, 51, 4169-4175.
[http://dx.doi.org/10.1021/jo00352a009]
[30]
(a) Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108(6), 2015-2050.
[http://dx.doi.org/10.1021/cr078399y] [PMID: 18543878]
(b)Wu, Y.; Huang, Z.; Luo, Y.; Liu, D.; Deng, Y.; Yi, H.; Lee, J-F.; Pao, C-W.; Chen, J-L.; Lei, A. X-ray absorption and electron paramagnetic resonance guided discovery of the Cu-Catalyzed synthesis of multiaryl-substituted furans from aryl styrene and ketones using DMSO as the oxidant. Org. Lett., 2017, 19(9), 2330-2333.
[http://dx.doi.org/10.1021/acs.orglett.7b00865] [PMID: 28421769]
(c)Esteves, C.H.A.; Koyioni, M.; Christensen, K.E.; Smith, P.D.; Donohoe, T.J. OBO-protected pyruvates as reagents for the synthesis of functionalized heteroaromatic compounds. Org. Lett., 2018, 20, 4048-4051.
[http://dx.doi.org/10.1021/acs.orglett.8b01614] [PMID: 29906124]
[31]
Sun, L-H.; Shen, L-T.; Ye, S.J. Highly diastereo- and enantioselective NHC-catalyzed [3+2] annulation of enals and isatins. Chem. Soc. Chem. Commun., 2011, 47, 10136-10138.
[http://dx.doi.org/10.1039/c1cc13860j]
[32]
(a) Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112(11), 6104-6155.
[http://dx.doi.org/10.1021/cr300135y] [PMID: 22950860]
(b) Zhang, X.; Dai, W.; Wu, W.; Cao, S. Copper-Catalyzed Coupling Cyclization of gem-Difluoroalkenes with Activated Methylene Carbonyl Compounds: Facile Domino Access to Polysubstituted Furans. Org. Lett., 2015, 17(11), 2708-2711.
[http://dx.doi.org/10.1021/acs.orglett.5b01123] [PMID: 25988867]
(c)Huang, Y.; Li, X.; Yu, Y.; Zhu, C.; Wu, W.; Jiang, H. Copper-Mediated [3 + 2] Oxidative Cyclization Reaction of N-Tosylhydrazones and β-Ketoesters: Synthesis of 2,3,5-Trisubstituted Furans. J. Org. Chem., 2016, 81(12), 5014-5020.
[http://dx.doi.org/10.1021/acs.joc.6b00568] [PMID: 27227374]
[33]
(a) Egami, H.; Shimizu, H.; Katsuki, T. Aerobic oxidation of primary alcohols in the presence of activated secondary alcohols. Tetrahedron Lett., 2005, 46, 783-786.
[http://dx.doi.org/10.1016/j.tetlet.2004.12.010]
(b)Parmeggiani, C.; Cardona, F. Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem., 2012, 14, 547-564.
[http://dx.doi.org/10.1039/c2gc16344f]
[34]
(a) Qi, X.; Watanabe, M.; Aida, T.M.; Smith, R.L. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem., 2008, 10, 799-805.
[http://dx.doi.org/10.1039/b801641k]
(b)Das, A.; Kulkarni, A.; Torok, B. Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches. Green Chem., 2012, 14, 17-34.
[http://dx.doi.org/10.1039/C1GC15837F]
[35]
(a)Alper, H.; Arzoumanian, H.; Petrignani, J-F.; Maldonado, M.S. Phase transfer catalysed double carbonylation of styrene oxides. J. Chem. Soc. Chem. Commun., 1985, (6), 340-341.
[http://dx.doi.org/10.1039/c39850000340]
(b) Dey, A.; Ali, M.A.; Jana, S.; Hajra, A. Copper-catalyzed regioselective synthesis of multisubstituted furans by coupling between ketones and aromatic olefins. J. Org. Chem., 2017, 82(9), 4812-4818.
[http://dx.doi.org/10.1021/acs.joc.7b00476] [PMID: 28402645]
(c) Ghosh, M.; Mishra, S.; Hajra, A. Regioselective synthesis of multisubstituted furans via copper-mediated coupling between ketones and β-nitrostyrenes. J. Org. Chem., 2015, 80(10), 5364-5368.
[http://dx.doi.org/10.1021/acs.joc.5b00704] [PMID: 25912976]
[36]
Khumtaveeporn, K.; Alper, H. Transition metal mediated carbonylative ring expansion of heterocyclic compounds. Acc. Chem. Res., 1995, 28, 414-422.
[http://dx.doi.org/10.1021/ar00058a003]
[37]
Shimizu, I.; Maruyama, T.; Makuta, T.; Yamamoto, A. Palladium-catalyzed reactions of alkenyloxiranes with carbon monoxide. Tetrahedron Lett., 1993, 34, 2135-2138.
[http://dx.doi.org/10.1016/S0040-4039(00)60364-7]
[38]
Kamiya, Y.; Kawato, K.; Ohta, H. The reaction of small ring compound with carbon monoxide the carbonylation of oxirane. Chem. Lett., 1980, 9, 1549-1552.
[http://dx.doi.org/10.1246/cl.1980.1549]
[39]
Kim, J.M.; Lee, K.Y.; Lee, S.; Kim, J.N. Ring-closing metathesis toward the synthesis of 2,5-dihydrofuran and 2,5-dihydropyrrole skeletons from Baylis-Hillman adducts. Tetrahedron Lett., 2004, 45, 2805-2808.
[40]
Wang, M.D.; Calet, S.; Alper, H. Regiospecific carbonylation and ring expansion of thietanes and oxetanes catalyzed by cobalt and/or ruthenium carbonyls. J. Org. Chem., 1989, 54, 20-21.
[http://dx.doi.org/10.1021/jo00262a010]
[41]
(a) Reynolds, N.T.; Rovis, T. The effect of pre-existing stereocenters in the intramolecular asymmetric Stetter reaction. Tetrahedron, 2005, 61, 6368-6378.
[http://dx.doi.org/10.1016/j.tet.2005.03.121]
(b) Seiller, B.; Bruneau, C.; Dixneuf, P.H. Synthesis of furans by cyclization of 2-en-4-yn-1-ols in the presence of ruthenium and palladium catalysts. Tetrahedron, 1995, 51, 13089-13102.
(c) Qing, F-L.; Gao, W-Z.; Ying, J. Synthesis of 3-trifluoroethylfurans by palladium-catalyzed cyclization-isomerization of (Z)-2-alkynyl-3-trifluoromethyl allylic alcohols. J. Org. Chem., 2000, 65(7), 2003-2006.
[http://dx.doi.org/10.1021/jo991463u] [PMID: 10774019]
(d) Kirsch, G.; Hesse, S.; Comel, A. Synthesis of five- and six-membered heterocycles through palladium-catalyzed reactions. Curr. Org. Synth., 2004, 1, 47-63.
[http://dx.doi.org/10.2174/1570179043485475]
(e) Cheng, C.; Liu, S.; Zhu, G. Palladium-catalyzed cycloisomerization and aerobic oxidative cycloisomerization of homoallenyl amides: a facile and divergent approach to 2-aminofurans. Org. Lett., 2015, 17(6), 1581-1584.
[http://dx.doi.org/10.1021/acs.orglett.5b00464] [PMID: 25763599]
(f) Cheng, C.; Liu, S.; Zhu, G. Divergent synthesis of 2-aminofurans via palladium-catalyzed acetoxylative, alkoxylative, and hydroxylative cycloisomerization of homoallenyl amides. J. Org. Chem., 2015, 80(15), 7604-7612.
[http://dx.doi.org/10.1021/acs.joc.5b01182] [PMID: 26147649]
(g) Lauer, M.G.; Henderson, W.H.; Awad, A.; Stambuli, J.P. Palladium-catalyzed reactions of enol ethers: access to enals, furans, and dihydrofurans. Org. Lett., 2012, 14(23), 6000-6003.
[http://dx.doi.org/10.1021/ol3028994] [PMID: 23163699]
(h) Li, J.; Zhang, J.; Li, M.; Zhang, C.; Yuan, Y.; Liu, R. Naphtho[2,3-b]furan-4,9-dione synthesis via palladium-catalyzed reverse hydrogenolysis. Chem. Commun. (Camb.), 2019, 55(16), 2348-2351.
[http://dx.doi.org/10.1039/C8CC09369E] [PMID: 30724284]
(i)Zhang, X.; Liu, J.; Yang, Y.; Wang, F.; Jiang, H.; Yin, B. Selective Pd-catalyzed α- and β-arylations of the furan rings of (ortho-bromophenyl)furan-2-yl-methanones: C(CO)-C bond cleavage with a furan ring as a leaving group and synthesis of furan-derived fluorenones. Org. Chem. Front., 2016, 3, 1105-1110.
[http://dx.doi.org/10.1039/C6QO00277C]
(j)Prakash, P.; Jijy, E.; Preethanuj, P.; Pihko, P.M.; Sarath Chand, S.; Radhakrishnan, K.V. Palladium-catalyzed skeletal rearrangement of spirotricyclic olefins: a facile one-pot strategy for the synthesis of a novel motif with cyclopentene fused to benzofuran and pyrazolidine. Chemistry, 2013, 19(32), 10473-10477.
[http://dx.doi.org/10.1002/chem.201301475] [PMID: 23788444]
(k)Chen, J.; Li, J.; Su, W. Palladium-catalyzed tandem reaction of 2-hydroxyarylacetonitriles with sodium sulfinates: one-pot synthesis of 2-arylbenzofurans. Org. Biomol. Chem., 2014, 12(24), 4078-4083.
[http://dx.doi.org/10.1039/C4OB00575A] [PMID: 24824918]
(l)Yoshida, M.; Ohno, S.; Namba, K. Synthesis of substituted tetrahydrocyclobuta[b]benzofurans by palladium-catalyzed substitution/[2+2] cycloaddition of propargylic carbonates with 2-vinylphenols. Angew. Chem. Int. Ed. Engl., 2013, 52(51), 13597-13600.
[http://dx.doi.org/10.1002/anie.201306903] [PMID: 24174159]
[42]
Chatani, N.; Oshita, M.; Tobisu, M.; Ishii, Y.; Murai, S.A. GaCl3-catalyzed [4+1] cycloaddition of alpha,beta-unsaturated carbonyl compounds and isocyanides leading to unsaturated gamma-lactone derivatives. J. Am. Chem. Soc., 2003, 125(26), 7812-7813.
[http://dx.doi.org/10.1021/ja035014u] [PMID: 12822994]
[43]
(a) Liu, R.; Zhang, J. Tetrasubstituted furans by Pd(II)-catalyzed three-component domino reactions of 2-(1-alkynyl)-2-alken-1-ones with nucleophiles and vinyl ketones or acrolein. Chemistry, 2009, 15(37), 9303-9306.
[http://dx.doi.org/10.1002/chem.200901386] [PMID: 19655351]
(b) Muthyala, M.K.; Rao, V.K.; Kumar, A. Cu(OTf)2 catalyzed synthesis of bis(5-methyl-2-furyl) methanes by condensation of 2-methylfuran with carbonyl compounds under solvent free conditions. Chin. J. Chem., 2011, 29, 1483-1488.
[http://dx.doi.org/10.1002/cjoc.201180269]
[44]
Xiao, Y.; Zhang, J. Tetrasubstituted furans by a PdII-catalyzed three-component Michael addition/cyclization/cross-coupling reaction. Angew. Chem. Int. Ed., 2008, 47, 1903-1906.
[http://dx.doi.org/10.1002/anie.200704531]
[45]
Kim, Y.J.; Varma, R.S. Tetrahaloindate(III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies. J. Org. Chem., 2005, 70(20), 7882-7891.
[http://dx.doi.org/10.1021/jo050699x] [PMID: 16277307]
[46]
(a) Polshettiwar, V.; Varma, R.S. Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation. Pure Appl. Chem., 2008, 80, 777-790.
[http://dx.doi.org/10.1351/pac200880040777]
(b) Sun, G.; An, J.; Hu, H.; Li, C.; Zuo, S.; Xia, H. Green catalytic synthesis of 5-methylfurfural by selective hydrogenolysis of 5-hydroxymethylfurfural over size-controlled Pd nanoparticle catalysts. Catal. Sci. Technol., 2019, 9, 1238-1244.
[http://dx.doi.org/10.1039/C9CY00039A]
[47]
Feling, R.H.; Buchanan, G.O.; Mincer, T.J.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew. Chem.2003, 115, 369-371. Angew. Chem. Int. Ed., 2003, 42, 355-357.
[http://dx.doi.org/10.1002/anie.200390115]
[48]
Corey, E.J.; Saravanan, P.; Reddy, L.R. A simple stereocontrolled synthesis of salinosporamide A. J. Am. Chem. Soc., 2004, 126, 6230-6231.
[http://dx.doi.org/10.1021/ja048613p] [PMID: 15149210]
[49]
Reddy, L.R.; Fournier, J-F.; Reddy, B.V.S.; Corey, E.J. New synthetic route for the enantioselective total synthesis of salinosporamide A and biologically active analogues. Org. Lett., 2005, 7(13), 2699-2701.
[http://dx.doi.org/10.1021/ol0508734] [PMID: 15957925]
[50]
Danishefsky, S.J.; Endo, A. Total synthesis of salinosporamide A. J. Am. Chem. Soc., 2005, 127, 8298-8299.
[http://dx.doi.org/10.1021/ja0522783] [PMID: 15941259]
[51]
(a) Ling, T.; Macherla, V.R.; Manam, R.R.; McArthur, K.A.; Potts, B.C.M. Enantioselective total synthesis of (-)-Salinosporamide A (NPI-0052). Org. Lett., 2007, 9(12), 2289-2292.
[http://dx.doi.org/10.1021/ol0706051] [PMID: 17497868]
(b) Wang, X.; Liu, F.; Yun, J.; Feng, Z.; Jiang, J.; Yang, Y.; Zhang, P. Iron-catalyzed synthesis of the hexahydrocyclopenta[c]furan core and concise total synthesis of polyflavanostilbene B. Angew. Chem. Int. Ed. Engl., 2018, 57, 10127-10131.
[http://dx.doi.org/10.1002/anie.201804329] [PMID: 29962047]
(c) Ji, G.; Duan, Y.; Zhang, S.; Yang, Y. Synthesis of benzofurans from terminal alkynes and iodophenols catalyzed by recyclable palladium nanoparticles supported on N,O-dual doped hierarchical porous carbon under copper- and ligand-free conditions. Catal. Today, 2019, 330, 101-108.
[http://dx.doi.org/10.1016/j.cattod.2018.04.036]
[52]
Mulholland, N.P.; Pattenden, G.; Walters, I.A.S. A concise total synthesis of salinosporamide A. Org. Biomol. Chem., 2006, 4(15), 2845-2846.
[http://dx.doi.org/10.1039/b607109k] [PMID: 16855730]
[53]
Ma, G.; Nguyen, H.; Romo, D. Concise total synthesis of (+/-)-salinosporamide A, (+/-)-cinnabaramide A, and derivatives via a bis-cyclization process: implications for a biosynthetic pathway? Org. Lett., 2007, 9(11), 2143-2146.
[http://dx.doi.org/10.1021/ol070616u] [PMID: 17477539]
[54]
Caubert, V.; Masse, J.; Retailleau, P.; Langlois, N. Stereoselective formal synthesis of the potent proteasome inhibitor: salinosporamide A. Tetrahedron Lett., 2007, 48, 381-384.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.087]
[55]
Shibasaki, M.; Kanai, M.; Fukuda, N. Total synthesis of lactacystin and salinosporamide A. Chem. Asian J., 2007, 2(1), 20-38.
[http://dx.doi.org/10.1002/asia.200600310] [PMID: 17441136]
[56]
(a) Ooi, H.; Ishibashi, N.; Iwabuchi, Y.; Ishihara, J.; Hatakeyama, S. A concise route to (+)-lactacystin. J. Org. Chem., 2004, 69(22), 7765-7768.
[http://dx.doi.org/10.1021/jo048817o] [PMID: 15498013 ]
(b) Hatakeyama, S. Indium-catalyzed Conia-ene reaction for alkaloid synthesis. Pure Appl. Chem., 2009, 81, 217-226.
[http://dx.doi.org/10.1351/PAC-CON-08-07-14]
[57]
Onyango, E.O.; Tsurumoto, J.; Imai, N.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Total synthesis of neooxazolomycin. Angew. Chem.2007, 119, 6823-6825. Angew. Chem. Int. Ed., 2007, 46, 6703-6705.
[http://dx.doi.org/10.1002/anie.200702229]
[58]
(a) Conia, J.M.; Percheg, P.L. The thermal cyclisation of unsaturated carbonyl compounds. Synthesis, 1975, 1, 1-19.
[http://dx.doi.org/10.1055/s-1975-23652 ]
(b) Huang, W.; Xu, J.; Liu, C.; Chen, Z.; Gu, Y. Lewis Acid-catalyzed synthesis of benzofurans and 4,5,6,7-tetrahydrobenzofurans from acrolein dimer and 1,3-dicarbonyl compounds. J. Org. Chem., 2019, 84(5), 2941-2950.
[http://dx.doi.org/10.1021/acs.joc.9b00270] [PMID: 30726672 ]
(c) Hummel, J.R.; Ellman, J.A. Cobalt(III)-catalyzed synthesis of indazoles and furans by C-H bond functionalization/addition/cyclization cascades. J. Am. Chem. Soc., 2015, 137(1), 490-498.
[http://dx.doi.org/10.1021/ja5116452] [PMID: 25494296]
[59]
Kennedy-Smith, J.J.; Staben, S.T.; Toste, F.D. Gold(I)-catalyzed Conia-ene reaction of beta-ketoesters with alkynes. J. Am. Chem. Soc., 2004, 126(14), 4526-4527.
[http://dx.doi.org/10.1021/ja049487s] [PMID: 15070364]
[60]
Staben, S.T.; Kennedy-Smith, J.J.; Toste, F.D. Gold(I)-catalyzed 5-endo-dig carbocyclization of acetylenic dicarbonyl compounds. Angew. Chem., 2004, 116, 5464-5466.
[http://dx.doi.org/10.1002/ange.200460844]
[61]
Gao, Q.; Zheng, B-F.; Li, J.H.; Yang, D. Ni(II)-catalyzed Conia-ene reaction of 1,3-dicarbonyl compounds with alkynes. Org. Lett., 2005, 7(11), 2185-2188.
[http://dx.doi.org/10.1021/ol050532q] [PMID: 15901165]
[62]
(a) Ochida, A.; Ito, H.; Sawamura, M. Using triethynylphosphine ligands bearing bulky end caps to create a holey catalytic environment: application to gold(I)-catalyzed alkyne cyclizations. J. Am. Chem. Soc., 2006, 128(51), 16486-16487.
[http://dx.doi.org/10.1021/ja066800c] [PMID: 17177382 ]
(b) Fu, R.; Li, Z. Transition-metal-free cleavage of C-C triple bonds in aromatic alkynes with S8 and amides leading to aryl thioamides. Org. Lett., 2018, 20, 2228-2231.
[http://dx.doi.org/10.1021/acs.orglett.8b00573] [PMID: 29600861]
(c) Alonso-Marañón, L.; Martínez, M.M.; Sarandeses, L.A.; Gómez-Bengoa, E.; Pérez Sestelo, J. Indium(III)-catalyzed synthesis of benzo[ b]furans by intramolecular hydroalkoxylation of ortho-alkynylphenols: scope and mechanistic insights. J. Org. Chem., 2018, 83(15), 7970-7980.
[http://dx.doi.org/10.1021/acs.joc.8b00829] [PMID: 29890829]
[63]
Corkey, B.K.; Toste, F.D. Palladium-catalyzed enantioselective cyclization of silyloxy-1,6-enynes. J. Am. Chem. Soc., 2007, 129(10), 2764-2765.
[http://dx.doi.org/10.1021/ja068723r] [PMID: 17305344]
[64]
Endo, K.; Hatakeyama, T.; Nakamura, M.; Nakamura, E. Indium-catalyzed 2-alkenylation of 1,3-dicarbonyl compounds with unactivated alkynes. J. Am. Chem. Soc., 2007, 129(16), 5264-5271.
[http://dx.doi.org/10.1021/ja0702014] [PMID: 17388598]
[65]
(a) Marat, X.; Monteiro, N.; Balme, G. Sequential Michael addition-carbocyclization reactions: a palladium-mediated approach to highly functionalized 3-methylenetetrahydrofurans. Synlett, 1997, 7, 845-847.
[http://dx.doi.org/10.1055/s-1997-5755 ]
(b) Zeng, W.; Wu, W.; Jiang, H.; Huang, L.; Sun, Y.; Chen, Z.; Li, X. Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes. Chem. Commun. (Camb.), 2013, 49(59), 6611-6613.
[http://dx.doi.org/10.1039/c3cc42326c] [PMID: 23772445]
[66]
Clique, B.; Monteiro, N.; Balme, G. A one pot synthesis of various pyrrolidines via a tandem Michael addition-transition metal-catalysed cyclisation reaction. Tetrahedron Lett., 1999, 40, 1301-1304.
[http://dx.doi.org/10.1016/S0040-4039(98)02631-8]
[67]
Nakamura, M.; Liang, C.; Nakamura, E. Zn(II)/amine-catalyzed coupling reaction of alkylidenemalonates with propargyl alcohol: a one-pot synthesis of methylenetetrahydrofurans. Org. Lett., 2004, 6(12), 2015-2017.
[http://dx.doi.org/10.1021/ol0493554] [PMID: 15176807]
[68]
Morikawa, S.; Yamazaki, S.; Furusaki, Y.; Amano, N.; Zenke, K.; Kakiuchi, K. Zinc- and indium-promoted conjugate addition-cyclization reactions of ethenetricarboxylates with propargylamines and alcohol: novel methylenepyrrolidine and methylenetetrahydrofuran syntheses. J. Org. Chem., 2006, 71(9), 3540-3544.
[http://dx.doi.org/10.1021/jo0602118] [PMID: 16626138]
[69]
(a) Minnihan, E.C.; Colletti, S.L.; Toste, F.D.; Shen, H.C. Gold(I)-catalyzed regioselective cyclizations of silyl ketene amides and carbamates with alkynes. J. Org. Chem., 2007, 72(16), 6287-6289.
[http://dx.doi.org/10.1021/jo071014r] [PMID: 17625890]
(b) Gouthami, P.; Chavan, L.N.; Chegondi, R.; Chandrasekhar, S. Syntheses of 2-aroyl benzofurans through cascade annulation on arynes. J. Org. Chem., 2018, 83(6), 3325-3332.
[http://dx.doi.org/10.1021/acs.joc.8b00360] [PMID: 29474090 ]
(c) Yoon, H.; Lee, Y. Copper-catalyzed electrophilic amination of heteroarenes via C-H alumination. J. Org. Chem., 2015, 80(20), 10244-10251.
[http://dx.doi.org/10.1021/acs.joc.5b01863] [PMID: 26421609]
[70]
Zhou, C-Y.; Che, C-M. Highly Efficient Au(I)-catalyzed intramolecular addition of beta-ketoamide to unactivated alkenes. J. Am. Chem. Soc., 2007, 129(18), 5828-5829.
[http://dx.doi.org/10.1021/ja070027j] [PMID: 17439216]
[71]
Takahashi, K.; Midori, M.; Kawano, K.; Ishihara, J.; Hatakeyama, S. Entry to heterocycles based on indium-catalyzed conia-ene reactions: asymmetric synthesis of (-)-salinosporamide A. Angew. Chem. Int. Ed., 2008, 47, 6244-6246.
[http://dx.doi.org/10.1002/anie.200801967]
[72]
Tsuhi, H.; Yamagata, K-I.; Ueda, Y.; Nakamura, E. Indium-catalyzed synthesis of furans and pyrroles via cyclization of α-propargyl-β-keto esters. Synlett, 2011, 7, 1015-1017.
[73]
Hilt, G.; Bolze, P.; Kieltsch, I. An iron-catalysed chemo- and regioselective tetrahydrofuran synthesis. Chem. Commun., 2005, 15, 1996-1998.
[74]
(a) Díez-González, S.; Marion, N.; Nolan, S.P. N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev., 2009, 109(8), 3612-3676.
[http://dx.doi.org/10.1021/cr900074m] [PMID: 19588961]
(b) Yu, J-T.; Shi, B.; Peng, H.; Sun, S.; Chu, H.; Jiang, Y.; Cheng, J. Diethylene glycol serving as ethyne equivalent: A sustainable approach toward 2,3-disubstituted furan. Org. Lett., 2015, 17(15), 3643-3645.
[http://dx.doi.org/10.1021/acs.orglett.5b01521] [PMID: 26167867 ]
(c) Darabi, H.R.; Aghapoor, K.; Tajbakhsh, M. Extension of the Willgerodt-Kindler reaction: protected carbonyl compounds as efficient substrates for this reaction. Tetrahedron Lett., 2004, 45, 4167-4169.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.130]
[75]
Sigman, M.S.; Kerr, C.E.; Eaton, B.E. Catalytic iron-mediated carbon-oxygen and carbon-carbon bond formation in [4 + 1] assembly of alkylidenebutenolides. J. Am. Chem. Soc., 1993, 115, 7545-7546.
[http://dx.doi.org/10.1021/ja00069a081]
[76]
Sigman, M.S.; Eaton, B.E.; Heise, J.D.; Kubiak, C.P. Low-temperature study of the iron-mediated [4 + 1] cyclization of allenyl ketones with carbon monoxide. Organometallics, 1996, 15, 2829-2832.
[http://dx.doi.org/10.1021/om9601716]
[77]
(a) Sigman, M.S.; Eaton, B.E. The first iron-mediated catalytic carbon-nitrogen bond formation: [4 + 1] cycloaddition of allenyl imines and carbon monoxide. J. Org. Chem., 1994, 59, 7488-7491.
[http://dx.doi.org/ 10.1021/jo00103a050]
(b) Lou, J.; Wang, Q.; Wu, K.; Wu, P.; Yu, Z. Iron-catalyzed oxidative C-H functionalization of internal olefins for the synthesis of tetrasubstituted furans. Org. Lett., 2017, 19(12), 3287-3290.
[http://dx.doi.org/10.1021/acs.orglett.7b01431] [PMID: 28569066]
[78]
(a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Iron-catalyzed reactions in organic synthesis. Chem. Rev., 2004, 104(12), 6217-6254.
[http://dx.doi.org/10.1021/cr040664h] [PMID: 15584700 ]
(b) Mandal, S.K.; Chattopadhyay, A.P. Iron-catalyzed synthesis of heterocycles. J. Appl. Chem, 2016, 9, 40-65.
[79]
Murahashi, S-I.; Oda, Y.; Naota, T. Fe2O3-catalyzed Baeyer-Villiger oxidation of ketones with molecular oxygen in the presence of aldehydes. Tetrahedron Lett., 1992, 33, 7557-7560.
[http://dx.doi.org/10.1016/S0040-4039(00)60823-7]
[80]
(a) Takacs, J.M.; Anderson, L.G. Intramolecular formal iron-catalyzed ene reactions: new and highly stereoselective iron-catalyzed carbocyclizations of triene ethers. J. Am. Chem. Soc., 1987, 109, 2200-2202.
[http://dx.doi.org/ 10.1021/ja00241a059]
(b) Sengupta, D.; Radhakrishna, L.; Balakrishna, M.S. Synthesis of indoles and benzofurans using a graphene oxide-grafted aminobisphosphine-PdII complex. ACS Omega, 2018, 3(11), 15018-15023.
[http://dx.doi.org/10.1021/acsomega.8b02120] [PMID: 31458168]
[81]
(a) Takacs, J.M.; Newsome, P.W.; Kuehn, C.; Takusagawa, F. Catalytic iron-mediated ene carbocyclizations: formal [4+4]-ene reactions of triene esters. Tetrahedron, 1990, 46, 5507-5522.
[http://dx.doi.org/ 10.1016/S0040-4020(01)87749-8]
(b) Yang, J.; Shen, G.; Chen, D. Iron-catalyzed synthesis of 2-arylbenzo[b]furans. Synth. Commun., 2012, 43, 837-847.
[http://dx.doi.org/10.1080/00397911.2011.610550]
[82]
Takacs, B.E.; Takacs, J.M. Catalytic iron-mediated ene carbocyclizations of trienes: the stereoselecitve preparation of N-acylpiperidines. Tetrahedron Lett., 1990, 31, 2865-2868.
[http://dx.doi.org/10.1016/0040-4039(90)80168-L]
[83]
Takacs, J.M.; Anderson, L.G.; Madhavan, G.V.B.; Creswell, M.W.; Seely, F.L.; Devroy, W.F. Transition-metal-catalyzed carbon-carbon bond forming reactions: regio- and chemoselective iron(0)-catalyzed diene to olefin cross-coupling reactions. Organometallics, 1986, 5, 2395-2398.
[http://dx.doi.org/10.1021/om00142a044]
[84]
Takacs, J.M.; Anderson, L.G.; Madhavan, G.V.B.; Seely, F.L. Unusual ligand directed regioselectivity in the iron catalyzed cross coupling of allylic ethers to 2-substituted 1,3-dienes. Angew. Chem. Int. Ed. Engl., 1987, 26, 1013-1015.
[http://dx.doi.org/10.1002/anie.198710131]
[85]
Takacs, J.M.; Anderson, L.G.; Newsome, P.W. Asymmetric induction in the formal iron-catalyzed [4 + 4] ene reaction: the highly diastereoselective cross-coupling of 1,3-dienes to chiral cyclic acetals. J. Am. Chem. Soc., 1987, 109, 2542-2544.
[http://dx.doi.org/10.1021/ja00242a065]
[86]
Takacs, J.M.; Anderson, L.G.; Creswell, M.W.; Takacs, B.E. Intramolecular formal iron-catalyzed ene reactions: the stereoselective and regiocontrolled formation of substituted tetrahydropyrans. Tetrahedron Lett., 1987, 28, 5627-5630.
[http://dx.doi.org/10.1016/S0040-4039(00)96797-2]
[87]
Takacs, J.M.; Myoung, Y-C.; Anderson, L.G. Catalytic iron-mediated triene carbocyclizations: stereoselective five-membered ring forming carbocyclizations. J. Org. Chem., 1994, 59, 6928-6942.
[http://dx.doi.org/10.1021/jo00102a016]
[88]
(a) Mikami, K.; Shimizu, M. Asymmetric ene reactions in organic synthesis. Chem. Rev., 1992, 92, 1021-1050.
[http://dx.doi.org/10.1021/cr00013a014 ]
(b) Hosseyni, S.; Su, Y.; Shi, X. Gold catalyzed synthesis of substituted furan by intermolecular cascade reaction of propargyl alcohol and alkyne. Org. Lett., 2015, 17(24), 6010-6013.
[http://dx.doi.org/10.1021/acs.orglett.5b02980] [PMID: 26634310 ]
(c) Mishra, M.; Mohapatra, S.; Mishra, N.P.; Jena, B.K.; Panda, P.; Nayak, S. Recent advances in iron(III) chloride catalyzed synthesis of heterocycles. Tetrahedron Lett., 2019, 60150925
[http://dx.doi.org/10.1016/j.tetlet.2019.07.016]
[89]
Takacs, J.M.; Weidner, J.J.; Takacs, B.E. Catalytic iron-mediated ene carbocyclizations of trienes: Investigations into the stereoselective formation of some bicyclic lactams and amines. Tetrahedron Lett., 1993, 34, 6219-6222.
[http://dx.doi.org/10.1016/S0040-4039(00)73714-2]
[90]
Takacs, J.M.; Weidner, J.J.; Newsome, P.W.; Takacs, B.E.; Chidambaram, R.; Shoemaker, R. Catalytic iron-mediated enediene carbocyclizations: investigations into the stereoselective formation of bicyclic ring systems. J. Org. Chem., 1995, 60, 3473-3486.
[http://dx.doi.org/10.1021/jo00116a039]
[91]
Takacs, J.M.; Myoung, Y-C. Catalytic iron-mediated ene carbocyclizations of trienes: enantioselective syntheses of the iridoid monoterpenes (−)-mitsugashiwalactone and (+)-isoiridomyrmecin. Tetrahedron Lett., 1992, 33, 317-320.
[http://dx.doi.org/10.1016/S0040-4039(00)74120-7]
[92]
Takacs, J.M.; Boito, S.; Myoung, Y-C. A new synthesis of (−)frontalin, the bark beetle pheromone. Curr. Org. Chem., 1998, 2, 233-236.
[93]
Takacs, J.M.; Boito, S. Catalytic iron-mediated enediene carbocyclizations: the enantioselective synthesis of a homologue of the alkaloid (−)-protoemetinol. Tetrahedron Lett., 1995, 36, 2941-2944.
[http://dx.doi.org/10.1016/0040-4039(95)00443-G]
[94]
Takacs, J.M.; Vayalakkada, S.; Mehrman, S.J.; Kingsbury, C.L. Iron-catalyzed enediene carbocyclizations. The total synthesis of (−)-gibboside. Tetrahedron Lett., 2002, 43, 8417-8420.
[http://dx.doi.org/10.1016/S0040-4039(02)01662-3]
[95]
Yadav, J.S.; Reddy, B.V.S.; Pandey, S.K.; Srihari, P.P.; Prarhap, I. Scandium triflate-catalyzed 1,3-dipolar cycloaddition of aziridines with alkenes. Tetrahedron Lett., 2001, 42, 9089-9092.
[http://dx.doi.org/10.1016/S0040-4039(01)02008-1]
[96]
Gonzales, F.; Lesage, S.; Perlin, A.S. Catalysis by mercuric ion of reactions of glycals with water. Carbohydr. Res., 1975, 42, 267-274.
[http://dx.doi.org/10.1016/S0008-6215(00)84269-X]
[97]
(a) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W.W-L. Rare-earth metal triflates in organic synthesis. Chem. Rev., 2002, 102(6), 2227-2302.
[http://dx.doi.org/10.1021/cr010289i] [PMID: 12059268 ]
(b) Kim, H.Y.; Li, J-Y.; Oh, K. Studies on elimination pathways of β-halovinyl ketones leading to allenyl and propargyl ketones and furans under the action of mild bases. J. Org. Chem., 2012, 77(24), 11132-11145.
[http://dx.doi.org/10.1021/jo302253c] [PMID: 23198987 ]
(c) Kommagalla, Y.; Srinivas, K.; Ramana, C.V. Ru-catalyzed branched versus linear selective C3-alkylation of 2-aroylbenzofurans with acrylates via C-H activation. Chemistry, 2014, 20(26), 7884-7889.
[http://dx.doi.org/10.1002/chem.201400401] [PMID: 24838794]
(d) Li, H-S.; Liu, G. Copper/silver-mediated cascade reactions for the construction of 2-sulfonylbenzo[b]furans from trans-2-hydroxycinnamic acids and sodium sulfinates. J. Org. Chem., 2014, 79(2), 509-516.
[http://dx.doi.org/10.1021/jo4024478] [PMID: 24354639]
[98]
Tokiwano, T.; Fujiwara, K.; Murai, A. Biomimetic construction of fused tricyclic ether by cascaded endo-cyclization of the hydroxy triepoxide. Synlett, 2000, 3, 335-338.
[99]
Likhar, P.R.; Kumar, M.P.; Bandyopadhyay, A.K. Ytterbium trifluoromethanesulfonate Yb(OTf)3: an efficient, reusable catalyst for highly selective formation of β-alkoxy alcohols via ring-opening of 1,2-epoxides with alcohols. Synlett, 2001, 6, 836-838.
[http://dx.doi.org/10.1055/s-2001-14909]
[100]
Arceo, A.; Odriozola, J.M.; Garcia, J.M.; Gonzalez, A.; Gil, P. Asymmetric synthesis of (R)-4-hexanolide, the pheromone of Trogoderma glabrum. Tetrahedron Asymmetry, 2003, 14, 1617-1621.
[http://dx.doi.org/10.1016/S0957-4166(03)00327-6]
[101]
(a) Suzuki, K.; Shoji, M.; Kobayashi, E.; Inomata, K. Concise enantiodivergent synthesis of (+)- and (−)-trans-quercus lactones. Tetrahedron Asymmetry, 2001, 12, 2789-2792.
[http://dx.doi.org/10.1016/S0957-4166(01)00500-6 ]
(b) Suzuki, K.; Inomata, K. Enantiodivergent synthesis of γ-substituted butenolides with tertiary and quaternary asymmetric centers. Tetrahedron Lett., 2003, 44, 745-749.
[http://dx.doi.org/ 10.1016/S0040-4039(02)02711-9]
(c) Ooi, X.Y.; Oi, L.E.; Choo, M-Y.; Ong, H.C.; Lee, H.V.; Show, P.L.; Lin, Y-C.; Juan, J.C. Efficient deoxygenation of triglycerides to hydrocarbon-biofuel over mesoporous Al2O3-TiO2 catalyst. Fuel Process. Technol., 2019, 194 106120
[http://dx.doi.org/10.1016/j.fuproc.2019.106120]
[102]
(a) Tan, W.W.; Yoshikai, N. Copper-catalyzed coupling of 2-siloxy-1-alkenes and diazocarbonyl compounds: approach to multisubstituted furans, pyrroles, and thiophenes. J. Org. Chem., 2016, 81(13), 5566-5573.
[http://dx.doi.org/10.1021/acs.joc.6b00904] [PMID: 27259097]
(b) Schmidt, D.; Malakar, C.C.; Beifuss, U. 2,3-Dihalo-1-propenes as building blocks in Cu(I)-catalyzed domino reactions: efficient and selective synthesis of furans. Org. Lett., 2014, 16(18), 4862-4865.
[http://dx.doi.org/10.1021/ol502371j] [PMID: 25192074]
[103]
Chang, J.W.; Jang, D.P.; Uang, B.J.; Liao, F.L.; Wang, S.L. Enantioselective synthesis of α-hydroxy acids employing (1S)-(+)-N,N-diisopropyl-10-camphorsulfonamide as chiral auxiliary. Org. Lett., 1999, 1, 2061-2063.
[http://dx.doi.org/10.1021/ol9910666]
[104]
Jang, D.P.; Chang, J.W.; Uang, B.J. Highly diastereoselective Michael addition of alpha-hydroxy acid derivatives and enantioselective synthesis of (+)-crobarbatic acid. Org. Lett., 2001, 3(7), 983-985.
[http://dx.doi.org/10.1021/ol0069507] [PMID: 11277775]
[105]
Lee, Y.J.; Schrock, R.R.; Hoveyda, A.H. Endo-selective enyne ring-closing metathesis promoted by stereogenic-at-Mo monoalkoxide and monoaryloxide complexes. Efficient synthesis of cyclic dienes not accessible through reactions with Ru carbenes. J. Am. Chem. Soc., 2009, 131(30), 10652-10661.
[http://dx.doi.org/10.1021/ja904098h] [PMID: 19580318]
[106]
Mori, M.; Sakakibara, N.; Kinoshita, A. Remarkable effect of ethylene gas in the intramolecular enyne metathesis of terminal alkynes. J. Org. Chem., 1998, 63(18), 6082-6083.
[http://dx.doi.org/10.1021/jo980896e] [PMID: 11672225]
[107]
Dieltiens, N.; Moonen, K.; Stevens, C.V. Enyne metathesis-oxidation sequence for the synthesis of 2-phosphono pyrroles: proof of the “yne-then-ene” pathway. Chemistry, 2007, 13(1), 203-214.
[http://dx.doi.org/10.1002/chem.200600789] [PMID: 17013964]
[108]
Lloyd-Jones, G.C.; Margue, R.G.; de Vries, J.G. Rate enhancement by ethylene in the Ru-catalyzed ring-closing metathesis of enynes: evidence for an “ene-then-yne” pathway that diverts through a second catalytic cycle. Angew. Chem. Int. Ed., 2005, 44, 7442-7447.
[http://dx.doi.org/10.1002/anie.200502243]
[109]
(a) Ibrahem, I.; Yu, M.; Schrock, R.R.; Hoveyda, A.H. Highly Z- and enantioselective ring-opening/cross-metathesis reactions catalyzed by stereogenic-at-Mo adamantylimido complexes. J. Am. Chem. Soc., 2009, 131(11), 3844-3845.
[http://dx.doi.org/10.1021/ja900097n] [PMID: 19249833 ]
(b) Lebrini, M.; Bentiss, F.; Lagrenee, M. Rapid synthesis of 2,5-disubtituted 1,3,4-thiadiazoles under microwave irradiation. J. Heterocycl. Chem., 2005, 42, 991-994.
[http://dx.doi.org/10.1002/jhet.5570420538]
[110]
Gillingham, D.G.; Kataoka, O.; Garber, S.B.; Hoveyda, A.H. Efficient enantioselective synthesis of functionalized tetrahydropyrans by Ru-catalyzed asymmetric ring-opening metathesis/cross-metathesis (AROM/CM). J. Am. Chem. Soc., 2004, 126(39), 12288-12290.
[http://dx.doi.org/10.1021/ja0458672] [PMID: 15453761]
[111]
Cortez, G.A.; Baxter, C.A.; Schrock, R.R.; Hoveyda, A.H. Comparison of Ru- and Mo-based chiral olefin metathesis catalysts. Complementarity in asymmetric ring-opening/cross-metathesis reactions of oxa- and azabicycles. Org. Lett., 2007, 9(15), 2871-2874.
[http://dx.doi.org/10.1021/ol071008h] [PMID: 17585770]
[112]
Flook, M.M.; Jiang, A.J.; Schrock, R.R.; Müller, P.; Hoveyda, A.H. Z-selective olefin metathesis processes catalyzed by a molybdenum hexaisopropylterphenoxide monopyrrolide complex. J. Am. Chem. Soc., 2009, 131(23), 7962-7963.
[http://dx.doi.org/10.1021/ja902738u] [PMID: 19462947]
[113]
(a) Hoveyda, A.H.; Malcolmson, S.J.; Meek, S.J.; Zhugralin, A.R. Catalytic enantioselective olefin metathesis in natural product synthesis. Chiral metal-based complexes that deliver high enantioselectivity and more. Angew. Chem. Int. Ed. Engl., 2010, 49(1), 34-44.
[http://dx.doi.org/10.1002/anie.200904491] [PMID: 19967680 ]
(b) Sahani, R.L.; Patil, M.D.; Wagh, S.B.; Liu, R.S. Catalytic transformations of alkynes into either α-alkoxy or α-aryl enolates: mannich reactions by cooperative catalysis and evidence for nucleophile-directed chemoselectivity. Angew. Chem. Int. Ed. Engl., 2018, 57(45), 14878-14882.
[http://dx.doi.org/10.1002/anie.201806883] [PMID: 30047589]
(c) Rong, M-G.; Qin, T-Z.; Zi, W. Rhenium-Catalyzed Intramolecular Carboalkoxylation and Carboamination of Alkynes for the Synthesis of C3-Substituted Benzofurans and Indoles. Org. Lett., 2019, 21(14), 5421-5425.
[http://dx.doi.org/10.1021/acs.orglett.9b01619] [PMID: 31251634]
[114]
Fu, G.C.; Grubbs, R.H. The application of catalytic ring-closing olefin metathesis to the synthesis of unsaturated oxygen heterocycles. J. Am. Chem. Soc., 1992, 114, 5426-5427.
[http://dx.doi.org/10.1021/ja00039a065]
[115]
Fu, G.C.; Grubbs, R.H. Synthesis of cycloalkenes via alkylidene-mediated olefin metathesis and carbonyl olefination. J. Am. Chem. Soc., 1993, 115, 3800-3801.
[http://dx.doi.org/10.1021/ja00062a066]
[116]
Kirkland, T.A.; Grubbs, R.H. Effects of olefin substitution on the ring-closing metathesis of dienes. J. Org. Chem., 1997, 62(21), 7310-7318.
[http://dx.doi.org/10.1021/jo970877p] [PMID: 11671845]
[117]
Paek, S-M. Synthesis of tetrasubstituted alkenes via metathesis. Molecules, 2012, 17(3), 3348-3358.
[http://dx.doi.org/10.3390/molecules17033348] [PMID: 22421789]
[118]
(a) Dijkink, J.; Zonjee, J.N.; de Jong, B.S.; Speckamp, W.N. Indolines through intramolecular imine cyclizations. Heterocycles, 1983, 20, 1255-1258.
[http://dx.doi.org/ 10.3987/R-1983-07-1255]
(b) Reddy, C.R.; Reddy, M.D. A metal-free tandem C-C/C-O bond formation approach to diversely functionalized tetrasubstituted furans. J. Org. Chem., 2014, 79, 106-116.
[http://dx.doi.org/10.1021/jo4023342] [PMID: 24325266]
(c) Vellaisamy, K.; Li, G.; Ko, C-N.; Zhong, H-J.; Fatima, S.; Kwan, H-Y.; Wong, C-Y.; Kwong, W-J.; Tan, W.; Leung, C-H.; Ma, D-L. Cell imaging of dopamine receptor using agonist labeling iridium(III) complex. Chem. Sci. (Camb.), 2018, 9, 1119-1125.
[http://dx.doi.org/10.1039/C7SC04798C]
[119]
Ibrahim-Ouali, M.; Sinibaldi, M.; Troin, Y.; Cuer, A.; Dauphin, G.; Gramain, J. A photochemical approach to spiranic 2,3-indolines, useful intermediates in pentacyclic indole alkaloid synthesis. Heterocycles, 1995, 41, 1939-1950.
[http://dx.doi.org/10.3987/COM-94-6866]
[120]
Arceo, E.; Ellman, J.A.; Bergman, R.G. Rhenium-catalyzed didehydroxylation of vicinal diols to alkenes using a simple alcohol as a reducing agent. J. Am. Chem. Soc., 2010, 132(33), 11408-11409.
[http://dx.doi.org/10.1021/ja103436v] [PMID: 20669903]
[121]
(a) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem. Soc. Rev., 2012, 41(8), 3381-3430.
[http://dx.doi.org/10.1039/c2cs15224j] [PMID: 22358177 ]
(b) Baralle, A.; Otsuka, S.; Guérin, V.; Murakami, K.; Yorimitsu, H.; Osuka, A. Nickel-NHC-catalyzed cross-coupling of 2-methylsulfanylbenzofurans with alkyl Grignard reagents. Synlett, 2015, 26, 327-330.
(c) Fiorito, S.; Genovese, S.; Taddeo, V.A.; Epifano, F. Microwave-assisted synthesis of coumarin-3-carboxylic acids under ytterbium triflate catalysis. Tetrahedron Lett., 2015, 56, 2434-2436.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.079 ]
(d) Genovese, S.; Fiorito, S.; Specchiulli, M.C.; Taddeo, V.A.; Epifano, F. Microwave-assisted synthesis of xanthones promoted by ytterbium triflate. Tetrahedron Lett., 2015, 56, 847-850.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.123 ]
(e) Taddeo, V.A.; Genovese, S.; Epifano, F.; Fiorito, S. Synthesis of the furan nucleus promoted by ytterbium triflate. Nat. Prod. Commun., 2015, 10(11), 1813-1815.
[http://dx.doi.org/10.1177/1934578X1501001106] [PMID: 26749804]
[122]
Hodgson, D.M.; Stupple, P.A.; Pierard, F.Y.T.M.; Labande, A.H.; Johnstone, C. Development of dirhodium(II)-catalyzed generation and enantioselective 1,3-dipolar cycloaddition of carbonyl ylides. Chemistry, 2001, 7(20), 4465-4476.
[http://dx.doi.org/10.1002/1521-3765(20011015)7:20<4465:AID-CHEM4465>3.0.CO;2-W] [PMID: 11695681]
[123]
Hodgson, D.M.; Avery, T.D.; Donohue, A.C. Concise, stereoselective syntheses of cis-nemorensic acid and 4-hydroxy-cis-nemorensic acid via tandem carbonyl ylide formation-cycloaddition. Org. Lett., 2002, 4(10), 1809-1811.
[http://dx.doi.org/10.1021/ol025917c] [PMID: 12000305]
[124]
Hodgson, D.M.; Labande, A.H.; Pierard, F.Y.T.M.; Expósito Castro, M.A. The scope of catalytic enantioselective tandem carbonyl ylide formation-intramolecular [3 + 2] cycloadditions. J. Org. Chem., 2003, 68(16), 6153-6159.
[http://dx.doi.org/10.1021/jo0343735] [PMID: 12895044]
[125]
(a) Pirrung, M.C.; Kaliappan, K.P. Dipolar cycloaddition of rhodium-generated carbonyl ylides with p-quinones. Org. Lett., 2000, 2(3), 353-355.
[http://dx.doi.org/10.1021/ol991300s] [PMID: 10814321 ]
(b) Sun, P.; Gao, S.; Yang, C.; Guo, S.; Lin, A.; Yao, H. Controllable Rh(III)-catalyzed annulation between salicylaldehydes and diazo compounds: divergent synthesis of chromones and benzofurans. Org. Lett., 2016, 18(24), 6464-6467.
[http://dx.doi.org/10.1021/acs.orglett.6b03355] [PMID: 27978647]
[126]
(a) Padwa, A.; Zhang, Z.J.; Zhi, L. Cyclization-cycloaddition casade of rhodium carbenoids using different carbonyl groups. Highlighting the position of interaction. J. Org. Chem., 2000, 65(17), 5223-5232.
[http://dx.doi.org/10.1021/jo000378f] [PMID: 10993350]
(b) Matsuda, T.; Abe, S.; Ito, H.; Tsuboi, T.; Kirikae, H.; Murakami, M. Synthesis of fused and linked benzofurans from 2-alkynylphenol derivatives through rhodium(i)-catalyzed domino-type addition reactions. Chimia (Aarau), 2018, 72(12), 888-891.
[http://dx.doi.org/10.2533/chimia.2018.888] [PMID: 30648956]
[127]
(a) Padwa, A.; Hasegawa, T.; Liu, B.; Zhang, Z. Rhodium(II)-catalyzed cyclization of amido diazo carbonyl compounds. J. Org. Chem., 2000, 65(21), 7124-7133.
[http://dx.doi.org/10.1021/jo0009144] [PMID: 11031039]
(b) Hu, Z.; Tong, X.; Liu, G. Rhodium(III)-catalyzed cascade cyclization/electrophilic amidation for the synthesis of 3-amidoindoles and 3-amidofurans. Org. Lett., 2016, 18(9), 2058-2061.
[http://dx.doi.org/10.1021/acs.orglett.6b00689] [PMID: 27151555]
[128]
Muthusamy, S.; Gunanathan, C.; Babu, S.A. Novel regioselective synthesis of decahydrobenzocarbazoles using rhodium generated carbonyl ylides with indoles. Tetrahedron Lett., 2001, 42, 523-526.
[http://dx.doi.org/10.1016/S0040-4039(00)01990-0]
[129]
Doyle, M.P.; Hu, W.; Timmons, D.J. Epoxides and aziridines from diazoacetates via ylide intermediates. Org. Lett., 2001, 3(6), 933-935.
[http://dx.doi.org/10.1021/ol015600x] [PMID: 11263919]
[130]
Nair, V.; Dhanya, C.R.R.; Vinod, A.U. Dipolar cycloaddition of carbonyl ylides to para-quinoneimides: a facile route to bicyclo[3.2.1] and [2.2.1] systems. Tetrahedron Lett., 2001, 42, 2045-2046.
[http://dx.doi.org/10.1016/S0040-4039(01)00072-7]
[131]
Davies, H.M.L.; DeMeese, J. Stereoselective synthesis of epoxides by reaction of donor/acceptor-substituted carbenoids with α,β-unsaturated aldehydes. Tetrahedron Lett., 2001, 42, 6803-6805.
[http://dx.doi.org/10.1016/S0040-4039(01)01415-0]
[132]
Suga, H.; Kakehi, A.; Ito, S.; Inoue, K.; Ishida, H.; Ibata, T. Stereocontrol in a ytterbium triflate-catalyzed 1,3-dipolar cycloaddition reaction of carbonyl ylide with N-substituted maleimides and dimethyl fumarate. Bull. Chem. Soc. Jpn., 2001, 74, 1115-1121.
[http://dx.doi.org/10.1246/bcsj.74.1115]
[133]
Graening, T.; Friedrichsen, W.; Lex, J.; Schmalz, H-G. Facile construction of the colchicine skeleton by a rhodium-catalyzed cyclization/cycloaddition cascade. Angew. Chem. Int. Ed., 2002, 41, 1524-1526.
[http://dx.doi.org/10.1002/1521-3773(20020503)41:9<1524:AID-ANIE1524>3.0.CO;2-9]
[134]
Nair, V.; Sheela, K.C.; Sethumadhavan, D.; Dhanya, R.; Rath, N.P. 1,3-Dipolar cycloaddition reactions of carbonyl ylides with 1,2-diones: synthesis of novel spiro oxabicycles. Tetrahedron, 2002, 58, 4171-4177.
[http://dx.doi.org/10.1016/S0040-4020(02)00387-3]
[135]
Zhou, C-Y.; Yu, W-Y.; Che, C-M. Ruthenium(II) porphyrin catalyzed tandem carbonyl ylide formation and 1,3-dipolar cycloaddition reactions of alpha-diazo ketones. Org. Lett., 2002, 4(19), 3235-3238.
[http://dx.doi.org/10.1021/ol0201254] [PMID: 12227757]
[136]
Mehta, G.; Muthusamy, S. Tandem cyclization-cycloaddition reactions of rhodium generated carbenoids from α-diazo carbonyl compounds. Tetrahedron, 2002, 58, 9477-9504.
[http://dx.doi.org/10.1016/S0040-4020(02)01187-0]
[137]
Chuprakov, S.; Hwang, F.W.; Gevorgyan, V. Rh-catalyzed transannulation of pyridotriazoles with alkynes and nitriles. Angew. Chem. Int. Ed., 2007, 46, 4757-4759.
[http://dx.doi.org/10.1002/anie.200700804]
[138]
Padwa, A.; Blacklock, T.; Loza, R. Silver-promoted isomerizations of some cyclopropene derivatives. J. Am. Chem. Soc., 1981, 103, 2404-2405.
[http://dx.doi.org/10.1021/ja00399a042]
[139]
Padwa, A.; Blackbock, T.J.; Loza, R. Mechanistic aspects of the silver (I)-promoted rearrangement of cyclopropene derivatives. J. Org. Chem., 1982, 47, 3712-3721.
[http://dx.doi.org/10.1021/jo00140a025]
[140]
Muller, P.; Pautex, N.; Doyle, M.P.; Baheri, V. Rh(II)-catalyzed isomerizations of cyclopropenes evidence for Rh(II)-complexed vinylcarbene intermediates. Helv. Chim. Acta, 1990, 73, 1233-1241.
[http://dx.doi.org/10.1002/hlca.19900730513]
[141]
Cho, S.H.; Liebeskind, L.S. Practical organic synthesis with strained ring molecules. Rhodium catalyzed carbonylation of cyclopropenecarboxylate esters and cyclopropenyl ketones to α-pyrones and of vinylcyclopropenes to phenols. J. Org. Chem., 1987, 52, 2631-2634.
[http://dx.doi.org/10.1021/jo00388a064]
[142]
Padwa, A.; Kassir, J.M.; Xu, S.L. Cyclization reactions of rhodium carbene complexes. Effect of composition and oxidation state of the metal. J. Org. Chem., 1997, 62, 1642-1652.
[http://dx.doi.org/10.1021/jo962271r]
[143]
Muller, P.; Granicher, C. Structural effects on the RhII-catalyzed rearrangement of cyclopropenes. Helv. Chim. Acta, 1993, 76, 521-534.
[http://dx.doi.org/10.1002/hlca.19930760134]
[144]
Muller, P.; Granicher, C. Selectivity in rhodium(II)-catalyzed rearrangements of cycloprop-2-ene-1-carboxylates. Helv. Chim. Acta, 1995, 78, 129-144.
[http://dx.doi.org/10.1002/hlca.19950780113]
[145]
Davies, H.M.L.; Romines, K.R. Direct synthesis of furans by 3+2 cycloadditions between rhodium(II) acetate stabilized carbenoids and acetylenes. Tetrahedron, 1988, 44, 3343-3348.
[http://dx.doi.org/10.1016/S0040-4020(01)85968-8]
[146]
Padwa, A.; Kassir, J.M.; Xu, S.L. Rhodium-catalyzed ring-opening reaction of cyclopropenes. Control of regioselectivity by the oxidation state of the metal. J. Org. Chem., 1991, 56, 6971-6972.
[http://dx.doi.org/10.1021/jo00025a005]
[147]
(a) Chuprakov, S.; Gevorgyan, V. Regiodivergent metal-catalyzed rearrangement of 3-iminocyclopropenes into N-fused heterocycles. Org. Lett., 2007, 9(22), 4463-4466.
[http://dx.doi.org/10.1021/ol702084f] [PMID: 17892296 ]
(b) Blanc, A.; Bénéteau, V.; Weibel, J-M.; Pale, P. Silver & gold-catalyzed routes to furans and benzofurans. Org. Biomol. Chem., 2016, 14, 9184-9205.
[http://dx.doi.org/10.1039/C6OB01468B] [PMID: 27722719]
[148]
(a) Padwa, A.; Hornbuckle, S.F. Ylide formation from the reaction of carbenes and carbenoids with heteroatom lone pairs. Chem. Rev., 1991, 91, 263-309.
[http://dx.doi.org/ 10.1021/cr00003a001]
(b) Schramm, Y.; Takeuchi, M.; Semba, K.; Nakao, Y.; Hartwig, J.F. Anti-Markovnikov hydroheteroarylation of unactivated alkenes with indoles, pyrroles, benzofurans, and furans catalyzed by a nickel-N-heterocyclic carbene system. J. Am. Chem. Soc., 2015, 137(38), 12215-12218.
[http://dx.doi.org/10.1021/jacs.5b08039] [PMID: 26334367]
[149]
Kassir, J.M.; Semones, M.A.; Weingarten, M.D.; Padwa, A. Synthesis of oxa-bicyclic ring systems via a tandem Rh(II) catalyzed cyclization-cycloaddition sequence. Tetrahedron Lett., 1993, 34, 7853-7856.
[http://dx.doi.org/10.1016/S0040-4039(00)61493-4]
[150]
Rhee, J.U.; Krische, M.J. Highly enantioselective reductive cyclization of acetylenic aldehydes via rhodium catalyzed asymmetric hydrogenation. J. Am. Chem. Soc., 2006, 128(33), 10674-10675.
[http://dx.doi.org/10.1021/ja0637954] [PMID: 16910650]
[151]
Farina, V.; Eriksson, M. Handbook of Organopalladium Chemistry for Organic Synthesis;; Negishi, E., Ed.; John Wiley & Sons: New York, 2000, p. VI.2.1.2, 2351..
[152]
Kadnikov, D.V.; Larock, R.C. Synthesis of coumarins via palladium-catalyzed carbonylative annulation of internal alkynes by o-iodophenols. Org. Lett., 2000, 2(23), 3643-3646.
[http://dx.doi.org/10.1021/ol0065569] [PMID: 11073665]
[153]
Morimoto, T.; Fujioka, M.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. Rhodium-catalyzed intramolecular aminocarbonylation of aryl halides using aldehydes as a source of carbon monoxide. Chem. Lett., 2003, 154-155.
[http://dx.doi.org/10.1246/cl.2003.154]
[154]
Grigg, R.; Zhang, L.; Collard, S.; Keep, A. Isoindolinones via a room temperature palladium nanoparticle-catalyzed 3-component cyclative carbonylation-amination cascade. Tetrahedron Lett., 2003, 44, 6979-6982.
[http://dx.doi.org/10.1016/S0040-4039(03)01805-7]
[155]
Alt, M.; Maas, G. Transition-metal-catalyzed decomposition of diazo(trialkylsilyl)-acetates: Intermolecular formation and trapping of carbonyl ylides. Tetrahedron, 1994, 50, 7435-7444.
[http://dx.doi.org/10.1016/S0040-4020(01)90472-7]
[156]
Hodgson, D.M.; Bailey, J.M.; Harrison, T. A cycloaddition-rearrangement approach to the squalestatins. Tetrahedron Lett., 1996, 37, 4623-4626.
[http://dx.doi.org/10.1016/0040-4039(96)00893-3]
[157]
Hodgson, D.M.; Bailey, J.M.; Villalonga-Barber, C.; Drew, M.G.B.; Harrison, T. Selectivity in the cycloadditions of carbonyl ylides with glyoxylates: an approach to the zaragozic acids- squalestatins. J. Chem. Soc., Perkin Trans. 1, 2000, 20, 3432-3443.
[http://dx.doi.org/10.1039/b004870o]
[158]
Torssell, S.; Kienle, M.; Somfai, P. 1,3-Dipolar cycloadditions of carbonyl ylides to aldimines: a three-component approach to syn-α-hydroxy-β-amino esters. Angew. Chem. Int. Ed., 2005, 44, 3096-3099.
[http://dx.doi.org/10.1002/anie.200500296]
[159]
Doyle, M.P.; Forbes, D.C.; Protopopova, M.N.; Stanley, S.A.; Vasbinder, M.M.; Xavier, K.R. Stereocontrol in intermolecular dirhodium(II)-catalyzed carbonyl ylide formation and reactions. dioxolanes and dihydrofurans. J. Org. Chem., 1997, 62(21), 7210-7215.
[http://dx.doi.org/10.1021/jo970641l] [PMID: 11671830]
[160]
Wenkert, E.; Khatuya, H. The effect of substitutents of α-alkyl sidechains on furan-diazoester interactions. Tetrahedron Lett., 1999, 40, 5439-5442.
[http://dx.doi.org/10.1016/S0040-4039(99)01062-X]
[161]
Hamaguchi, M.; Matsubara, H.; Nagai, T. Reaction of vinylcarbenoids with benzaldehydes: formation of vinylcarbonyl ylides followed by ring closure to oxiranes and dihydrofurans. J. Org. Chem., 2001, 66(16), 5395-5404.
[http://dx.doi.org/10.1021/jo015618l] [PMID: 11485461]
[162]
Johnson, T.; Cheshire, D.R.; Stocks, M.J.; Thurston, V.T. A carbonyl ylide approach to substituted furans. Synlett, 2001, 5, 646-648.
[http://dx.doi.org/10.1055/s-2001-13355]
[163]
Skaggs, A.J.; Lin, E.Y.; Jamison, T.F. Cobalt cluster-containing carbonyl ylides for catalytic, three-component assembly of oxygen heterocycles. Org. Lett., 2002, 4(13), 2277-2280.
[http://dx.doi.org/10.1021/ol026149s] [PMID: 12074686]
[164]
Jiang, B.; Zhang, X.; Luo, Z. High diastereoselectivity in intermolecular carbonyl ylide cycloaddition with aryl aldehyde using methyl diazo(trifluoromethyl)acetate. Org. Lett., 2002, 4(15), 2453-2455.
[http://dx.doi.org/10.1021/ol0200854] [PMID: 12123349]
[165]
Russell, A.E.; Brekan, J.; Gronenberg, L.; Doyle, M.P. Divergence of carbonyl ylide reactions as a function of diazocarbonyl compound and aldehyde substituent: dioxolanes, dioxolenes, and epoxides. J. Org. Chem., 2004, 69(16), 5269-5274.
[http://dx.doi.org/10.1021/jo049403y] [PMID: 15287769]
[166]
Lu, C-D.; Chen, Z-Y.; Liu, H.; Hu, W-H.; Mi, A-Q. Highly chemoselective 2,4,5-triaryl-1,3-dioxolane formation from intermolecular 1,3-dipolar addition of carbonyl ylide with aryl aldehydes. Org. Lett., 2004, 6(18), 3071-3074.
[http://dx.doi.org/10.1021/ol0489494] [PMID: 15330590]
[167]
Ojima, I.; Donovan, R.J.; Shay, W.R. Silylcarbocyclization reactions catalyzed by rhodium and rhodium-cobalt complexes. J. Am. Chem. Soc., 1992, 114, 6580-6582.
[http://dx.doi.org/10.1021/ja00042a061]
[168]
(a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R.J. Transition metal-catalyzed carbocyclizations in organic synthesis. Chem. Rev., 1996, 96(2), 635-662.
[http://dx.doi.org/10.1021/cr950065y] [PMID: 11848768 ]
(b) Gupta, K.; Rai, R.K.; Singh, S.K. Catalytic aerial oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over Ni-Pd nanoparticles supported on Mg(OH)2 nanoflakes for the synthesis of furan diesters. Inorg. Chem. Front., 2017, 4, 871-880.
[http://dx.doi.org/10.1039/C7QI00026J]
(c) Hie, L. Nickel-catalyzed Suzuki-Miyaura coupling in t-amyl alcohol for the preparation of 5-(furan-3-yl)pyrimidine. Org. Synth., 2016, 93, 306-318.
[http://dx.doi.org/ 10.15227/orgsyn.093.0306]
(d)Sadjadi, S. Heravi M.M.; Malmir, M. Green bio-based synthesis of Fe2O3@SiO2-IL/Ag hollow spheres and their catalytic utility for ultrasonic-assisted synthesis of propargylamines and benzo[b]furans. Appl. Organomet. Chem., 2018, 32, 4029.
[http://dx.doi.org/ 10.1002/aoc.4029]
[169]
Van den Hoven, B.G.; El Ali, B.; Alper, H. The Ru3(CO)12-catalyzed intermolecular [2+2+1] cyclocoupling of imines, alkenes or alkynes, and carbon monoxide: a new synthesis of functionalized γ-lactams. J. Org. Chem., 2000, 65, 4131-4137.
[http://dx.doi.org/10.1021/jo000230w] [PMID: 10866631]
[170]
Van den Hoven, B.G.; Alper, H. Innovative synthesis of 4-carbaldehydepyrrolin-2-ones by zwitterionic rhodium catalyzed chemo- and regioselective tandem cyclohydrocarbonylation/CO insertion of alpha-imino alkynes. J. Am. Chem. Soc., 2001, 123(42), 10214-10220.
[http://dx.doi.org/10.1021/ja011710n] [PMID: 11603971]
[171]
Padwa, A.; Chiacchio, U.; Garreau, Y.; Kassir, J.M.; Krumpe, K.E.; Schoffstall, A.M. Generation of vinylcarbenes by the intramolecular addition of. alpha.-diazo ketones to acetylenes. J. Org. Chem., 1990, 55, 414-416.
[http://dx.doi.org/10.1021/jo00289a006]
[172]
(a) Banning, J.E.; Prosser, A.R.; Alnasleh, B.K.; Smarker, J.; Rubina, M.; Rubin, M. Diastereoselectivity control in formal nucleophilic substitution of bromocyclopropanes with oxygen- and sulfur-based nucleophiles. J. Org. Chem., 2011, 76(10), 3968-3986.
[http://dx.doi.org/10.1021/jo200368a] [PMID: 21462995 ]
(b) Rubin, M.; Rubina, M.; Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev., 2007, 107(7), 3117-3179.
[http://dx.doi.org/10.1021/cr050988l] [PMID: 17622181 ]
(c) Shen, Y.; Wu, X-X.; Chen, S.; Xia, Y.; Liang, Y-M. Synthesis of polyfluoroarene-substituted benzofuran derivatives via cooperative Pd/Cu catalysis. Chem. Commun. (Camb.), 2018, 54, 2256-2259.
[http://dx.doi.org/10.1039/C8CC00489G] [PMID: 29431847]
[173]
Alnasleh, B.K.; Sherrill, W.M.; Rubina, M.; Banning, J.; Rubin, M. Highly diastereoselective formal nucleophilic substitution of bromocyclopropanes. J. Am. Chem. Soc., 2009, 131(20), 6906-6907.
[http://dx.doi.org/10.1021/ja900634m] [PMID: 19413323]
[174]
Rubin, M.; Ryabchuk, P.G. Rearrangements of cyclopropenes into five-membered aromatic heterocycles: mechanistic aspect. Chem. Heterocycl. Compd., 2012, 48, 126-138.
[http://dx.doi.org/10.1007/s10593-012-0976-4]
[175]
Nair, V.; Mathai, S.; Nair, S.M.; Rath, N.P. A facile three-component reaction of dicarbomethoxycarbene, aldehydes and o-quinones: synthesis of novel spiro-dioxolanes. Tetrahedron Lett., 2003, 44, 8407-8409.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.102]
[176]
(a) D’Souza, D.M.; Müller, T.J.J. Multi-component syntheses of heterocycles by transition-metal catalysis. Chem. Soc. Rev., 2007, 36(7), 1095-1108.
[http://dx.doi.org/10.1039/B608235C] [PMID: 17576477]
(b) Chen, Z-W.; Luo, M-T.; Wen, Y-L.; Ye, M.; Zhou, Z-G.; Liu, L-X. A highly efficient synthesis of 2,5-disubstituted furans from enyne acetates catalyzed by Lewis acid and palladium. Synlett, 2014, 25, 2341-2344.
[http://dx.doi.org/ 10.1055/s-0034-1379213]
(c) Khan, F.; Fatima, M.; Shirzaei, M.; Vo, Y.; Amarasiri, M.; Banwell, M.G.; Ma, C.; Ward, J.S.; Gardiner, M.G. tandem ullmann-goldberg cross-coupling/cyclopalladation-reductive elimination reactions and related sequences leading to polyfunctionalized benzofurans, indoles, and phthalanes. Org. Lett., 2019, 21(16), 6342-6346.
[http://dx.doi.org/10.1021/acs.orglett.9b02235] [PMID: 31364356]
[177]
Nair, V.; Mathai, S.; Varma, R.L. The three-component reaction of dicarbomethoxycarbene, aldehydes, and beta-nitrostyrenes: a stereoselective synthesis of substituted tetrahydrofurans. J. Org. Chem., 2004, 69(4), 1413-1414.
[http://dx.doi.org/10.1021/jo035673p] [PMID: 14961707]
[178]
(a) Padwa, A.; Weingarten, M.D. Cascade processes of metallo carbenoids. Chem. Rev., 1996, 96(1), 223-270.
[http://dx.doi.org/10.1021/cr950022h] [PMID: 11848752]
(b) Yamaguchi, M.; Akiyama, T.; Sasou, H.; Katsumata, H.; Manabe, K. One-pot synthesis of substituted benzo[b]furans and indoles from dichlorophenols/dichloroanilines using a palladium-dihydroxyterphenylphosphine catalyst. J. Org. Chem., 2016, 81(13), 5450-5463.
[http://dx.doi.org/10.1021/acs.joc.6b00824] [PMID: 27267124]
[179]
Elgafi, S.; Field, L.D.; Messerle, B.A. Cyclisation of acetylenic carboxylic acids and acetylenic alcohols to oxygen-containing heterocycles using cationic rhodium(I) complexes. J. Organomet. Chem., 2000, 607, 97-104.
[http://dx.doi.org/10.1016/S0022-328X(00)00233-3]
[180]
(a) Burling, S.; Field, L.D.; Messerle, B.A.; Vuong, K.Q. Turner. P. Rhodium(I) and iridium(I) complexes with bidentate N,N and P,N ligands as catalysts for the hydrothiolation of alkynes. Dalton Trans., 2003, 21, 4181-4191.
[http://dx.doi.org/ 10.1039/B303774F]
(b) Pauli, L.; Tannert, R.; Scheil, R.; Pfaltz, A. Asymmetric hydrogenation of furans and benzofurans with iridium-pyridine-phosphinite catalysts. Chemistry, 2015, 21(4), 1482-1487.
[http://dx.doi.org/10.1002/chem.201404903] [PMID: 25394881 ]
(c) Sevov, C.S.; Hartwig, J.F. Iridium-catalyzed oxidative olefination of furans with unactivated alkenes. J. Am. Chem. Soc., 2014, 136(30), 10625-10631.
[http://dx.doi.org/10.1021/ja504414c] [PMID: 25032781 ]
(d) Ye, Y.; Fan, R. Silver-catalyzed synthesis of 4-substituted benzofurans via a cascade oxidative coupling-annulation protocol. Chem. Commun. (Camb.), 2011, 47(19), 5626-5628.
[http://dx.doi.org/10.1039/c1cc10137d] [PMID: 21483903]
[181]
Messerle, B.A.; Vuong, K.Q. Synthesis of spiroketals by iridium-catalyzed double hydroalkoxylation. Pure Appl. Chem., 2006, 78, 385-390.
[http://dx.doi.org/10.1351/pac200678020385]
[182]
Gowravaram, M.R.; Gallop, M.A. “Traceless” solid-phase synthesis of furans via 1,3-dipolar cycloaddition reactions of isomünchnones. Tetrahedron Lett., 1997, 38, 6973-6976.
[http://dx.doi.org/10.1016/S0040-4039(97)01667-5]
[183]
Cossy, J.; Bargiggia, F. BouzBouz, S. Tandem cross-metathesis/hydrogenation/cyclization reactions by using compatible catalysts. Org. Lett., 2003, 5, 459-462.
[http://dx.doi.org/10.1021/ol027347m] [PMID: 12583743]
[184]
Trost, B.M.; Doherty, G.A. An asymmetric synthesis of the tricyclic core and a formal total synthesis of roseophilin via an enyne metathesis. J. Am. Chem. Soc., 2000, 122, 3801-3810.
[http://dx.doi.org/10.1021/ja9941781]
[185]
(a) Diver, S.T.; Giessert, A.J. Enyne metathesis (enyne bond reorganization). Chem. Rev., 2004, 104(3), 1317-1382.
[http://dx.doi.org/10.1021/cr020009e] [PMID: 15008625]
(b) Ryu, T.; Eom, D.; Shin, S.; Son, J-Y.; Lee, P.H. Synthesis of Multisubstituted Allenes, furans, and pyrroles via tandem palladium-catalyzed substitution and cycloisomerization. Org. Lett., 2017, 19(3), 452-455.
[http://dx.doi.org/10.1021/acs.orglett.6b03561] [PMID: 28093911 ]
(c) Rajesh, M.; Thirupathi, N.; Reddy, T.J.; Kanojiya, S.; Reddy, M.S. Pd-Catalyzed isocyanide assisted reductive cyclization of 1-(2-hydroxyphenyl)-propargyl alcohols for 2-alkyl/benzyl benzofurans and their useful oxidative derivatization. J. Org. Chem., 2015, 80(24), 12311-12320.
[http://dx.doi.org/10.1021/acs.joc.5b02204] [PMID: 26599200]
[186]
(a) Hanhan, N.V.; Ball-Jones, N.R.; Tran, N.T.; Franz, A.K. Catalytic asymmetric [3+2] annulation of allylsilanes with isatins: synthesis of spirooxindoles. Angew. Chem. Int. Ed., 2012, 51, 989-992.
[http://dx.doi.org/10.1002/anie.201105739 ]
(b) Lee, C-J.; Chang, T-H.; Yu, J.K.; Madhusudhan Reddy, G.; Hsiao, M-Y.; Lin, W. Synthesis of functionalized furans via chemoselective reduction/wittig reaction using catalytic triethylamine and phosphine. Org. Lett., 2016, 18(15), 3758-3761.
[http://dx.doi.org/10.1021/acs.orglett.6b01781] [PMID: 27434727]
(c) Guo, L.; Zhang, F.; Hu, W.; Li, L.; Jia, Y. Palladium-catalyzed synthesis of benzofurans via C-H activation/oxidation tandem reaction and its application to the synthesis of decursivine and serotobenine. Chem. Commun. (Camb.), 2014, 50(25), 3299-3302.
[http://dx.doi.org/10.1039/c3cc49717h] [PMID: 24525707]
(d) Sharma, U.; Naveen, T.; Maji, A.; Manna, S.; Maiti, D. Palladium-catalyzed synthesis of benzofurans and coumarins from phenols and olefins. Angew. Chem. Int. Ed., 2013, 52, 12669-12673.
[http://dx.doi.org/10.1002/anie.201305326]
[187]
Ma, S.; Pan, F.; Hao, X.; Huang, X. Reaction of PhSeCl or PhSCl with 2,3-allenoic acids: an efficient synthesis of β-organoselenium or β-organosulfur substituted butenolides. Synlett, 2004, 1, 85-88.
[http://dx.doi.org/10.1055/s-2003-43377]
[188]
Chen, G.; Fu, C.; Ma, S. Studies on electrophilic addition reaction of 2,3-allenoates with PhSeCl. Tetrahedron, 2006, 62, 4444-4452.
[http://dx.doi.org/10.1016/j.tet.2006.02.053]
[189]
Petragnani, N.; Stefani, H.A. Advances in organic tellurium chemistry. Tetrahedron, 2005, 61, 1613-1679.
[http://dx.doi.org/10.1016/j.tet.2004.11.076]
[190]
(a) Chinchilla, R.; Najera, C.; Yus, M. Metalated heterocycles in organic synthesis: recent applications (AK-2215GR). ARKIVOC, 2007, (10), 152-231.
(b) Chen, L.; Du, Y.; Zeng, X-P.; Shi, T-D.; Zhou, F.; Zhou, J. Successively recycle waste as catalyst: a one-pot wittig/1,4-reduction/Paal-knorr sequence for modular synthesis of substituted furans. Org. Lett., 2015, 17(6), 1557-1560.
[http://dx.doi.org/10.1021/acs.orglett.5b00442] [PMID: 25730110 ]
(c) Bhatt, S.; Roy, K.; Nayak, S.K. Efficient one-pot synthesis of 2-arylbenzo[b]furans from 2-styrylphenols using CuBr2. Synth. Commun., 2010, 40, 2736-2746.
[http://dx.doi.org/10.1080/00397910903318716]
[191]
Drake, M.D.; Bateman, M.A.; Detty, M.R. Substituent effects in arylseleninic acid-catalyzed bromination of organic substrates with rhodium bromide and hydrogen peroxide. Organometallics, 2003, 22, 4158-4162.
[http://dx.doi.org/10.1021/om0340239]
[192]
Goodmanm, M.A.; Detty, M.R. Selenoxides as catalysts for the activation of hydrogen peroxide. Bromination of organic substrates with sodium bromide and hydrogen peroxide. Organometallics, 2004, 23, 3016-3020.
[http://dx.doi.org/10.1021/om049908e]
[193]
Mochowski, J.; Peczyska-Czoch, W.; Pitka-Ottlik, M.; Wojtowicz-Mochowska, H. Non-metal and enzymatic catalysts for hydroperoxide oxidation of organic compounds. Open Catal. J., 2011, 4, 54-82.
[http://dx.doi.org/10.2174/1876214X01104010054]
[194]
Hartung, J.; Gallou, F. Ring closure reactions of substituted 4-pentenyl-1-oxy radicals. The stereoselective synthesis of functionalized disubstituted tetrahydrofurans. J. Org. Chem., 1995, 60, 6706-6716.
[http://dx.doi.org/10.1021/jo00126a021]
[195]
Mikami, K.; Shimizu, M. Prins cyclization to tetrahydrofuran units of polyether antibiotics: remarkable siloxy effect for stereocontrolled cyclization. Tetrahedron, 1996, 52, 7287-7296.
[http://dx.doi.org/10.1016/0040-4020(96)00252-9]
[196]
Kang, S.H.; Lee, S.B.; Park, C.M. Catalytic enantioselective iodocyclization of gamma-hydroxy-cis-alkenes. J. Am. Chem. Soc., 2003, 125(51), 15748-15749.
[http://dx.doi.org/10.1021/ja0369921] [PMID: 14677957]
[197]
Jung, I.G.; Seo, J.; Lee, S.I.; Choi, S.Y.; Chung, Y.K. Reductive cyclization of diynes and enynes catalyzed by allyl platinum N-heterocyclic carbene complexes. Organometallics, 2006, 25, 4240-4242.
[http://dx.doi.org/10.1021/om0606284]
[198]
Mirizzi, D.; Pulici, M. From polymer to small organic molecules: a tight relationship between radical chemistry and solid-phase organic synthesis. Molecules, 2011, 16(4), 3252-3314.
[http://dx.doi.org/10.3390/molecules16043252] [PMID: 21512439]
[199]
Li, P.; Yang, J.; Zhao, K. Double intramolecular SN’O-cyclization for stereoselective synthesis of bistetrahydrofuran core of acetogenins. J. Org. Chem., 1999, 64, 2259-2263.
[http://dx.doi.org/10.1021/jo981771c]
[200]
(a) Angle, S.R.; White, S.L. Stereoselective synthesis of 4-aryl-2-(benzyloxy)carbonyl-3-hydroxy tetrahydrofurans from aryl epoxides. Tetrahedron Lett., 2000, 41, 8059-8062.
[http://dx.doi.org/10.1016/S0040-4039(00)01401-5 ]
(b) Xu, C.; Wittmann, S.; Gemander, M.; Ruohonen, V.; Clark, J.S. Trialkylphosphine-mediated synthesis of 2-acyl furans from ynenones. Org. Lett., 2017, 19(13), 3556-3559.
[http://dx.doi.org/10.1021/acs.orglett.7b01533] [PMID: 28654294 ]
(c) Manna, S.; Antonchick, A.P. Copper(I)-catalyzed radical addition of acetophenones to alkynes in furan synthesis. Org. Lett., 2015, 17(17), 4300-4303.
[http://dx.doi.org/10.1021/acs.orglett.5b02114] [PMID: 26277912]
[201]
Hoye, T.R.; Ye, Z. Highly efficient synthesis of the potent antitumor annonaceous acetogenin (+)-Parviflorin. J. Am. Chem. Soc., 1996, 118, 1801-1802.
[http://dx.doi.org/10.1021/ja953781q]
[202]
Baker, S. Cyclic methylene acetal stabilities in dianhydrohexitols. Can. J. Chem., 1953, 31, 821-827.
[http://dx.doi.org/10.1139/v53-111]
[203]
Marshall, J.A.; Sabatini, J.J. Synthesis of cis- and trans-2,5-disubstituted tetrahydrofurans by a tandem dihydroxylation-SN2 cyclization sequence. Org. Lett., 2005, 7(22), 4819-4822.
[http://dx.doi.org/10.1021/ol051507n] [PMID: 16235897]
[204]
Ji, K-G.; Zhu, H-T.; Yang, F.; Shu, X-Z.; Zhao, S-C.; Liu, X-Y.; Shaukat, A.; Liang, Y.M. A novel iodine-promoted tandem cyclization: an efficient synthesis of substituted 3,4-diiodoheterocyclic compounds. Chemistry, 2010, 16(21), 6151-6154.
[http://dx.doi.org/10.1002/chem.201000518] [PMID: 20422661]
[205]
(a)Parvatkar, P.T.; Parameswaran, P.S.; Tilve, S.G. Recent developments in the synthesis of five- and six-membered heterocycles using molecular iodine. Chemistry, 2012, 18(18), 5460-5489.
[http://dx.doi.org/10.1002/chem.201100324] [PMID: 22488798]
(b)Yang, F.; Jin, T.; Bao, M.; Yamamoto, Y. Facile synthesis of 3,4- dihalofurans via electrophilic iodocyclization. Chem. Commun. (Camb.), 2011, 47(15), 4541-4543.
[http://dx.doi.org/10.1039/c1cc10584a] [PMID: 21390356]
[206]
(a) Morgan, B.; Dodds, D.R.; Zaks, A.; Andrews, D.R.; Klesse, R. Enzymatic desymmetrization of prochiral 2-substituted-1,3-propanediols: a practical chemoenzymatic synthesis of a key precursor of SCH51048, a broad-spectrum orally active antifungal agent. J. Org. Chem., 1997, 62, 7736-7743.
[http://dx.doi.org/10.1021/jo9709920 ]
(b) Singh, F.V.; Mangaonkar, S.R. Hypervalent iodine(III)-catalyzed synthesis of 2-arylbenzofurans. Synthesis, 2018, 50, 4940-4948.
[http://dx.doi.org/10.1055/s-0037-1610650]
[207]
(a) Patel, R.N.; Banerjee, A.; Szarka, L.J. Stereoselective acetylation of racemic 7-[N,N′-bis-(benzyloxycarbonyl)-N-(guanidinoheptanoyl)]-α-hydroxyglycine. Tetrahedron Asymmetry, 1997, 8, 1767-1771.
[http://dx.doi.org/10.1016/S0957-4166(97)00161-4 ]
(b) Chen, Z.; Huang, G.; Jiang, H.; Huang, H.; Pan, X. Synthesis of 2,5-disubstituted 3-iodofurans via palladium-catalyzed coupling and iodocyclization of terminal alkynes. J. Org. Chem., 2011, 76(4), 1134-1139.
[http://dx.doi.org/10.1021/jo1023987] [PMID: 21235260]
[208]
(a) Patel, R.N.; Mcnamee, C.M.; Szarka, L.J. Enantioselective enzymatic acetylation of racemic [4-[4α,6β(E)]]-6-[4,4-bis(4-fluorophenyl)-3-(1-methyl-1H-tetrazol-5-yl)-1,3-butadienyl]-tetrahydro-4-hydroxy-2H-pyran-2-one. Appl. Microbiol. Biotechnol., 1992, 38, 56-60.
[http://dx.doi.org/10.1007/BF00169419]
(b) Tang, S.; Liu, K.; Long, Y.; Gao, X.; Gao, M.; Lei, A. Iodine-catalyzed radical oxidative annulation for the construction of dihydrofurans and indolizines. Org. Lett., 2015, 17(10), 2404-2407.
[http://dx.doi.org/10.1021/acs.orglett.5b00912] [PMID: 25945514]
[209]
(a) Milnera, S.E.; Maguire, A.R. Recent trends in whole cell and isolated enzymes in enantioselective synthesis. ARKIVOC, 2012, (i), 321-382.
(b) Xing, L.; Zhang, Y.; Du, Y. Hypervalent iodine-mediated synthesis of spiroheterocycles via oxidative cyclization. Curr. Org. Chem., 2019, 23, 14-37.
[http://dx.doi.org/10.2174/1385272822666181211122802]
[210]
Boye, A.C.; Meyer, D.; Ingison, C.K.; French, A.N.; Wirth, T. Novel lactonization with phenonium ion participation induced by hypervalent iodine reagents. Org. Lett., 2003, 5(12), 2157-2159.
[http://dx.doi.org/10.1021/ol034616f] [PMID: 12790553]
[211]
(a) Biland, A.S.; Altermann, S.; Wirth, T. Cyclopropanation of alkenes using hypervalent iodine reagents. ARKIVOC, 2003, (vi), 164.
(b) Yusubov, M.S.; Yoshimur, A.; Zhdankin, V.V. Iodonium ylides in organic synthesis. ARKIVOC, 2016, (i), 342-374.
[212]
(a) Fujioka, H.; Matsuda, S.; Horai, M.; Fujii, E.; Morishita, M.; Nishiguchi, N.; Hata, K.; Kita, Y. Facile and efficient synthesis of lactols by a domino reaction of 2,3-epoxy alcohols with a hypervalent iodine(III) reagent and its application to the synthesis of lactones and the asymmetric synthesis of (+)-tanikolide. Chemistry, 2007, 13(18), 5238-5248.
[http://dx.doi.org/10.1002/chem.200601341] [PMID: 17385198 ]
(b) Rao, K.V.; Kumar, A.; Kaswan, P.; Shelke, G.M.; Ryan, A.; Jha, M. Iodine-mediated, microwave-assisted synthesis of 1-arylnaphthofurans via cyclization of 1-(1′-arylvinyl)-2-naphthols. Synthesis, 2015, 47, 3990-3996.
[http://dx.doi.org/10.1055/s-0035-1560268]
[213]
(a) Chanu, A.; Safir, I.; Basak, R.; Chiaroni, A.; Arseniyadis, S. Synthesis of a norsesquiterpene spirolactone/steroidal hybrid by using an environmentally friendly domino reaction as a key step. Eur. J. Org. Chem., 2007, 26, 4305-4312.
[http://dx.doi.org/10.1002/ejoc.200700446 ]
(b) Lu, S.C.; Zheng, P.R.; Liu, G. Iodine(III)-mediated tandem oxidative cyclization for construction of 2-nitrobenzo[b]furans. J. Org. Chem., 2012, 77(17), 7711-7717.
[http://dx.doi.org/10.1021/jo301162x] [PMID: 22852756]
[214]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, 2009(1), 1-62.
[215]
Iglesias-Arteaga, M.A.; Velazquez-Huerta, G.A. Favorskii rearrangement of 23-oxo-3-epi-smilagenin acetate induced by iodosobenzene. Tetrahedron Lett., 2005, 46, 6897-6899.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.019]
[216]
Iglesias-Arteaga, M.A.; Arcos-Ramos, R.O. One-step axial acetoxylation at C-23. A new method for the functionalization of the side chain of steroid sapogenins. Tetrahedron Lett., 2006, 47, 8029-8031.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.078]
[217]
Iglesias-Arteaga, M.A.; Arcos-Ramos, R.O.; Mendez-Stivalet, J.M. The unexpected course of the reaction of steroid sapogenins with diacetoxyiodobenzene and BF3·Et2O in formic acid. Tetrahedron Lett., 2007, 48, 7485-7488.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.071]
[218]
Pouysegu, L.; Chassaing, S.; Dejugnac, D.; Lamidey, A-M.; Miqueu, K.; Sotiropoulos, J-M.; Quideau, S. Highly diastereoselective synthesis of orthoquinone monoketals through λ3-iodane-mediated oxidative dearomatization of phenols. Angew. Chem. Int. Ed., 2008, 47, 3552-3555.
[http://dx.doi.org/10.1002/anie.200705816]
[219]
Su, J.T.; Goddard, W.A. III Enhancing 2-iodoxybenzoic acid reactivity by exploiting a hypervalent twist. J. Am. Chem. Soc., 2005, 127(41), 14146-14147.
[http://dx.doi.org/10.1021/ja054446x] [PMID: 16218584]
[220]
Berard, D.; Giroux, M-A.; Racicot, L.; Sabot, C.; Canesi, S. Intriguing formal [2+3] cycloaddition promoted by a hypervalent iodine reagent. Tetrahedron, 2008, 64, 7537-7544.
[http://dx.doi.org/10.1016/j.tet.2008.05.114]
[221]
Wipf, P.; Spencer, S.R. Asymmetric total syntheses of tuberostemonine, didehydrotuberostemonine, and 13-epituberostemonine. J. Am. Chem. Soc., 2005, 127(1), 225-235.
[http://dx.doi.org/10.1021/ja044280k] [PMID: 15631472]
[222]
Canesi, S.; Bouchu, D.; Ciufolini, M.A. Fully stereocontrolled total synthesis of (−)-cylindricine C and (−)-2-epicylindricine C: a departure in sulfonamide chemistry. Angew. Chem. Int. Ed., 2004, 43, 4336-4338.
[http://dx.doi.org/10.1002/anie.200460178]
[223]
Nicolaou, K.C.; Edmonds, D.J.; Li, A.; Tria, G.S. Asymmetric total synthesis of platensimycin. Angew. Chem. Int. Ed., 2007, 46, 3942-3945.
[http://dx.doi.org/10.1002/anie.200700586]
[224]
Tohma, H.; Harayama, Y.; Hashizume, M.; Iwata, M.; Kiyono, Y.; Egi, M.; Kita, Y. The first total synthesis of discorhabdin A. J. Am. Chem. Soc., 2003, 125(37), 11235-11240.
[http://dx.doi.org/10.1021/ja0365330] [PMID: 16220942]
[225]
Baxendale, I.R.; Ley, S.V.; Nessi, M.; Piutti, C. Total synthesis of the amaryllidaceae alkaloid (+)-plicamine using solid-supported reagents. Tetrahedron, 2002, 58, 6285-6304.
[http://dx.doi.org/10.1016/S0040-4020(02)00628-2]
[226]
Vo, N.T.; Pace, R.D.M.; O’Hara, F.; Gaunt, M.J. An enantioselective organocatalytic oxidative dearomatization strategy. J. Am. Chem. Soc., 2008, 130(2), 404-405.
[http://dx.doi.org/10.1021/ja077457u] [PMID: 18081291]
[227]
Baxendale, I.R.; Deeley, J.; Griffiths-Jones, C.M.; Ley, S.V.; Saaby, S.; Tranmer, G.K. A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly. Chem. Commun. (Camb.), 2006, (24), 2566-2568.
[http://dx.doi.org/10.1039/b600382f] [PMID: 16779479]
[228]
Baxendale, I.R.; Lee, A-L.; Ley, S.V. A concise synthesis of carpanone using solid-supported reagents and scavengers. J. Chem. Soc., Perkin Trans. 1, 2002, 16, 1850-1857.
[229]
Moisan, L.; Wagner, M.; Comesse, S.; Doris, E. Ring expansions of a spirocyclohexadienone system. Tetrahedron Lett., 2006, 47, 9093-9094.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.080]
[230]
Dohi, T.; Maruyama, A.; Takenage, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S.; Kita, Y. A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of phenols. Angew. Chem. Int. Ed., 2008, 47, 3787-3790.
[http://dx.doi.org/10.1002/anie.200800464]
[231]
Boto, A.; Hernandez, D.; Hernandez, R. Short and efficient synthesis of chiral furyl carbinols from carbohydrates. Org. Lett., 2007, 9(9), 1721-1724.
[http://dx.doi.org/10.1021/ol070412d] [PMID: 17397175]
[232]
Boto, A.; Hernández, D.; Hernández, R.; Suárez, E. Efficient and selective removal of methoxy protecting groups in carbohydrates. Org. Lett., 2004, 6(21), 3785-3788.
[http://dx.doi.org/10.1021/ol048439+] [PMID: 15469349]
[233]
Boto, A.; Gallardo, J.A.; Hernandez, R.; Saavedra, C.J. One-pot synthesis of α-amino phosphonates from α-amino acids and β-amino alcohols. Tetrahedron Lett., 2005, 46, 7807-7811.
[http://dx.doi.org/10.1016/j.tetlet.2005.09.019]
[234]
Dohi, T.; Takenaga, N.; Goto, A.; Maruyama, A.; Kita, Y. Direct lactone formation by using hypervalent iodine(III) reagents with KBr via selective C-H abstraction protocol. Org. Lett., 2007, 9(16), 3129-3132.
[http://dx.doi.org/10.1021/ol071315n] [PMID: 17616204]
[235]
Liu, H.; Tan, C-H. Iodobenzene-catalysed iodolactonisation using sodium perborate monohydrate as oxidant. Tetrahedron Lett., 2007, 48, 8220-8222.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.078]
[236]
(a) Correa, A.; García Mancheño, O.; Bolm, C. Iron-catalysed carbon-heteroatom and heteroatom-heteroatom bond forming processes. Chem. Soc. Rev., 2008, 37(6), 1108-1117.
[http://dx.doi.org/10.1039/b801794h] [PMID: 18497924 ]
(b) Liu, C-H.; Yu, Z-X. Gold(I)- and platinum(IV)-catalyzed intramolecular annulations of allenes towards furans. Org. Chem. Front., 2014, 1, 1205-1209.
[http://dx.doi.org/ 10.1039/C4QO00223G]
(c) Manna, S.K.; Mandal, A.; Mondal, S.K.; Samanta, S. Platinum(II)-catalyzed novel synthesis of 3,4-fused furans. Synth. Commun., 2014, 45, 1-10.
[237]
Diaz, D.D.; Miranda, P.O.; Padron, J.I.; Martin, V.S. Recent uses of iron (III) chloride in organic synthesis. Curr. Org. Chem., 2006, 10, 457-476.
[http://dx.doi.org/10.2174/138527206776055330]
[238]
(a) Krause, N.; Winter, C. Gold-catalyzed nucleophilic cyclization of functionalized allenes: a powerful access to carbo- and heterocycles. Chem. Rev., 2011, 111(3), 1994-2009.
[http://dx.doi.org/10.1021/cr1004088] [PMID: 21314182 ]
(b) Minkler, S.R.K.; Isley, N.A.; Lippincott, D.J.; Krause, N.; Lipshutz, B.H. Leveraging the micellar effect: gold-catalyzed dehydrative cyclizations in water at room temperature. Org. Lett., 2014, 16(3), 724-726.
[http://dx.doi.org/10.1021/ol403402h] [PMID: 24433154 ]
(c) Bao, M.; Qian, Y.; Su, H.; Wu, B.; Qiu, L.; Hu, W.; Xu, X. Gold(I)-Catalyzed and H2O-mediated carbene cascade reaction of propargyl diazoacetates: furan synthesis and mechanistic insights. Org. Lett., 2018, 20(17), 5332-5335.
[http://dx.doi.org/10.1021/acs.orglett.8b02251] [PMID: 30148636]
[239]
Alcaide, B.; Almendros, P.; Alonso, J.M. Gold catalyzed oxycyclizations of alkynols and alkyndiols. Org. Biomol. Chem., 2011, 9(12), 4405-4416.
[http://dx.doi.org/10.1039/c1ob05249g] [PMID: 21487625]
[240]
Hashmi, A.S.K. Homogene gold‐katalyse jenseits von vermutungen und annahmen - charakterisierte intermediate. Angew. Chem.2010, 122, 5360-5369. Angew. Chem. Int. Ed., 2010, 49, 5232-5241.
[http://dx.doi.org/10.1002/anie.200907078]
[241]
Belmont, P.; Parker, E. Silver and gold catalysis for cycloisomerization reactions. Eur. J. Org. Chem., 2009, 35, 6075-6089.
[http://dx.doi.org/10.1002/ejoc.200900790]
[242]
(a) Lipshutz, B.; Yamamoto, Y. Introduction: coinage metals in organic synthesis. Chem. Rev., 2008, 8, 2793-2795.
(b) Hoffmann, M.; Miaskiewicz, S.; Weibel, J-M.; Pale, P.; Blanc, A. Gold(I)-catalyzed formation of furans from γ-acyloxyalkynyl ketones. Beilstein J. Org. Chem., 2013, 9, 1774-1780.
[http://dx.doi.org/10.3762/bjoc.9.206] [PMID: 24062842]
[243]
(a) Hutchings, G.J.; Brust, M.; Schmidbaur, H. Gold- an introductory perspective. Chem. Soc. Rev., 2008, 37(9), 1759-1765.
(b) Oonishi, Y.; Gómez-Suárez, A.; Martin, A.R.; Makida, Y.; Slawin, A.M.Z.; Nolan, S.P. [Au]/[Pd] Multicatalytic processes: direct one-pot access to benzo[c]chromenes and benzo[b]furans. Chemistry, 2014, 20(42), 13507-13510.
[http://dx.doi.org/10.1002/chem.201404630] [PMID: 25168654]
[244]
Bongers, N. Krause, Goldene aussichten in der stereoselektiven katalyse. Angew. Chem., 2008, 120(12), 2208-2211.
[http://dx.doi.org/10.1002/anie.200704729]
[245]
Hutchings, G.J. Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis. Chem. Commun. (Camb.), 2008, (10), 1148-1164.
[http://dx.doi.org/10.1039/B712305C] [PMID: 18309405]
[246]
Muzart, J. Gold-catalysed reactions of alcohols: isomerisation, inter- and intramolecular reactions leading to C-C and C-heteroatom bonds. Tetrahedron, 2008, 64, 5815-5849.
[http://dx.doi.org/10.1016/j.tet.2008.04.018]
[247]
(a) Hashmi, A.S.K. Gold-catalyzed organic reactions. Chem. Rev., 2007, 107(7), 3180-3211.
[http://dx.doi.org/10.1021/cr000436x] [PMID: 17580975 ]
(b) Kotikalapudi, R.; Siva Kumari, A.L.; Swamy, K.C.K. NHC-gold(I) catalysed [4 + 2] cycloaddition-acyclic addition of dialkyl substituted propargylic esters with 1,3- diphenylisobenzofuran: synthesis of novel benzo[c]fluorenols and substituted dienes. RSC Advances, 2014, 4, 17717-17725.
[http://dx.doi.org/10.1039/C4RA01105H]
[248]
Liu, C.; Bender, C.F.; Han, X.; Widenhoefer, R.A. Platinum-catalyzed hydrofunctionalization of unactivated alkenes with carbon, nitrogen and oxygen nucleophiles. Chem. Commun. (Camb.), 2007, (35), 3607-3618.
[http://dx.doi.org/10.1039/b615698c] [PMID: 17728873]
[249]
Furstner, A.; Davies, P.W. Catalytic carbophilic activation: catalysis by platinum and gold pi acids. Angew. Chem. Int. Ed., 2007, 46, 3410-3449.
[250]
Alcaide, B.; Almendros, P. Allenyl-β-lactams: versatile scaffolds for the synthesis of heterocycles. Chem. Rec., 2011, 11(6), 311-330.
[http://dx.doi.org/10.1002/tcr.201100011] [PMID: 22052790]
[251]
Alcaide, B.; Almendros, P. Gold-catalyzed heterocyclizations in alkynyl- and allenyl-β-lactams. Beilstein J. Org. Chem., 2011, 7, 622-630.
[http://dx.doi.org/10.3762/bjoc.7.73] [PMID: 21647323]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy